Accelerating Fuzzy-C Means Using an Estimated Subsample Size
Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, i...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 22; číslo 5; s. 1229 - 1244 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, i.e., geometric progressive fuzzy c-means (GOFCM) and minimum sample estimate random fuzzy c-means (MSERFCM), that use a statistical method to estimate the subsample size. GOFCM, which is a variant of single-pass fuzzy c-means (SPFCM), also leverages progressive sampling. MSERFCM, which is a variant of random sampling plus extension fuzzy c-means, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared with FCM and four accelerated variants of FCM. GOFCM's speedup was four-47 times that of FCM and faster than SPFCM on each of the six datasets that are used in the experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was five-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM. |
|---|---|
| AbstractList | Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, GOFCM and MSERFCM, that use a statistical method to estimate the subsample size. GOFCM, a variant of SPFCM, also leverages progressive sampling. MSERFCM, a variant of rseFCM, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared to FCM and four accelerated variants of FCM. GOFCM's speedup was 4-47 times that of FCM and faster than SPFCM on each of the six datasets used in experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was 5-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM. Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, GOFCM and MSERFCM, that use a statistical method to estimate the subsample size. GOFCM, a variant of SPFCM, also leverages progressive sampling. MSERFCM, a variant of rseFCM, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared to FCM and four accelerated variants of FCM. GOFCM's speedup was 4-47 times that of FCM and faster than SPFCM on each of the six datasets used in experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was 5-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM. Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to estimate the subsample size, despite the impact subsample sizes have on speed and quality. This paper introduces two new accelerated algorithms, i.e., geometric progressive fuzzy c-means (GOFCM) and minimum sample estimate random fuzzy c-means (MSERFCM), that use a statistical method to estimate the subsample size. GOFCM, which is a variant of single-pass fuzzy c-means (SPFCM), also leverages progressive sampling. MSERFCM, which is a variant of random sampling plus extension fuzzy c-means, gains a speedup from improved initialization. A general, novel stopping criterion for accelerated clustering is introduced. The new algorithms are compared with FCM and four accelerated variants of FCM. GOFCM's speedup was four-47 times that of FCM and faster than SPFCM on each of the six datasets that are used in the experiments. For five of the datasets, partitions were within 1% of those of FCM. MSERFCM's speedup was five-26 times that of FCM and produced partitions within 3% of those of FCM on all datasets. A unique dataset, consisting of plankton images, exposed the strengths and weaknesses of many of the algorithms tested. It is shown that the new stopping criterion is effective in speeding up algorithms such as SPFCM and the final partitions are very close to those of FCM. |
| Author | Hall, Lawrence O. Parker, Jonathon K. |
| Author_xml | – sequence: 1 givenname: Jonathon K. surname: Parker fullname: Parker, Jonathon K. email: jkparker@mail.usf.edu organization: Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA – sequence: 2 givenname: Lawrence O. surname: Hall fullname: Hall, Lawrence O. email: hall@csee.usf.edu organization: Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26617455$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1L7DAUhoMofv8BL1wKbtx0zHcTuAjD4KiguNDZuAlp51QjnXRsWsH59abOOKgL7yIfnDzvyTnn3UObvvaA0BHBA0KwPr0fTx4eBhQTNqBUSa3ZBtolmpMUY8Y34x1LlsoMyx20F8IzxoQLorbRDpWSZFyIXfRvWBRQQWNb5x-TcbdYvKWj5AasD8kk9DHrk_PQupltYZrcdXmws3kFyZ1bwAHaKm0V4HB17qPJ-Px-dJle315cjYbXacEVa1Mtp0JzXKqpFgSAC8sznYEGXGiWM1HKUsdKMRAtVAxCpvKSCFkoxXLNMraPzpZ5510-g2kBvm1sZeZNrKp5M7V15vuLd0_msX41XErKFI0JTlYJmvqlg9CamQux78p6qLtgiIoT4SKT7P-opJrFxUVEj3-gz3XX-DiJSGFNBY17pP5-LX5d9acHEaBLoGjqEBoo1wjBpjfafBhteqPNyugoUj9EhWujiXU_AFf9Lv2zlDoAWP_V989xxt4Blai0Dw |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2018_10_088 crossref_primary_10_5370_KIEE_2016_65_6_1070 crossref_primary_10_1109_TFUZZ_2014_2327995 crossref_primary_10_1002_cpe_7185 crossref_primary_10_1007_s10462_023_10406_6 crossref_primary_10_1016_j_eswa_2018_09_030 crossref_primary_10_1007_s00202_020_00951_6 crossref_primary_10_1109_TKDE_2022_3200685 crossref_primary_10_1109_LGRS_2020_3010696 crossref_primary_10_1109_TFUZZ_2019_2930478 crossref_primary_10_1109_TII_2024_3435574 crossref_primary_10_3390_app6100294 crossref_primary_10_1038_s41598_025_93225_9 crossref_primary_10_1109_TFUZZ_2016_2540064 crossref_primary_10_1016_j_bspc_2025_108422 crossref_primary_10_1109_TIE_2023_3239864 crossref_primary_10_1109_JSTARS_2021_3050108 crossref_primary_10_1007_s12530_022_09447_z crossref_primary_10_1007_s00521_019_04049_4 crossref_primary_10_1002_ima_22365 crossref_primary_10_1177_0954406218757809 crossref_primary_10_1002_ima_22522 crossref_primary_10_1016_j_knosys_2018_09_007 crossref_primary_10_1109_TFUZZ_2022_3148823 crossref_primary_10_1109_TKDE_2024_3516085 crossref_primary_10_1109_TFUZZ_2025_3562384 crossref_primary_10_1109_ACCESS_2020_3019422 crossref_primary_10_3390_s20113210 crossref_primary_10_3233_JIFS_200349 crossref_primary_10_1007_s44174_025_00356_8 crossref_primary_10_1109_TFUZZ_2017_2756827 crossref_primary_10_1016_j_eswa_2023_119655 crossref_primary_10_1109_TNNLS_2022_3190836 crossref_primary_10_1109_TFUZZ_2020_3003441 crossref_primary_10_1007_s12239_018_0026_z crossref_primary_10_1007_s40815_016_0260_3 crossref_primary_10_1109_TPAMI_2025_3532357 crossref_primary_10_1016_j_neucom_2019_03_061 crossref_primary_10_1109_TFUZZ_2022_3217377 crossref_primary_10_1016_j_future_2017_06_010 crossref_primary_10_1007_s10489_016_0759_1 crossref_primary_10_1109_JSEN_2015_2475640 crossref_primary_10_1109_TKDE_2023_3273274 crossref_primary_10_1016_j_measurement_2023_112835 crossref_primary_10_1109_TFUZZ_2022_3146985 crossref_primary_10_1016_j_asoc_2019_04_021 crossref_primary_10_1109_TFUZZ_2020_2990100 crossref_primary_10_3390_rs14174419 crossref_primary_10_1007_s40815_024_01743_x crossref_primary_10_1016_j_cie_2020_107023 crossref_primary_10_1049_trit_2019_0048 crossref_primary_10_1007_s00530_022_00911_z crossref_primary_10_1109_TFUZZ_2019_2947231 crossref_primary_10_1109_TIA_2020_2974418 crossref_primary_10_1109_TKDE_2023_3342209 |
| Cites_doi | 10.1007/s11265-008-0243-1 10.1093/bioinformatics/btg119 10.1109/FUZZ-IEEE.2012.6250815 10.1109/NAFIPS.2008.4531233 10.1002/jmri.23801 10.1007/3-540-44795-4_17 10.1109/TIT.1982.1056489 10.1016/j.csda.2006.02.008 10.1007/BF01908075 10.1109/FUZZY.2004.1375677 10.1016/S0893-6080(97)00147-0 10.1109/42.996338 10.1109/TPAMI.2002.1023800 10.1016/j.compmedimag.2005.10.001 10.2307/2284239 10.1016/j.cviu.2013.05.001 10.1109/TFUZZ.2011.2179659 10.1016/j.patrec.2009.09.011 10.1002/nav.3800020109 10.1016/S0730-725X(97)00302-0 10.1109/TFUZZ.2003.809902 10.1109/TFUZZ.2011.2182354 10.1162/153244302760200678 10.1109/48.972110 10.1016/S0165-0114(96)00232-1 10.1109/IGARSS.1999.772030 10.1109/TSMCB.2002.1033179 10.1109/TFUZZ.2012.2201485 10.1109/ICDM.2001.989523 10.1002/int.20268 10.1109/91.995126 10.1109/TIE.2008.928111 10.1145/312129.312188 10.1007/978-1-4757-0450-1 10.1109/TFUZZ.2011.2175400 10.1109/TFUZZ.2011.2170175 10.1109/91.413225 10.1109/ICSMC.2010.5641870 10.1016/j.dsr.2003.09.008 10.2307/2684318 10.1109/TSMC.1987.6499296 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 7X8 5PM |
| DOI | 10.1109/TFUZZ.2013.2286993 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 1244 |
| ExternalDocumentID | PMC4662382 3455403751 26617455 10_1109_TFUZZ_2013_2286993 6645407 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Radiomics of non-small cell lung cancer, from the National Institutes of Health – fundername: NCI NIH HHS grantid: U01 CA143062 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 7X8 5PM |
| ID | FETCH-LOGICAL-c483t-96d5940f8d951ee45a4797e9e0c93b35f6f90630e1958e0ce78bf156c883b9373 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344751200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Tue Sep 30 16:41:30 EDT 2025 Sun Sep 28 02:23:32 EDT 2025 Sun Nov 09 13:42:57 EST 2025 Sun Jun 29 16:00:23 EDT 2025 Thu Apr 03 06:59:15 EDT 2025 Sat Nov 29 03:12:34 EST 2025 Tue Nov 18 21:35:27 EST 2025 Tue Aug 26 16:50:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | rsefcm scalable progressive sampling sampling fuzzy c-means multinomial proportion accelerated effcm fcm mserfcm ofcm fuzzy clustering gofcm stopping criterion spfcm |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-96d5940f8d951ee45a4797e9e0c93b35f6f90630e1958e0ce78bf156c883b9373 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 jkparker@mail.usf.edu, hall@csee.usf.edu. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4662382 |
| PMID | 26617455 |
| PQID | 1609252609 |
| PQPubID | 85428 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2013_2286993 pubmed_primary_26617455 proquest_miscellaneous_1826645763 proquest_miscellaneous_1629362945 crossref_citationtrail_10_1109_TFUZZ_2013_2286993 ieee_primary_6645407 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4662382 proquest_journals_1609252609 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationTitleAlternate | IEEE Trans Fuzzy Syst |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 (ref39) 0 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 hore (ref28) 2007 ref49 ref8 ref7 ref9 ref4 phoungphol (ref33) 2011 ref6 ref5 hore (ref3) 2007 ref40 ref35 ref34 ref36 ref31 ref32 ref2 ref1 (ref53) 0 liu (ref38) 1996 (ref47) 0 ref23 ref26 ref25 ref20 ref22 ref21 (ref52) 0 ref27 (ref29) 0 bailey (ref24) 1994 domingos (ref30) 2001 kramer (ref37) 2010 12761060 - Bioinformatics. 2003 May 22;19(8):973-80 9621968 - Magn Reson Imaging. 1998 Apr;16(3):271-9 12662823 - Neural Netw. 1998 Apr;11(3):467-477 20046893 - J Signal Process Syst. 2009 Jan 1;54(1-3):183-203 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 18244864 - IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):598-611 22987315 - J Magn Reson Imaging. 2013 Jan;37(1):85-91 16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15 11989844 - IEEE Trans Med Imaging. 2002 Mar;21(3):193-9 |
| References_xml | – ident: ref16 doi: 10.1007/s11265-008-0243-1 – start-page: 1 year: 2007 ident: ref3 article-title: Single pass fuzzy c means publication-title: Proc IEEE Int Conf Fuzzy Syst – ident: ref18 doi: 10.1093/bioinformatics/btg119 – ident: ref6 doi: 10.1109/FUZZ-IEEE.2012.6250815 – ident: ref27 doi: 10.1109/NAFIPS.2008.4531233 – ident: ref23 doi: 10.1002/jmri.23801 – start-page: 319 year: 1996 ident: ref38 article-title: A probabilistic approach to feature selection-a filter solution publication-title: Proc 13th Int Conf Mach Learn – start-page: 28 year: 1994 ident: ref24 article-title: Fitting a mixture model by expectation maximization to discover motifs in bipolymers publication-title: Proc Int Conf Intell Syst Mol Biol – ident: ref31 doi: 10.1007/3-540-44795-4_17 – ident: ref1 doi: 10.1109/TIT.1982.1056489 – year: 0 ident: ref53 – ident: ref14 doi: 10.1016/j.csda.2006.02.008 – ident: ref40 doi: 10.1007/BF01908075 – year: 0 ident: ref52 – ident: ref13 doi: 10.1109/FUZZY.2004.1375677 – ident: ref21 doi: 10.1016/S0893-6080(97)00147-0 – ident: ref17 doi: 10.1109/42.996338 – ident: ref25 doi: 10.1109/TPAMI.2002.1023800 – ident: ref45 doi: 10.1016/j.compmedimag.2005.10.001 – ident: ref41 doi: 10.2307/2284239 – ident: ref46 doi: 10.1016/j.cviu.2013.05.001 – ident: ref50 doi: 10.1109/TFUZZ.2011.2179659 – start-page: 106 year: 2001 ident: ref30 article-title: A general method for scaling up machine learning algorithms and its application to clustering publication-title: Proc 18th Int Conf Mach Learn – ident: ref22 doi: 10.1016/j.patrec.2009.09.011 – ident: ref42 doi: 10.1002/nav.3800020109 – ident: ref44 doi: 10.1016/S0730-725X(97)00302-0 – ident: ref12 doi: 10.1109/TFUZZ.2003.809902 – year: 2011 ident: ref33 article-title: Sample size estimation with high confidence for large scale clustering publication-title: Proc Int Intell Comput Intell Syst Conf – ident: ref48 doi: 10.1109/TFUZZ.2011.2182354 – ident: ref34 doi: 10.1162/153244302760200678 – ident: ref35 doi: 10.1109/48.972110 – ident: ref8 doi: 10.1016/S0165-0114(96)00232-1 – ident: ref9 doi: 10.1109/IGARSS.1999.772030 – ident: ref11 doi: 10.1109/TSMCB.2002.1033179 – ident: ref5 doi: 10.1109/TFUZZ.2012.2201485 – ident: ref7 doi: 10.1109/ICDM.2001.989523 – ident: ref15 doi: 10.1002/int.20268 – ident: ref10 doi: 10.1109/91.995126 – ident: ref19 doi: 10.1109/TIE.2008.928111 – year: 2007 ident: ref28 publication-title: Scalable Frameworks and Algorithms for Cluster Ensembles and Clustering Data Streams – ident: ref4 doi: 10.1145/312129.312188 – ident: ref2 doi: 10.1007/978-1-4757-0450-1 – ident: ref26 doi: 10.1109/TFUZZ.2011.2175400 – ident: ref51 doi: 10.1109/TFUZZ.2011.2170175 – ident: ref20 doi: 10.1109/91.413225 – ident: ref43 doi: 10.1109/ICSMC.2010.5641870 – year: 0 ident: ref47 – ident: ref36 doi: 10.1016/j.dsr.2003.09.008 – year: 0 ident: ref29 – year: 0 ident: ref39 – year: 2010 ident: ref37 publication-title: System for Identifying Plankton from the SIPPER Instrument Platform – ident: ref32 doi: 10.2307/2684318 – ident: ref49 doi: 10.1109/TSMC.1987.6499296 – reference: 22987315 - J Magn Reson Imaging. 2013 Jan;37(1):85-91 – reference: 12662823 - Neural Netw. 1998 Apr;11(3):467-477 – reference: 16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15 – reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 – reference: 11989844 - IEEE Trans Med Imaging. 2002 Mar;21(3):193-9 – reference: 9621968 - Magn Reson Imaging. 1998 Apr;16(3):271-9 – reference: 12761060 - Bioinformatics. 2003 May 22;19(8):973-80 – reference: 20046893 - J Signal Process Syst. 2009 Jan 1;54(1-3):183-203 – reference: 18244864 - IEEE Trans Syst Man Cybern B Cybern. 2002;32(5):598-611 |
| SSID | ssj0014518 |
| Score | 2.43679 |
| Snippet | Many algorithms designed to accelerate the fuzzy c-means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to... Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to... Many algorithms designed to accelerate the Fuzzy c-Means (FCM) clustering algorithm randomly sample the data. Typically, no statistical method is used to... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1229 |
| SubjectTerms | Accelerated Acceleration Algorithm design and analysis Algorithms Clustering algorithms Estimates extensible fast fuzzy c-means (EFFCM) Fuzzy fuzzy c-means (FCM) fuzzy clustering Fuzzy logic Fuzzy set theory geometric progressive fuzzy c-means (GOFCM) minimum sample estimate random fuzzy c-means (MSERFCM) multinomial proportion online fuzzy c-means (OFCM) Optimization Partitioning algorithms Partitions progressive sampling random sampling plus extension fuzzy c-means (rseFCM) Runtime Samples sampling scalable single-pass fuzzy c-means (SPFCM) Statistical analysis Statistical methods stopping criterion |
| Title | Accelerating Fuzzy-C Means Using an Estimated Subsample Size |
| URI | https://ieeexplore.ieee.org/document/6645407 https://www.ncbi.nlm.nih.gov/pubmed/26617455 https://www.proquest.com/docview/1609252609 https://www.proquest.com/docview/1629362945 https://www.proquest.com/docview/1826645763 https://pubmed.ncbi.nlm.nih.gov/PMC4662382 |
| Volume | 22 |
| WOSCitedRecordID | wos000344751200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7aF59OC9UyC11orVkPSCXELLk0lBoAksuxpbGzULxlmS30P31Hclekw0hkIPB2CPJ0mikT9boG4CjQW489zlPPQ3-4ddNmRpHdsVLX1shI6aNwSb09bUZjeyPFfjWn4VBxOh8hifhNu7l-4mbhV9lp0pFvrhVWNVatWe1-h0DyrY99qZEqjRXiwMy3J7eDG_v7oIXlzjJMqOsFUuTUIyq8hLAfO4n-WTiGW687ZM34UMHMNl52yO2YAWbbdhYBG9gnS1vw_snTIQ7cHbuHE1AoTs0v9hwNp__Sy_Yd6SJjEWvAlY27JKGAwK46FkYbsrAK8x-juf4EW6HlzcXV2kXWCF10ohpapXPreS18YSvEGVekpI0WuTOikrktapt4OLCwERDD1GbqqaFnjNGVIRnxCdYayYNfgFWofC6zkp0BKwoZZVJIVDWlLfQRvAEBouWLlzHOh6CX_wu4uqD2yJqpwjaKTrtJHDcp_nTcm68Kr0Tmr2X7Fo8gf2FQovOLB-LgeI2y2kJZxP42r8mgwq7JGWDk1mQIQREl8xfkaFFGRVDY3MCn9s-0pcfEI-WOaXWS72nFwiE3stvmvF9JPaWisCoyXZfrtEevKN6y9aTcB_Wpg8zPIB193c6fnw4JJsYmcNoE_8B7wwG7Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6brDtod3afXjtNg32trlVrA9L0JdSGjrWhsFSKH0xtnTeAsMZbTJY_vqdZMc0pRT2YDDWybJ1Oukn6fQ7gI8DZTz3iqeeOv-wdFOmxpFd8dLXVsiIaWOwiXw0MhcX9tsafO7PwiBidD7DvXAb9_L91M3DUtm-1pEv7gE8VFJmvD2t1e8Z0Ivbg29apDrnenlEhtv98fD88jL4cYm9LDPaWrEyDMW4KndBzNuekjeGnuHm_330M9joICY7bNvEc1jDZgs2l-EbWGfNW_D0BhfhNhwcOkdDUGgQzQ82nC8Wf9MjdoY0lLHoV8DKhh1Th0AQFz0LHU4ZmIXZ98kCX8D58Hh8dJJ2oRVSJ42YpVZ7ZSWvjSeEhShVSWrK0SJ3VlRC1bq2gY0LAxcNPcTcVDVN9ZwxoiJEI17CejNt8DWwCoXP66xER9CKclaZFAJlTe8WuRE8gcGypgvX8Y6H8Be_ijj_4LaI2imCdopOOwl86vP8blk37pXeDtXeS3Y1nsDuUqFFZ5jXxUBzmymaxNkEPvTJZFJhn6RscDoPMoSB6JLqHhmallEx1Dsn8KptI335AfPkUlHufKX19AKB0ns1pZn8jNTeUhMcNdmbu__oPTw-GZ-dFqdfRl934AnVgWz9CndhfXY1x7fwyP2ZTa6v3kXL-AeGmwlM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Fuzzy-C+Means+Using+an+Estimated+Subsample+Size&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Parker%2C+Jonathon+K&rft.au=Hall%2C+Lawrence+O&rft.date=2014-10-01&rft.issn=1063-6706&rft.volume=22&rft.issue=5&rft.spage=1229&rft.epage=1244&rft_id=info:doi/10.1109%2FTFUZZ.2013.2286993&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |