An efficient approximate algorithm for nonadiabatic molecular dynamics

We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu [Phys. Chem. Chem. Phys. , 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics Vol. 149; no. 24; p. 244117
Main Authors: Hanasaki, Kota, Kanno, Manabu, Niehaus, Thomas A, Kono, Hirohiko
Format: Journal Article
Language:English
Published: United States 28.12.2018
ISSN:1089-7690, 1089-7690
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu [Phys. Chem. Chem. Phys. , 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.
AbstractList We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and ab initio models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and ab initio models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.
We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu [Phys. Chem. Chem. Phys. , 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.
Author Niehaus, Thomas A
Kono, Hirohiko
Hanasaki, Kota
Kanno, Manabu
Author_xml – sequence: 1
  givenname: Kota
  orcidid: 0000000187782866
  surname: Hanasaki
  fullname: Hanasaki, Kota
  organization: Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
– sequence: 2
  givenname: Manabu
  surname: Kanno
  fullname: Kanno, Manabu
  organization: Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
– sequence: 3
  givenname: Thomas A
  orcidid: 0000000195767658
  surname: Niehaus
  fullname: Niehaus, Thomas A
  organization: University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeubanne, France
– sequence: 4
  givenname: Hirohiko
  surname: Kono
  fullname: Kono, Hirohiko
  organization: Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30599729$$D View this record in MEDLINE/PubMed
BookMark eNpNT8tKxDAUDTLiPHThD0iWbjreJG3TLIfBUWHAhe7LzW2ikT7GpgXn7y3MCK7OOXA4jyWbtV3rGLsVsBaQqwexziDNdaYv2EJAYRKdG5j943O2jPELAISW6RWbK8iM0dIs2G7Tcud9oODagePh0Hc_ocHBcaw_uj4Mnw33Xc-nRqwCWhwC8aarHY019rw6ttgEitfs0mMd3c0ZV-xt9_i-fU72r08v280-obRQQ2IJbGa9pYy0kOhR55KU9ETCU2aULXzlpQWjUeWpxUn4yghIJUgBcsXuT6nTyu_RxaFsQiRX19i6boylFLnUU2ShJuvd2TraxlXloZ9e9cfy77n8BV6QXFA
CitedBy_id crossref_primary_10_1088_1361_648X_ab5246
crossref_primary_10_1088_2632_2153_abfe3f
crossref_primary_10_1002_jcc_27271
crossref_primary_10_1080_00268976_2022_2051761
ContentType Journal Article
DBID NPM
7X8
DOI 10.1063/1.5046757
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 30599729
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJGX
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
7X8
AAGWI
ID FETCH-LOGICAL-c483t-bc0b5bfbc5c712afa762c32fcc1fc593b8fdf2b097a364badf2fd9104202102
IEDL.DBID 7X8
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454626000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7690
IngestDate Fri Jul 11 11:44:35 EDT 2025
Wed Feb 19 02:33:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-bc0b5bfbc5c712afa762c32fcc1fc593b8fdf2b097a364badf2fd9104202102
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000000187782866
0000000195767658
PMID 30599729
PQID 2162776283
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2162776283
pubmed_primary_30599729
PublicationCentury 2000
PublicationDate 2018-12-28
PublicationDateYYYYMMDD 2018-12-28
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2018
SSID ssj0001724
Score 2.3457992
Snippet We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu [Phys. Chem. Chem. Phys. , 25883 (2014)], which is...
We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)],...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 244117
Title An efficient approximate algorithm for nonadiabatic molecular dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/30599729
https://www.proquest.com/docview/2162776283
Volume 149
WOSCitedRecordID wos000454626000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFb34qK_6IoLX2G6y2SQnKcXixVLQQ2_LJptowW6rW8Wf7yS7S0-C4GVhYR_JJJP5Jhm-D6EbxaSQKtMkcTkjseU5kbmKiIuoE0Jl3FkdxCbEaCQnEzWuN9zKuqyyWRPDQp3Pjd8j79IooQI8V7K7xTvxqlH-dLWW0FhHLQZQxpd0icmKLRyCc1wV2CsiIA1smIUS1o1uOWSGgovfkWWIMMO9_7ZtH-3W2BL3q8lwgNZs0Ubbg0bSrY22Qr2nKQ_RsF9gG9gjIOjgQCz-PQXwanH29gKfXr7OMMBZXMwDeYH2vK541kjp4rzSsS-P0NPw_nnwQGpJBWJiyZZEm57m2mnDjYho5jJotWHUGRM5wxXT0uWO6p4SGUtincGNg6EDzw654THagP_aU4QjIbg2wmfXJqaawzPU5pD7wOiaSOkOum5MlUIn_SlEVtj5Z5mujNVBJ5W900XFrJEyzxYDcP_sD2-fox0AL9KXllB5gVoO3NVeok3ztZyWH1dhJsB1NH78AQ_gvvE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+approximate+algorithm+for+nonadiabatic+molecular+dynamics&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Hanasaki%2C+Kota&rft.au=Kanno%2C+Manabu&rft.au=Niehaus%2C+Thomas+A&rft.au=Kono%2C+Hirohiko&rft.date=2018-12-28&rft.eissn=1089-7690&rft.volume=149&rft.issue=24&rft.spage=244117&rft_id=info:doi/10.1063%2F1.5046757&rft_id=info%3Apmid%2F30599729&rft_id=info%3Apmid%2F30599729&rft.externalDocID=30599729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7690&client=summon