Effects of a surfactant monolayer on the measurement of equilibrium interfacial tension of a drop in extensional flow

The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibriu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of colloid and interface science Ročník 333; číslo 2; s. 570 - 578
Hlavní autoři: González-Mancera, Andrés, Gupta, Vijay Kumar, Jamal, Mustapha, Eggleton, Charles D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.05.2009
Elsevier
Témata:
ISSN:0021-9797, 1095-7103, 1095-7103
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibrium are suddenly subjected to axisymmetric extensional flows until a steady state deformation is reached. The external flow is then removed and the retraction of the drops to a spherical equilibrium shape in a quiescent state is simulated. The transient response of the drop to the imposed flow is analyzed to obtain a characteristic response time, τ s ∗ . Neglecting the initial and final stages, the retraction process can be closely approximated by an exponential decay with a characteristic time, τ r ∗ . The strength of the external flow on each model drop is increased in order to investigate the coupled effect of deformation and surfactant distribution on the characteristic relaxation time. Different model drops are considered by varying the internal viscosity and the equilibrium surfactant concentrations from a surfactant free state (clean) to high concentrations approaching the maximum packing limit. The characteristic times obtained from the simulated drop dynamics both in extension and retraction are used to determine an apparent surface tension employing linear theory. In extension the apparent surface tension under predicts the prescribed equilibrium surface tension. The error increases monotonically with the equilibrium surfactant concentration and diverges as the maximum packing limit is approached. In retraction the apparent surface tension under predicts the prescribed equilibrium surface tension depends non-monotonically on the equilibrium surfactant concentration. The error is highest for moderate surfactant concentrations and decreases as the maximum packing limit is approached. It was found that the difference between the prescribed surface tension and the apparent surface tension increased as the viscosity ratio decreased. Differences as large as 40% were seen between the prescribed surface tension and the apparent surface tension predicted by the linear theory. Effects of surfactant surface concentration at equilibrium, Γ eq , extensional flow rate, G, and internal viscosity, λμ, on the measurement of interfacial surface tension are investigated through simulation.
AbstractList The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibrium are suddenly subjected to axisymmetric extensional flows until a steady-state deformation is reached. The external flow is then removed and the retraction of the drops to a spherical equilibrium shape in a quiescent state is simulated. The transient response of the drop to the imposed flow is analyzed to obtain a characteristic response time, τs∗. Neglecting the initial and final stages, the retraction process can be closely approximated by an exponential decay with a characteristic time, τr∗. The strength of the external flow on each model drop is increased in order to investigate the coupled effect of deformation and surfactant distribution on the characteristic relaxation time. Different model drops are considered by varying the internal viscosity and the equilibrium surfactant concentrations from a surfactant free state (clean) to high concentrations approaching the maximum packing limit. The characteristic times obtained from the simulated drop dynamics both in extension and retraction are used to determine an apparent surface tension employing linear theory. In extension the apparent surface tension under predicts the prescribed equilibrium surface tension. The error increases monotonically with the equilibrium surfactant concnetration and diverges as the maximum packing limit is approached. In retraction the apparent surface tension under predicts the prescribed equilibrium surface tension depends non-monotonically on the equilibrium surfactant concentration. The error is highest for moderate surfantant concentrations and decreases as the maximum packing limit is approached. It was found that the difference between the prescribed surface tension and the apprent surface tension increased as the viscosity ratio decreased. Differences as large as 40% were seen between the prescribed surface tension and the apparent surface tension predicted by the linear theory.
The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibrium are suddenly subjected to axisymmetric extensional flows until a steady state deformation is reached. The external flow is then removed and the retraction of the drops to a spherical equilibrium shape in a quiescent state is simulated. The transient response of the drop to the imposed flow is analyzed to obtain a characteristic response time, tau(s)( *). Neglecting the initial and final stages, the retraction process can be closely approximated by an exponential decay with a characteristic time, tau(r)( *). The strength of the external flow on each model drop is increased in order to investigate the coupled effect of deformation and surfactant distribution on the characteristic relaxation time. Different model drops are considered by varying the internal viscosity and the equilibrium surfactant concentrations from a surfactant free state (clean) to high concentrations approaching the maximum packing limit. The characteristic times obtained from the simulated drop dynamics both in extension and retraction are used to determine an apparent surface tension employing linear theory. In extension the apparent surface tension under predicts the prescribed equilibrium surface tension. The error increases monotonically with the equilibrium surfactant concentration and diverges as the maximum packing limit is approached. In retraction the apparent surface tension under predicts the prescribed equilibrium surface tension depends non-monotonically on the equilibrium surfactant concentration. The error is highest for moderate surfactant concentrations and decreases as the maximum packing limit is approached. It was found that the difference between the prescribed surface tension and the apparent surface tension increased as the viscosity ratio decreased. Differences as large as 40% were seen between the prescribed surface tension and the apparent surface tension predicted by the linear theory.
The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibrium are suddenly subjected to axisymmetric extensional flows until a steady state deformation is reached. The external flow is then removed and the retraction of the drops to a spherical equilibrium shape in a quiescent state is simulated. The transient response of the drop to the imposed flow is analyzed to obtain a characteristic response time, τ s ∗ . Neglecting the initial and final stages, the retraction process can be closely approximated by an exponential decay with a characteristic time, τ r ∗ . The strength of the external flow on each model drop is increased in order to investigate the coupled effect of deformation and surfactant distribution on the characteristic relaxation time. Different model drops are considered by varying the internal viscosity and the equilibrium surfactant concentrations from a surfactant free state (clean) to high concentrations approaching the maximum packing limit. The characteristic times obtained from the simulated drop dynamics both in extension and retraction are used to determine an apparent surface tension employing linear theory. In extension the apparent surface tension under predicts the prescribed equilibrium surface tension. The error increases monotonically with the equilibrium surfactant concentration and diverges as the maximum packing limit is approached. In retraction the apparent surface tension under predicts the prescribed equilibrium surface tension depends non-monotonically on the equilibrium surfactant concentration. The error is highest for moderate surfactant concentrations and decreases as the maximum packing limit is approached. It was found that the difference between the prescribed surface tension and the apparent surface tension increased as the viscosity ratio decreased. Differences as large as 40% were seen between the prescribed surface tension and the apparent surface tension predicted by the linear theory. Effects of surfactant surface concentration at equilibrium, Γ eq , extensional flow rate, G, and internal viscosity, λμ, on the measurement of interfacial surface tension are investigated through simulation.
The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibrium are suddenly subjected to axisymmetric extensional flows until a steady state deformation is reached. The external flow is then removed and the retraction of the drops to a spherical equilibrium shape in a quiescent state is simulated. The transient response of the drop to the imposed flow is analyzed to obtain a characteristic response time, tau(s)( *). Neglecting the initial and final stages, the retraction process can be closely approximated by an exponential decay with a characteristic time, tau(r)( *). The strength of the external flow on each model drop is increased in order to investigate the coupled effect of deformation and surfactant distribution on the characteristic relaxation time. Different model drops are considered by varying the internal viscosity and the equilibrium surfactant concentrations from a surfactant free state (clean) to high concentrations approaching the maximum packing limit. The characteristic times obtained from the simulated drop dynamics both in extension and retraction are used to determine an apparent surface tension employing linear theory. In extension the apparent surface tension under predicts the prescribed equilibrium surface tension. The error increases monotonically with the equilibrium surfactant concentration and diverges as the maximum packing limit is approached. In retraction the apparent surface tension under predicts the prescribed equilibrium surface tension depends non-monotonically on the equilibrium surfactant concentration. The error is highest for moderate surfactant concentrations and decreases as the maximum packing limit is approached. It was found that the difference between the prescribed surface tension and the apparent surface tension increased as the viscosity ratio decreased. Differences as large as 40% were seen between the prescribed surface tension and the apparent surface tension predicted by the linear theory.The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using the Boundary Integral Method. Emulsion droplets with a surfactant monolayer modeled with the Langmuir equation of state initially in equilibrium are suddenly subjected to axisymmetric extensional flows until a steady state deformation is reached. The external flow is then removed and the retraction of the drops to a spherical equilibrium shape in a quiescent state is simulated. The transient response of the drop to the imposed flow is analyzed to obtain a characteristic response time, tau(s)( *). Neglecting the initial and final stages, the retraction process can be closely approximated by an exponential decay with a characteristic time, tau(r)( *). The strength of the external flow on each model drop is increased in order to investigate the coupled effect of deformation and surfactant distribution on the characteristic relaxation time. Different model drops are considered by varying the internal viscosity and the equilibrium surfactant concentrations from a surfactant free state (clean) to high concentrations approaching the maximum packing limit. The characteristic times obtained from the simulated drop dynamics both in extension and retraction are used to determine an apparent surface tension employing linear theory. In extension the apparent surface tension under predicts the prescribed equilibrium surface tension. The error increases monotonically with the equilibrium surfactant concentration and diverges as the maximum packing limit is approached. In retraction the apparent surface tension under predicts the prescribed equilibrium surface tension depends non-monotonically on the equilibrium surfactant concentration. The error is highest for moderate surfactant concentrations and decreases as the maximum packing limit is approached. It was found that the difference between the prescribed surface tension and the apparent surface tension increased as the viscosity ratio decreased. Differences as large as 40% were seen between the prescribed surface tension and the apparent surface tension predicted by the linear theory.
Author Gupta, Vijay Kumar
González-Mancera, Andrés
Eggleton, Charles D.
Jamal, Mustapha
Author_xml – sequence: 1
  givenname: Andrés
  surname: González-Mancera
  fullname: González-Mancera, Andrés
– sequence: 2
  givenname: Vijay Kumar
  surname: Gupta
  fullname: Gupta, Vijay Kumar
– sequence: 3
  givenname: Mustapha
  surname: Jamal
  fullname: Jamal, Mustapha
– sequence: 4
  givenname: Charles D.
  surname: Eggleton
  fullname: Eggleton, Charles D.
  email: eggleton@umbc.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21399988$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19261292$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1vFCEYhYmpsdvqH_DCzI3ezQrMDAOJMTFN_UiaeKPX5F3mxbJhYAtMtf9e1l3rx0WvSDjPOcB7OCMnIQYk5Dmja0aZeL1db43La06pWlO-prR_RFaMqqEdGe1OyIpSzlo1qvGUnOW8pZSxYVBPyClTXDCu-Iosl9aiKbmJtoEmL8mCKRBKM8cQPdxhamJoyjU2M0KVccYqVhhvFufdJrllblwouDc68E3BkF21_MqbUtxVtcEfx-0KWB-_PyWPLfiMz47rOfn6_vLLxcf26vOHTxfvrlrTy660ChRa6KUUvem47DZUDkoIM3E6MAZ06NWITNkeBIAwIJVQKBCkBZyU6bpz8vaQu1s2M06m3j2B17vkZkh3OoLT_yrBXetv8VZzITsx8hrw6hiQ4s2CuejZZYPeQ8C4ZC1GxvpxGCr44u-T7o_4PekKvDwCkA14myDU8u45zjqllJSV4wfOpJhzQvsniup97Xqr97Xrfe2acl1rryb5n8m4AqUOvL7K-Yetbw5WrD3cOkw6G4fB4ORS_Rh6iu4h-08qZMtI
CODEN JCISA5
CitedBy_id crossref_primary_10_1016_j_jcis_2020_06_069
crossref_primary_10_1016_j_talanta_2014_03_065
Cites_doi 10.1017/S0022112099005285
10.1002/(SICI)1099-0488(19970715)35:9<1393::AID-POLB9>3.0.CO;2-N
10.1017/S0022112090003226
10.1021/ma000537x
10.1006/jcph.2000.6582
10.1063/1.2034098
10.1016/S0006-3495(91)82119-1
10.1098/rspa.1932.0169
10.1017/S002211209600777X
10.1017/S0022112093000138
10.1122/1.2048748
10.1017/S0022112097005016
10.1063/1.870349
10.1021/la7024582
10.1017/S0022112081003480
10.1017/S0022112098004054
10.1063/1.868958
10.1016/j.jcis.2003.09.030
10.1017/S0022112073000534
10.1146/annurev.fl.16.010184.000401
10.1063/1.869973
10.1063/1.869995
10.1006/jcis.1998.5816
10.1017/S0022112096000080
10.1063/1.857686
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jcis.2009.02.004
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 578
ExternalDocumentID PMC2683672
19261292
21399988
10_1016_j_jcis_2009_02_004
S0021979709001647
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI063366
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c483t-9a9efa48864c3283b085966cd20511a05497e19f4a6aa6ca8969e6ea8faed9c33
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265121500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9797
1095-7103
IngestDate Tue Sep 30 16:57:11 EDT 2025
Thu Oct 02 18:50:11 EDT 2025
Mon Jul 21 05:28:56 EDT 2025
Mon Jul 21 09:13:32 EDT 2025
Tue Nov 18 20:53:18 EST 2025
Sat Nov 29 07:26:16 EST 2025
Fri Feb 23 02:22:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Marangoni stress
Tensiometry
Surfactant
Interfacial tension
Viscosity
Monolayer
Deformation
Spherical shape
Retraction
Interface tension
Theory
Equilibrium shape
Relaxation time
Concentration measurement
Emulsion
Packing
Dynamics
Transient response
Droplet
Equilibrium
Steady state
Transient method
Drop
Equations of state
Response time
Distribution
Models
Surface tension
Physicochemical properties
Rheological properties
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-9a9efa48864c3283b085966cd20511a05497e19f4a6aa6ca8969e6ea8faed9c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Departamento de Ingenieria Mecánica, Universidad de los Andes, Bogotá, Colombia
OpenAccessLink http://doi.org/10.1016/j.jcis.2009.02.004
PMID 19261292
PQID 67114755
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2683672
proquest_miscellaneous_67114755
pubmed_primary_19261292
pascalfrancis_primary_21399988
crossref_primary_10_1016_j_jcis_2009_02_004
crossref_citationtrail_10_1016_j_jcis_2009_02_004
elsevier_sciencedirect_doi_10_1016_j_jcis_2009_02_004
PublicationCentury 2000
PublicationDate 2009-05-15
PublicationDateYYYYMMDD 2009-05-15
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2009
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Eggleton, Pawar, Stebe (bib024) 1999; 385
Pawar, Stebe (bib012) 1996; 8
Tran-Son-Tay, Needham, Yeung, Hochmuth (bib003) 1991; 60
Loewenberg, Hinch (bib016) 1997; 338
Li, Sarkar (bib002) 2005; 49
Velankar, Zhou, Jeon, Macosko (bib027) 2004; 272
Hudson, Cabral, Goodrum, Beers, Amis (bib005) 2005; 87
Barthes-Biesel, Rallison (bib026) 1981; 113
Pozrikidis (bib023) 2001; 169
Diaz, Pelekasis, Barthes-Biesel (bib028) 2000; 12
Li, Pozrikidis (bib021) 1996; 307
Yon, Pozrikidis (bib022) 1999; 11
Zinchenko, Rother, Davis (bib009) 1999; 391
Loewenberg, Hinch (bib020) 1996; 321
Pozrikidis (bib013) 1992
Barthes-Biesel, Acrivos (bib010) 1973; 61
Velankar, Zhou, Jeon, Macosko (bib004) 2004; 272
Taylor (bib007) 1932; 138
I.B. Bazhlekov, Ph.D. thesis, Non-singular boundary-integral method for deformable drops in viscous flows, Univ. of Technology, Eindhoven, The Netherlands, 2003
Rallison (bib008) 1984; 16
Xing, Bousmina, Rodrigue, Kamal (bib006) 2000; 33
Stone, Leal (bib015) 1990; 220
Luciani, Champagne, Utracki (bib029) 1997; 35
Hansen (bib001) 2008; 24
Pozrikidis (bib019) 1993; 246
Eggleton, Stebe (bib025) 1998; 208
Davis (bib018) 1999; 11
Stone (bib011) 1990; 2
Zinchenko, Rother, Davis (bib017) 1997; 12
Hudson (10.1016/j.jcis.2009.02.004_bib005) 2005; 87
Taylor (10.1016/j.jcis.2009.02.004_bib007) 1932; 138
Loewenberg (10.1016/j.jcis.2009.02.004_bib020) 1996; 321
Rallison (10.1016/j.jcis.2009.02.004_bib008) 1984; 16
Diaz (10.1016/j.jcis.2009.02.004_bib028) 2000; 12
Luciani (10.1016/j.jcis.2009.02.004_bib029) 1997; 35
Davis (10.1016/j.jcis.2009.02.004_bib018) 1999; 11
Pawar (10.1016/j.jcis.2009.02.004_bib012) 1996; 8
Stone (10.1016/j.jcis.2009.02.004_bib015) 1990; 220
Pozrikidis (10.1016/j.jcis.2009.02.004_bib019) 1993; 246
Eggleton (10.1016/j.jcis.2009.02.004_bib024) 1999; 385
Pozrikidis (10.1016/j.jcis.2009.02.004_bib013) 1992
Loewenberg (10.1016/j.jcis.2009.02.004_bib016) 1997; 338
Zinchenko (10.1016/j.jcis.2009.02.004_bib009) 1999; 391
Li (10.1016/j.jcis.2009.02.004_bib021) 1996; 307
Eggleton (10.1016/j.jcis.2009.02.004_bib025) 1998; 208
Hansen (10.1016/j.jcis.2009.02.004_bib001) 2008; 24
Yon (10.1016/j.jcis.2009.02.004_bib022) 1999; 11
Tran-Son-Tay (10.1016/j.jcis.2009.02.004_bib003) 1991; 60
Pozrikidis (10.1016/j.jcis.2009.02.004_bib023) 2001; 169
Barthes-Biesel (10.1016/j.jcis.2009.02.004_bib010) 1973; 61
10.1016/j.jcis.2009.02.004_bib014
Velankar (10.1016/j.jcis.2009.02.004_bib004) 2004; 272
Stone (10.1016/j.jcis.2009.02.004_bib011) 1990; 2
Velankar (10.1016/j.jcis.2009.02.004_bib027) 2004; 272
Xing (10.1016/j.jcis.2009.02.004_bib006) 2000; 33
Li (10.1016/j.jcis.2009.02.004_bib002) 2005; 49
Zinchenko (10.1016/j.jcis.2009.02.004_bib017) 1997; 12
Barthes-Biesel (10.1016/j.jcis.2009.02.004_bib026) 1981; 113
References_xml – volume: 11
  start-page: 1016
  year: 1999
  ident: bib018
  publication-title: Phys. Fluids
– reference: I.B. Bazhlekov, Ph.D. thesis, Non-singular boundary-integral method for deformable drops in viscous flows, Univ. of Technology, Eindhoven, The Netherlands, 2003
– volume: 272
  start-page: 172
  year: 2004
  ident: bib027
  publication-title: J. Colloid Interface Sci.
– volume: 87
  start-page: 081905
  year: 2005
  ident: bib005
  publication-title: Appl. Phys. Lett.
– volume: 220
  start-page: 161
  year: 1990
  ident: bib015
  publication-title: J. Fluid Mech.
– volume: 24
  start-page: 189
  year: 2008
  ident: bib001
  publication-title: Langmuir
– volume: 8
  start-page: 1738
  year: 1996
  ident: bib012
  publication-title: Phys. Fluids
– volume: 60
  start-page: 856
  year: 1991
  ident: bib003
  publication-title: Biophys. J.
– volume: 208
  start-page: 68
  year: 1998
  ident: bib025
  publication-title: J. Colloid Interface Sci.
– volume: 35
  start-page: 1393
  year: 1997
  ident: bib029
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 272
  start-page: 172
  year: 2004
  ident: bib004
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 948
  year: 2000
  ident: bib028
  publication-title: Phys. Fluids
– volume: 33
  start-page: 8020
  year: 2000
  ident: bib006
  publication-title: Macromolecules
– volume: 321
  start-page: 395
  year: 1996
  ident: bib020
  publication-title: J. Fluid Mech.
– volume: 113
  start-page: 251
  year: 1981
  ident: bib026
  publication-title: J. Fluid Mech.
– volume: 11
  start-page: 1297
  year: 1999
  ident: bib022
  publication-title: Phys. Fluids
– volume: 169
  start-page: 250
  year: 2001
  ident: bib023
  publication-title: J. Comput. Phys.
– volume: 307
  start-page: 167
  year: 1996
  ident: bib021
  publication-title: J. Fluid Mech.
– volume: 338
  start-page: 299
  year: 1997
  ident: bib016
  publication-title: J. Fluid Mech.
– volume: 2
  start-page: 111
  year: 1990
  ident: bib011
  publication-title: Phys. Fluids A
– volume: 49
  start-page: 1377
  year: 2005
  ident: bib002
  publication-title: J. Rheol.
– volume: 246
  start-page: 301
  year: 1993
  ident: bib019
  publication-title: J. Fluid Mech.
– volume: 385
  start-page: 79
  year: 1999
  ident: bib024
  publication-title: J. Fluid Mech.
– volume: 61
  start-page: 1
  year: 1973
  ident: bib010
  publication-title: J. Fluid Mech.
– volume: 12
  start-page: 484
  year: 1997
  ident: bib017
  publication-title: Phys. Fluids
– volume: 16
  start-page: 45
  year: 1984
  ident: bib008
  publication-title: Annu. Rev. Fluid Mech.
– volume: 391
  start-page: 249
  year: 1999
  ident: bib009
  publication-title: J. Fluid Mech.
– volume: 138
  start-page: 41
  year: 1932
  ident: bib007
  publication-title: Proc. R. Soc. London Ser. A
– year: 1992
  ident: bib013
  article-title: Boundary Integral and Singularity Methods for Linearized Viscous Flow
– volume: 391
  start-page: 249
  year: 1999
  ident: 10.1016/j.jcis.2009.02.004_bib009
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099005285
– volume: 35
  start-page: 1393
  year: 1997
  ident: 10.1016/j.jcis.2009.02.004_bib029
  publication-title: J. Polym. Sci. Polym. Phys.
  doi: 10.1002/(SICI)1099-0488(19970715)35:9<1393::AID-POLB9>3.0.CO;2-N
– volume: 220
  start-page: 161
  year: 1990
  ident: 10.1016/j.jcis.2009.02.004_bib015
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090003226
– volume: 33
  start-page: 8020
  year: 2000
  ident: 10.1016/j.jcis.2009.02.004_bib006
  publication-title: Macromolecules
  doi: 10.1021/ma000537x
– volume: 169
  start-page: 250
  year: 2001
  ident: 10.1016/j.jcis.2009.02.004_bib023
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6582
– volume: 87
  start-page: 081905
  year: 2005
  ident: 10.1016/j.jcis.2009.02.004_bib005
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2034098
– volume: 60
  start-page: 856
  year: 1991
  ident: 10.1016/j.jcis.2009.02.004_bib003
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(91)82119-1
– volume: 138
  start-page: 41
  year: 1932
  ident: 10.1016/j.jcis.2009.02.004_bib007
  publication-title: Proc. R. Soc. London Ser. A
  doi: 10.1098/rspa.1932.0169
– volume: 321
  start-page: 395
  year: 1996
  ident: 10.1016/j.jcis.2009.02.004_bib020
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209600777X
– volume: 246
  start-page: 301
  year: 1993
  ident: 10.1016/j.jcis.2009.02.004_bib019
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093000138
– volume: 49
  start-page: 1377
  year: 2005
  ident: 10.1016/j.jcis.2009.02.004_bib002
  publication-title: J. Rheol.
  doi: 10.1122/1.2048748
– volume: 12
  start-page: 484
  year: 1997
  ident: 10.1016/j.jcis.2009.02.004_bib017
  publication-title: Phys. Fluids
– volume: 338
  start-page: 299
  year: 1997
  ident: 10.1016/j.jcis.2009.02.004_bib016
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097005016
– year: 1992
  ident: 10.1016/j.jcis.2009.02.004_bib013
– volume: 12
  start-page: 948
  year: 2000
  ident: 10.1016/j.jcis.2009.02.004_bib028
  publication-title: Phys. Fluids
  doi: 10.1063/1.870349
– volume: 24
  start-page: 189
  year: 2008
  ident: 10.1016/j.jcis.2009.02.004_bib001
  publication-title: Langmuir
  doi: 10.1021/la7024582
– volume: 113
  start-page: 251
  year: 1981
  ident: 10.1016/j.jcis.2009.02.004_bib026
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112081003480
– volume: 385
  start-page: 79
  year: 1999
  ident: 10.1016/j.jcis.2009.02.004_bib024
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098004054
– volume: 8
  start-page: 1738
  year: 1996
  ident: 10.1016/j.jcis.2009.02.004_bib012
  publication-title: Phys. Fluids
  doi: 10.1063/1.868958
– volume: 272
  start-page: 172
  year: 2004
  ident: 10.1016/j.jcis.2009.02.004_bib004
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.09.030
– ident: 10.1016/j.jcis.2009.02.004_bib014
– volume: 61
  start-page: 1
  year: 1973
  ident: 10.1016/j.jcis.2009.02.004_bib010
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112073000534
– volume: 16
  start-page: 45
  year: 1984
  ident: 10.1016/j.jcis.2009.02.004_bib008
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.16.010184.000401
– volume: 11
  start-page: 1016
  year: 1999
  ident: 10.1016/j.jcis.2009.02.004_bib018
  publication-title: Phys. Fluids
  doi: 10.1063/1.869973
– volume: 11
  start-page: 1297
  year: 1999
  ident: 10.1016/j.jcis.2009.02.004_bib022
  publication-title: Phys. Fluids
  doi: 10.1063/1.869995
– volume: 208
  start-page: 68
  year: 1998
  ident: 10.1016/j.jcis.2009.02.004_bib025
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.5816
– volume: 307
  start-page: 167
  year: 1996
  ident: 10.1016/j.jcis.2009.02.004_bib021
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112096000080
– volume: 2
  start-page: 111
  year: 1990
  ident: 10.1016/j.jcis.2009.02.004_bib011
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857686
– volume: 272
  start-page: 172
  year: 2004
  ident: 10.1016/j.jcis.2009.02.004_bib027
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.09.030
SSID ssj0011559
Score 1.9434031
Snippet The effect of surfactant monolayer concentration on the measurement of interfacial surface tension using transient drop deformation methods is studied using...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 570
SubjectTerms Chemistry
Colloidal state and disperse state
Computer Simulation
Emulsions - chemistry
Emulsions. Microemulsions. Foams
Exact sciences and technology
General and physical chemistry
Interfacial tension
Marangoni stress
Models, Chemical
Surface physical chemistry
Surface Tension
Surface-Active Agents - chemistry
Surfactant
Tensiometry
Viscosity
Title Effects of a surfactant monolayer on the measurement of equilibrium interfacial tension of a drop in extensional flow
URI https://dx.doi.org/10.1016/j.jcis.2009.02.004
https://www.ncbi.nlm.nih.gov/pubmed/19261292
https://www.proquest.com/docview/67114755
https://pubmed.ncbi.nlm.nih.gov/PMC2683672
Volume 333
WOSCitedRecordID wos000265121500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQIIRgDykfxA29RqqVO7PhxKuVL6rSHgfoWuY67pWqT0Daj7AfzO7iOnTQtbAIkXqoqsZO099g-zr33XITeBEdScOIRF8gBdX3BiMtjErs08BTsxnwhiCk2wU5OwtGIn7ZaP6pcmMsZS9Nwveb5fzU1HANj69TZvzB3fVE4AN_B6PAJZofPPzL8YBOhIZxlsdCpC_D3OfAAsI0Fhm39A85883pQN1Zfi6RMACjmpYiE7lgmlegQd8MqhRMvsrxUGVnbwzr_cZZ9u4bjapRlSWwlnsw1lWNX3Tr0J0uvSn-9N1NX7lDDcCGqYEvjyK-J__siN3T3SzIV350yQLwOAhLzsnqBM9RJYflFveAMzs8BnVvhBc7b7tb7Dq5d9Sbjs84_8FzOTFRvV5lpG4iijiolzXmdGIUNC-BeY5YOTK0Su-AHpobQL2uJea0x7U5lsrTCplrc1W82BtPn8xJIwJSBLJq6fjsK3qfDfo-GhDKgCvs9FnCYffePPw5Gn2p_l3YOm2Ak89tsepeJRNx9gFLo1tztOjZ1PxdLGOMTU5zld7un3SDgBqs6e4geWKjgYwPjR6il0gN0p19VITxA9xqCmY9RYcGNswkWeANuXIMbZykGcOMGuHXjBrhxA9zYothcT4MbzuIGuLEG9yH6_G5w1v_g2sIhrvRDsnK54GoiYGmiviTAn8daxY9SGfdgCfIE7FI4Ux6f-IIKQaUIOeWKKhFOhIq5JOQJ2kuzVD1DmIRKCl2SwI_H_liSUPpk7GnvOGHMY3EbeZUBImlV9XVxl1lUhU9OI20_Xe6VR0e9COzXRk7dJzeaMje2Diq7RnZ8GrYbAVBv7NfZAkF9qx5s-jgPwzZ6XaEiAqNqR6FIVVYsI8o8z2dB0EZPDUY2j2lx10ZsCz11A61Wv30mTS5K1Xo7BJ7_c88X6O5mPniJ9laLQr1Ct-XlKlkuOugWG4UdO65-AhlCFRY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+a+surfactant+monolayer+on+the+measurement+of+equilibrium+interfacial+tension+of+a+drop+in+extensional+flow&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Gonz%C3%A1lez-Mancera%2C+Andr%C3%A9s&rft.au=Gupta%2C+Vijay+Kumar&rft.au=Jamal%2C+Mustapha&rft.au=Eggleton%2C+Charles+D.&rft.date=2009-05-15&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=333&rft.issue=2&rft.spage=570&rft.epage=578&rft_id=info:doi/10.1016%2Fj.jcis.2009.02.004&rft_id=info%3Apmid%2F19261292&rft.externalDocID=PMC2683672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon