Accelerating Fuzzy-C Means Using an Estimated Subsample Size

Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 22; číslo 5; s. 1229 - 1244
Hlavní autori: Parker, Jonathon K., Hall, Lawrence O.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, i.e., geometric progressive fuzzy c-means (GOFCM) and minimum sample estimate random fuzzy c-means (MSERFCM), that use a statistical method to estimate the subsample size. GOFCM, which is a variant of single-pass fuzzy c-means (SPFCM), also leverages progressive sampling. MSERFCM, which is a variant of random sampling plus extension fuzzy c-means, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared with FCM and four accelerated variants of FCM. GOFCM's speedup was four-47 times that of FCM and faster than SPFCM on each of the six datasets that are used in the experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was five-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM.
AbstractList Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, GOFCM and MSERFCM, that use a statistical method to estimate the subsample size. GOFCM, a variant of SPFCM, also leverages progressive sampling. MSERFCM, a variant of rseFCM, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared to FCM and four accelerated variants of FCM. GOFCM's speedup was 4-47 times that of FCM and faster than SPFCM on each of the six datasets used in experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was 5-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM.
Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, GOFCM and MSERFCM, that use a statistical method to estimate the subsample size. GOFCM, a variant of SPFCM, also leverages progressive sampling. MSERFCM, a variant of rseFCM, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared to FCM and four accelerated variants of FCM. GOFCM's speedup was 4-47 times that of FCM and faster than SPFCM on each of the six datasets used in experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was 5-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM.
Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, i.e., geometric progressive fuzzy c-means (GOFCM) and minimum sample estimate random fuzzy c-means (MSERFCM), that use a statistical method to estimate the subsample size. GOFCM, which is a variant of single-pass fuzzy c-means (SPFCM), also leverages progressive sampling. MSERFCM, which is a variant of random sampling plus extension fuzzy c-means, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared with FCM and four accelerated variants of FCM. GOFCM's speedup was four-47 times that of FCM and faster than SPFCM on each of the six datasets that are used in the experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was five-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM.
Author Hall, Lawrence O.
Parker, Jonathon K.
Author_xml – sequence: 1
  givenname: Jonathon K.
  surname: Parker
  fullname: Parker, Jonathon K.
  email: jkparker@mail.usf.edu
  organization: Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA
– sequence: 2
  givenname: Lawrence O.
  surname: Hall
  fullname: Hall, Lawrence O.
  email: hall@csee.usf.edu
  organization: Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26617455$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1L7DAUhoMofv8BL1wKbtx0zHcTuAjD4KiguNDZuAlp51QjnXRsWsH59abOOKgL7yIfnDzvyTnn3UObvvaA0BHBA0KwPr0fTx4eBhQTNqBUSa3ZBtolmpMUY8Y34x1LlsoMyx20F8IzxoQLorbRDpWSZFyIXfRvWBRQQWNb5x-TcbdYvKWj5AasD8kk9DHrk_PQupltYZrcdXmws3kFyZ1bwAHaKm0V4HB17qPJ-Px-dJle315cjYbXacEVa1Mtp0JzXKqpFgSAC8sznYEGXGiWM1HKUsdKMRAtVAxCpvKSCFkoxXLNMraPzpZ5510-g2kBvm1sZeZNrKp5M7V15vuLd0_msX41XErKFI0JTlYJmvqlg9CamQux78p6qLtgiIoT4SKT7P-opJrFxUVEj3-gz3XX-DiJSGFNBY17pP5-LX5d9acHEaBLoGjqEBoo1wjBpjfafBhteqPNyugoUj9EhWujiXU_AFf9Lv2zlDoAWP_V989xxt4Blai0Dw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_neucom_2018_10_088
crossref_primary_10_5370_KIEE_2016_65_6_1070
crossref_primary_10_1109_TFUZZ_2014_2327995
crossref_primary_10_1002_cpe_7185
crossref_primary_10_1007_s10462_023_10406_6
crossref_primary_10_1016_j_eswa_2018_09_030
crossref_primary_10_1007_s00202_020_00951_6
crossref_primary_10_1109_TKDE_2022_3200685
crossref_primary_10_1109_LGRS_2020_3010696
crossref_primary_10_1109_TFUZZ_2019_2930478
crossref_primary_10_1109_TII_2024_3435574
crossref_primary_10_3390_app6100294
crossref_primary_10_1038_s41598_025_93225_9
crossref_primary_10_1109_TFUZZ_2016_2540064
crossref_primary_10_1016_j_bspc_2025_108422
crossref_primary_10_1109_TIE_2023_3239864
crossref_primary_10_1109_JSTARS_2021_3050108
crossref_primary_10_1007_s12530_022_09447_z
crossref_primary_10_1007_s00521_019_04049_4
crossref_primary_10_1002_ima_22365
crossref_primary_10_1177_0954406218757809
crossref_primary_10_1002_ima_22522
crossref_primary_10_1016_j_knosys_2018_09_007
crossref_primary_10_1109_TFUZZ_2022_3148823
crossref_primary_10_1109_TKDE_2024_3516085
crossref_primary_10_1109_TFUZZ_2025_3562384
crossref_primary_10_1109_ACCESS_2020_3019422
crossref_primary_10_3390_s20113210
crossref_primary_10_3233_JIFS_200349
crossref_primary_10_1007_s44174_025_00356_8
crossref_primary_10_1109_TFUZZ_2017_2756827
crossref_primary_10_1016_j_eswa_2023_119655
crossref_primary_10_1109_TNNLS_2022_3190836
crossref_primary_10_1109_TFUZZ_2020_3003441
crossref_primary_10_1007_s12239_018_0026_z
crossref_primary_10_1007_s40815_016_0260_3
crossref_primary_10_1109_TPAMI_2025_3532357
crossref_primary_10_1016_j_neucom_2019_03_061
crossref_primary_10_1109_TFUZZ_2022_3217377
crossref_primary_10_1016_j_future_2017_06_010
crossref_primary_10_1007_s10489_016_0759_1
crossref_primary_10_1109_JSEN_2015_2475640
crossref_primary_10_1109_TKDE_2023_3273274
crossref_primary_10_1016_j_measurement_2023_112835
crossref_primary_10_1109_TFUZZ_2022_3146985
crossref_primary_10_1016_j_asoc_2019_04_021
crossref_primary_10_1109_TFUZZ_2020_2990100
crossref_primary_10_3390_rs14174419
crossref_primary_10_1007_s40815_024_01743_x
crossref_primary_10_1016_j_cie_2020_107023
crossref_primary_10_1049_trit_2019_0048
crossref_primary_10_1007_s00530_022_00911_z
crossref_primary_10_1109_TFUZZ_2019_2947231
crossref_primary_10_1109_TIA_2020_2974418
crossref_primary_10_1109_TKDE_2023_3342209
Cites_doi 10.1007/s11265-008-0243-1
10.1093/bioinformatics/btg119
10.1109/FUZZ-IEEE.2012.6250815
10.1109/NAFIPS.2008.4531233
10.1002/jmri.23801
10.1007/3-540-44795-4_17
10.1109/TIT.1982.1056489
10.1016/j.csda.2006.02.008
10.1007/BF01908075
10.1109/FUZZY.2004.1375677
10.1016/S0893-6080(97)00147-0
10.1109/42.996338
10.1109/TPAMI.2002.1023800
10.1016/j.compmedimag.2005.10.001
10.2307/2284239
10.1016/j.cviu.2013.05.001
10.1109/TFUZZ.2011.2179659
10.1016/j.patrec.2009.09.011
10.1002/nav.3800020109
10.1016/S0730-725X(97)00302-0
10.1109/TFUZZ.2003.809902
10.1109/TFUZZ.2011.2182354
10.1162/153244302760200678
10.1109/48.972110
10.1016/S0165-0114(96)00232-1
10.1109/IGARSS.1999.772030
10.1109/TSMCB.2002.1033179
10.1109/TFUZZ.2012.2201485
10.1109/ICDM.2001.989523
10.1002/int.20268
10.1109/91.995126
10.1109/TIE.2008.928111
10.1145/312129.312188
10.1007/978-1-4757-0450-1
10.1109/TFUZZ.2011.2175400
10.1109/TFUZZ.2011.2170175
10.1109/91.413225
10.1109/ICSMC.2010.5641870
10.1016/j.dsr.2003.09.008
10.2307/2684318
10.1109/TSMC.1987.6499296
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
7X8
5PM
DOI 10.1109/TFUZZ.2013.2286993
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1244
ExternalDocumentID PMC4662382
3455403751
26617455
10_1109_TFUZZ_2013_2286993
6645407
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Radiomics of non-small cell lung cancer, from the National Institutes of Health
– fundername: NCI NIH HHS
  grantid: U01 CA143062
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
7X8
5PM
ID FETCH-LOGICAL-c483t-96d5940f8d951ee45a4797e9e0c93b35f6f90630e1958e0ce78bf156c883b9373
IEDL.DBID RIE
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344751200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Tue Sep 30 16:41:30 EDT 2025
Sun Sep 28 02:23:32 EDT 2025
Sun Nov 09 13:42:57 EST 2025
Sun Jun 29 16:00:23 EDT 2025
Thu Apr 03 06:59:15 EDT 2025
Sat Nov 29 03:12:34 EST 2025
Tue Nov 18 21:35:27 EST 2025
Tue Aug 26 16:50:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords rsefcm
scalable
progressive sampling
sampling
fuzzy c-means
multinomial proportion
accelerated
effcm
fcm
mserfcm
ofcm
fuzzy clustering
gofcm
stopping criterion
spfcm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-96d5940f8d951ee45a4797e9e0c93b35f6f90630e1958e0ce78bf156c883b9373
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
jkparker@mail.usf.edu, hall@csee.usf.edu.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4662382
PMID 26617455
PQID 1609252609
PQPubID 85428
PageCount 16
ParticipantIDs crossref_primary_10_1109_TFUZZ_2013_2286993
pubmed_primary_26617455
proquest_miscellaneous_1826645763
proquest_miscellaneous_1629362945
crossref_citationtrail_10_1109_TFUZZ_2013_2286993
ieee_primary_6645407
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4662382
proquest_journals_1609252609
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationTitleAlternate IEEE Trans Fuzzy Syst
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
(ref39) 0
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
hore (ref28) 2007
ref49
ref8
ref7
ref9
ref4
phoungphol (ref33) 2011
ref6
ref5
hore (ref3) 2007
ref40
ref35
ref34
ref36
ref31
ref32
ref2
ref1
(ref53) 0
liu (ref38) 1996
(ref47) 0
ref23
ref26
ref25
ref20
ref22
ref21
(ref52) 0
ref27
(ref29) 0
bailey (ref24) 1994
domingos (ref30) 2001
kramer (ref37) 2010
12761060 - Bioinformatics. 2003 May 22;19(8):973-80
9621968 - Magn Reson Imaging. 1998 Apr;16(3):271-9
12662823 - Neural Netw. 1998 Apr;11(3):467-477
20046893 - J Signal Process Syst. 2009 Jan 1;54(1-3):183-203
7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
18244864 - IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):598-611
22987315 - J Magn Reson Imaging. 2013 Jan;37(1):85-91
16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15
11989844 - IEEE Trans Med Imaging. 2002 Mar;21(3):193-9
References_xml – ident: ref16
  doi: 10.1007/s11265-008-0243-1
– start-page: 1
  year: 2007
  ident: ref3
  article-title: Single pass fuzzy c means
  publication-title: Proc IEEE Int Conf Fuzzy Syst
– ident: ref18
  doi: 10.1093/bioinformatics/btg119
– ident: ref6
  doi: 10.1109/FUZZ-IEEE.2012.6250815
– ident: ref27
  doi: 10.1109/NAFIPS.2008.4531233
– ident: ref23
  doi: 10.1002/jmri.23801
– start-page: 319
  year: 1996
  ident: ref38
  article-title: A probabilistic approach to feature selection-a filter solution
  publication-title: Proc 13th Int Conf Mach Learn
– start-page: 28
  year: 1994
  ident: ref24
  article-title: Fitting a mixture model by expectation maximization to discover motifs in bipolymers
  publication-title: Proc Int Conf Intell Syst Mol Biol
– ident: ref31
  doi: 10.1007/3-540-44795-4_17
– ident: ref1
  doi: 10.1109/TIT.1982.1056489
– year: 0
  ident: ref53
– ident: ref14
  doi: 10.1016/j.csda.2006.02.008
– ident: ref40
  doi: 10.1007/BF01908075
– year: 0
  ident: ref52
– ident: ref13
  doi: 10.1109/FUZZY.2004.1375677
– ident: ref21
  doi: 10.1016/S0893-6080(97)00147-0
– ident: ref17
  doi: 10.1109/42.996338
– ident: ref25
  doi: 10.1109/TPAMI.2002.1023800
– ident: ref45
  doi: 10.1016/j.compmedimag.2005.10.001
– ident: ref41
  doi: 10.2307/2284239
– ident: ref46
  doi: 10.1016/j.cviu.2013.05.001
– ident: ref50
  doi: 10.1109/TFUZZ.2011.2179659
– start-page: 106
  year: 2001
  ident: ref30
  article-title: A general method for scaling up machine learning algorithms and its application to clustering
  publication-title: Proc 18th Int Conf Mach Learn
– ident: ref22
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref42
  doi: 10.1002/nav.3800020109
– ident: ref44
  doi: 10.1016/S0730-725X(97)00302-0
– ident: ref12
  doi: 10.1109/TFUZZ.2003.809902
– year: 2011
  ident: ref33
  article-title: Sample size estimation with high confidence for large scale clustering
  publication-title: Proc Int Intell Comput Intell Syst Conf
– ident: ref48
  doi: 10.1109/TFUZZ.2011.2182354
– ident: ref34
  doi: 10.1162/153244302760200678
– ident: ref35
  doi: 10.1109/48.972110
– ident: ref8
  doi: 10.1016/S0165-0114(96)00232-1
– ident: ref9
  doi: 10.1109/IGARSS.1999.772030
– ident: ref11
  doi: 10.1109/TSMCB.2002.1033179
– ident: ref5
  doi: 10.1109/TFUZZ.2012.2201485
– ident: ref7
  doi: 10.1109/ICDM.2001.989523
– ident: ref15
  doi: 10.1002/int.20268
– ident: ref10
  doi: 10.1109/91.995126
– ident: ref19
  doi: 10.1109/TIE.2008.928111
– year: 2007
  ident: ref28
  publication-title: Scalable Frameworks and Algorithms for Cluster Ensembles and Clustering Data Streams
– ident: ref4
  doi: 10.1145/312129.312188
– ident: ref2
  doi: 10.1007/978-1-4757-0450-1
– ident: ref26
  doi: 10.1109/TFUZZ.2011.2175400
– ident: ref51
  doi: 10.1109/TFUZZ.2011.2170175
– ident: ref20
  doi: 10.1109/91.413225
– ident: ref43
  doi: 10.1109/ICSMC.2010.5641870
– year: 0
  ident: ref47
– ident: ref36
  doi: 10.1016/j.dsr.2003.09.008
– year: 0
  ident: ref29
– year: 0
  ident: ref39
– year: 2010
  ident: ref37
  publication-title: System for Identifying Plankton from the SIPPER Instrument Platform
– ident: ref32
  doi: 10.2307/2684318
– ident: ref49
  doi: 10.1109/TSMC.1987.6499296
– reference: 22987315 - J Magn Reson Imaging. 2013 Jan;37(1):85-91
– reference: 12662823 - Neural Netw. 1998 Apr;11(3):467-477
– reference: 16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15
– reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
– reference: 11989844 - IEEE Trans Med Imaging. 2002 Mar;21(3):193-9
– reference: 9621968 - Magn Reson Imaging. 1998 Apr;16(3):271-9
– reference: 12761060 - Bioinformatics. 2003 May 22;19(8):973-80
– reference: 20046893 - J Signal Process Syst. 2009 Jan 1;54(1-3):183-203
– reference: 18244864 - IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):598-611
SSID ssj0014518
Score 2.43679
Snippet Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to...
Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to...
Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1229
SubjectTerms Accelerated
Acceleration
Algorithm design and analysis
Algorithms
Clustering algorithms
Estimates
extensible fast fuzzy c-means (EFFCM)
Fuzzy
fuzzy c-means (FCM)
fuzzy clustering
Fuzzy logic
Fuzzy set theory
geometric progressive fuzzy c-means (GOFCM)
minimum sample estimate random fuzzy c-means (MSERFCM)
multinomial proportion
online fuzzy c-means (OFCM)
Optimization
Partitioning algorithms
Partitions
progressive sampling
random sampling plus extension fuzzy c-means (rseFCM)
Runtime
Samples
sampling
scalable
single-pass fuzzy c-means (SPFCM)
Statistical analysis
Statistical methods
stopping criterion
Title Accelerating Fuzzy-C Means Using an Estimated Subsample Size
URI https://ieeexplore.ieee.org/document/6645407
https://www.ncbi.nlm.nih.gov/pubmed/26617455
https://www.proquest.com/docview/1609252609
https://www.proquest.com/docview/1629362945
https://www.proquest.com/docview/1826645763
https://pubmed.ncbi.nlm.nih.gov/PMC4662382
Volume 22
WOSCitedRecordID wos000344751200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7aF59OC9UyC11orVkPSCXELLk0lBoAksuxpbGzULxlmS30P31Hclekw0hkIPB2CPJ0mikT9boG4CjQW489zlPPQ3-4ddNmRpHdsVLX1shI6aNwSb09bUZjeyPFfjWn4VBxOh8hifhNu7l-4mbhV9lp0pFvrhVWNVatWe1-h0DyrY99qZEqjRXiwMy3J7eDG_v7oIXlzjJMqOsFUuTUIyq8hLAfO4n-WTiGW687ZM34UMHMNl52yO2YAWbbdhYBG9gnS1vw_snTIQ7cHbuHE1AoTs0v9hwNp__Sy_Yd6SJjEWvAlY27JKGAwK46FkYbsrAK8x-juf4EW6HlzcXV2kXWCF10ohpapXPreS18YSvEGVekpI0WuTOikrktapt4OLCwERDD1GbqqaFnjNGVIRnxCdYayYNfgFWofC6zkp0BKwoZZVJIVDWlLfQRvAEBouWLlzHOh6CX_wu4uqD2yJqpwjaKTrtJHDcp_nTcm68Kr0Tmr2X7Fo8gf2FQovOLB-LgeI2y2kJZxP42r8mgwq7JGWDk1mQIQREl8xfkaFFGRVDY3MCn9s-0pcfEI-WOaXWS72nFwiE3stvmvF9JPaWisCoyXZfrtEevKN6y9aTcB_Wpg8zPIB193c6fnw4JJsYmcNoE_8B7wwG7Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6brDtod3afXjtNg32trlVrA9L0JdSGjrWhsFSKH0xtnTeAsMZbTJY_vqdZMc0pRT2YDDWybJ1Oukn6fQ7gI8DZTz3iqeeOv-wdFOmxpFd8dLXVsiIaWOwiXw0MhcX9tsafO7PwiBidD7DvXAb9_L91M3DUtm-1pEv7gE8VFJmvD2t1e8Z0Ivbg29apDrnenlEhtv98fD88jL4cYm9LDPaWrEyDMW4KndBzNuekjeGnuHm_330M9joICY7bNvEc1jDZgs2l-EbWGfNW_D0BhfhNhwcOkdDUGgQzQ82nC8Wf9MjdoY0lLHoV8DKhh1Th0AQFz0LHU4ZmIXZ98kCX8D58Hh8dJJ2oRVSJ42YpVZ7ZSWvjSeEhShVSWrK0SJ3VlRC1bq2gY0LAxcNPcTcVDVN9ZwxoiJEI17CejNt8DWwCoXP66xER9CKclaZFAJlTe8WuRE8gcGypgvX8Y6H8Be_ijj_4LaI2imCdopOOwl86vP8blk37pXeDtXeS3Y1nsDuUqFFZ5jXxUBzmymaxNkEPvTJZFJhn6RscDoPMoSB6JLqHhmallEx1Dsn8KptI335AfPkUlHufKX19AKB0ns1pZn8jNTeUhMcNdmbu__oPTw-GZ-dFqdfRl934AnVgWz9CndhfXY1x7fwyP2ZTa6v3kXL-AeGmwlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Fuzzy-C+Means+Using+an+Estimated+Subsample+Size&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Parker%2C+Jonathon+K&rft.au=Hall%2C+Lawrence+O&rft.date=2014-10-01&rft.issn=1063-6706&rft.volume=22&rft.issue=5&rft.spage=1229&rft.epage=1244&rft_id=info:doi/10.1109%2FTFUZZ.2013.2286993&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon