Autoencoders for unsupervised anomaly detection in high energy physics

A bstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics Jg. 2021; H. 6; S. 1 - 32
Hauptverfasser: Finke, Thorben, Krämer, Michael, Morandini, Alessandro, Mück, Alexander, Oleksiyuk, Ivan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-8479, 1029-8479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A bstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.
AbstractList Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.
Abstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.
A bstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.
ArticleNumber 161
Author Morandini, Alessandro
Oleksiyuk, Ivan
Mück, Alexander
Finke, Thorben
Krämer, Michael
Author_xml – sequence: 1
  givenname: Thorben
  surname: Finke
  fullname: Finke, Thorben
  organization: Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University
– sequence: 2
  givenname: Michael
  surname: Krämer
  fullname: Krämer, Michael
  organization: Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0003-2301-7553
  surname: Morandini
  fullname: Morandini, Alessandro
  email: morandini@physik.rwth-achen.de
  organization: Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University
– sequence: 4
  givenname: Alexander
  surname: Mück
  fullname: Mück, Alexander
  organization: Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University
– sequence: 5
  givenname: Ivan
  surname: Oleksiyuk
  fullname: Oleksiyuk, Ivan
  organization: Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University
BookMark eNp9kE1rGzEQhkVJoPk697rQS3twopFWa-kYQpykBJpDchZTaWTLOJIr7Rb877POhrQU2tMMwzzvDM8xO0g5EWOfgJ8D5_OLb7fXD7z7IriAr9DBB3YEXJiZbufm4I_-Izuudc05KDD8iC0uhz5TctlTqU3IpRlSHbZUfsVKvsGUn3Gzazz15PqYUxNTs4rLVUOJynLXbFe7Gl09ZYcBN5XO3uoJe1pcP17dzu6_39xdXd7PXKtlPzNSONdKJEUdSuyEBJwb6nTQwnngIE1AAnQBlFfBayPAdFKi6rgWGuQJu5tyfca13Zb4jGVnM0b7OshlabH00W3I_kBtvA6tUU60zoHWzivk6KUm78J8zPo8ZW1L_jlQ7e06DyWN71uhWqW5AejGrYtpy5Vca6HwfhW43Yu3k3i7F29H8SOh_iJc7HEvry8YN__h-MTV8UJaUvn9z7-QF28fmCU
CitedBy_id crossref_primary_10_1007_s11633_025_1554_4
crossref_primary_10_1007_s42417_025_02074_3
crossref_primary_10_1007_JHEP10_2022_085
crossref_primary_10_3390_math10060993
crossref_primary_10_1007_JHEP04_2024_059
crossref_primary_10_1016_j_eswa_2024_124108
crossref_primary_10_1007_JHEP07_2025_177
crossref_primary_10_1109_TNNLS_2024_3472456
crossref_primary_10_1007_JHEP06_2024_163
crossref_primary_10_1016_j_chemer_2024_126197
crossref_primary_10_1051_0004_6361_202347948
crossref_primary_10_1007_s00521_023_08507_y
crossref_primary_10_1007_JHEP03_2022_066
crossref_primary_10_3390_s24061835
crossref_primary_10_1007_JHEP10_2022_152
crossref_primary_10_1016_j_oregeorev_2025_106705
crossref_primary_10_1007_JHEP04_2022_156
crossref_primary_10_1007_JHEP08_2021_080
crossref_primary_10_1007_JHEP01_2023_061
crossref_primary_10_1007_JHEP04_2024_109
crossref_primary_10_1111_ijfs_16283
crossref_primary_10_1140_epjc_s10052_023_12169_4
crossref_primary_10_1007_JHEP02_2022_074
crossref_primary_10_1016_j_tifs_2024_104344
crossref_primary_10_1103_PhysRevD_105_055006
crossref_primary_10_1007_JHEP11_2023_009
crossref_primary_10_3390_s21196679
crossref_primary_10_1007_s42979_024_02681_z
crossref_primary_10_1016_j_jafrearsci_2025_105854
crossref_primary_10_1080_10408347_2025_2505081
crossref_primary_10_1080_13682199_2023_2202577
crossref_primary_10_1140_epjs_s11734_024_01256_6
crossref_primary_10_1140_epjc_s10052_025_14694_w
crossref_primary_10_1038_s41467_024_47704_8
crossref_primary_10_1016_j_procs_2025_04_108
crossref_primary_10_1007_JHEP07_2023_108
crossref_primary_10_3389_fdata_2022_803685
crossref_primary_10_3390_s23229281
crossref_primary_10_1007_JHEP12_2021_129
crossref_primary_10_1109_TNNLS_2024_3439404
crossref_primary_10_1080_00207233_2024_2313349
crossref_primary_10_1103_PhysRevD_111_014028
crossref_primary_10_1109_SR_2025_3603142
crossref_primary_10_1109_JSTARS_2025_3568715
crossref_primary_10_1088_2632_2153_ad652b
crossref_primary_10_1109_ACCESS_2022_3160170
crossref_primary_10_1134_S1063778822060023
crossref_primary_10_1007_s10661_024_12848_z
crossref_primary_10_1140_epjc_s10052_022_10830_y
crossref_primary_10_1016_j_jmapro_2023_05_100
crossref_primary_10_1140_epjs_s11734_024_01235_x
Cites_doi 10.1145/3439950
10.1007/JHEP10(2019)047
10.1088/1126-6708/2008/04/063
10.21468/SciPostPhys.6.3.030
10.1103/PhysRevD.98.011502
10.21468/SciPostPhys.10.2.046
10.1088/1748-0221/14/08/P08020
10.1103/PhysRevD.101.076015
10.5281/zenodo.2603256
10.1007/s10851-014-0506-3
10.1007/JHEP05(2019)036
10.1007/JHEP07(2015)086
10.1007/JHEP10(2017)174
10.1140/epjc/s10052-012-1896-2
10.1016/j.physrep.2019.11.001
10.1007/JHEP02(2018)034
10.1007/JHEP10(2018)121
10.1007/JHEP02(2014)057
10.1007/JHEP05(2017)145
10.1109/JPROC.2021.3052449
10.1142/S0217751X19300199
10.21468/SciPostPhys.5.3.028
10.1088/1742-6596/1085/2/022008
10.1007/JHEP04(2021)296
10.1146/annurev-nucl-101917-021019
10.1109/TPAMI.2013.50
10.1023/A:1026543900054
10.1103/PhysRevD.101.075021
10.3938/jkps.75.652
10.1007/JHEP10(2020)206
10.1016/j.cpc.2015.01.024
10.1140/epjc/s10052-020-08807-w
10.1007/JHEP04(2021)280
10.1007/JHEP01(2021)153
10.1016/0893-6080(89)90014-2
10.1007/JHEP05(2017)006
10.21468/SciPostPhys.7.6.075
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP06(2021)161
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 32
ExternalDocumentID oai_doaj_org_article_ba89d8f495c24cc188cd5a0ad38edcf7
10_1007_JHEP06_2021_161
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFFHD
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c483t-932cc43ae5e6a3a6231a79e68f82cd10139fae1acf15d5fd89219633a56082813
IEDL.DBID DOA
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669612300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:52:33 EDT 2025
Sat Oct 18 22:48:58 EDT 2025
Tue Nov 18 20:05:36 EST 2025
Sat Nov 29 02:12:07 EST 2025
Fri Feb 21 02:47:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Jets
QCD Phenomenology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-932cc43ae5e6a3a6231a79e68f82cd10139fae1acf15d5fd89219633a56082813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2301-7553
OpenAccessLink https://doaj.org/article/ba89d8f495c24cc188cd5a0ad38edcf7
PQID 2545809116
PQPubID 2034718
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_ba89d8f495c24cc188cd5a0ad38edcf7
proquest_journals_2545809116
crossref_primary_10_1007_JHEP06_2021_161
crossref_citationtrail_10_1007_JHEP06_2021_161
springer_journals_10_1007_JHEP06_2021_161
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References LarkoskiAJMoultINachmanBJet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine LearningPhys. Rept.2020841110.1016/j.physrep.2019.11.0012020PhR...841....1L[arXiv:1709.04464] [INSPIRE]
CacciariMSalamGPSoyezGThe anti-ktjet clustering algorithmJHEP20080406310.1088/1126-6708/2008/04/0632008JHEP...04..063C[arXiv:0802.1189] [INSPIRE]
Y. Gershtein, D. Jaroslawski, K. Nasha, D. Shih and M. Tran, Anomaly detection with convolutional autoencoders and latent space analysis, in Anomaly Detection Mini-Workshop — LHC Summer Olympics, (2020) and publication in preparation [https://indico.desy.de/event/25341/contributions/56829/].
HajerJLiY-YLiuTWangHNovelty Detection Meets Collider PhysicsPhys. Rev. D202010107601510.1103/PhysRevD.101.0760152020PhRvD.101g6015H[arXiv:1807.10261] [INSPIRE]
BatsonJHaafCGKahnYRobertsDATopological Obstructions to AutoencodingJHEP202104280427617010.1007/JHEP04(2021)2802021JHEP...04..280B[arXiv:2102.08380] [INSPIRE]
AlbertssonKMachine Learning in High Energy Physics Community White PaperJ. Phys. Conf. Ser.2018108502200810.1088/1742-6596/1085/2/022008[arXiv:1807.02876] [INSPIRE]
Crispim RomãoMCastroNFPedroRFinding New Physics without learning about it: Anomaly Detection as a tool for Searches at CollidersEur. Phys. J. C2021812710.1140/epjc/s10052-020-08807-w2021EPJC...81...27C[arXiv:2006.05432] [INSPIRE]
ButterAKasieczkaGPlehnTRussellMDeep-learned Top Tagging with a Lorentz LayerSciPost Phys.2018502810.21468/SciPostPhys.5.3.0282018ScPP....5...28B[arXiv:1707.08966] [INSPIRE]
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
BengioYCourvilleAVincentPRepresentation learning: A review and new perspectivesIEEE Trans. Pattern Anal. Machine Intell.201335179810.1109/TPAMI.2013.50[arXiv:1206.5538]
B. Nachman, Anomaly Detection for Physics Analysis and Less than Supervised Learning, arXiv:2010.14554 [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
BaldiPHornikKNeural networks and principal component analysis: Learning from examples without local minimaNeural Networks198925310.1016/0893-6080(89)90014-2
OleksiyukIUnsupervised learning for tagging anomalous jets at the LHC2021Bachelor ThesisRWTH Aachen University
BlanceASpannowskyMWaitePAdversarially-trained autoencoders for robust unsupervised new physics searchesJHEP20191004710.1007/JHEP10(2019)0472019JHEP...10..047B[arXiv:1905.10384] [INSPIRE]
FarinaMNakaiYShihDSearching for New Physics with Deep AutoencodersPhys. Rev. D202010107502110.1103/PhysRevD.101.0750212020PhRvD.101g5021F[arXiv:1808.08992] [INSPIRE]
GuestDCranmerKWhitesonDDeep Learning and its Application to LHC PhysicsAnn. Rev. Nucl. Part. Sci.20186816110.1146/annurev-nucl-101917-0210192018ARNPS..68..161G[arXiv:1806.11484] [INSPIRE]
PangGShenCCaoLHengelAVDDeep Learning for Anomaly DetectionACM Computing Surveys202154110.1145/3439950[arXiv:2007.02500]
F. Chollet et al., Keras, https://github.com/fchollet/keras (2015).
FinkeTDeep Learning for New Physics Searches at the LHC2020Master ThesisRWTH Aachen University
R. T. Schirrmeister, Y. Zhou, T. Ball and D. Zhang, Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features, arXiv:2006.10848.
AlmeidaLGBackovićMClicheMLeeSJPerelsteinMPlaying Tag with ANN: Boosted Top Identification with Pattern RecognitionJHEP20150708610.1007/JHEP07(2015)0862015JHEP...07..086A[arXiv:1501.05968] [INSPIRE]
MacalusoSShihDPulling Out All the Tops with Computer Vision and Deep LearningJHEP20181012110.1007/JHEP10(2018)1212018JHEP...10..121M[arXiv:1803.00107] [INSPIRE]
DeryLMNachmanBRubboFSchwartzmanAWeakly Supervised Classification in High Energy PhysicsJHEP20170514510.1007/JHEP05(2017)1452017JHEP...05..145D[arXiv:1702.00414] [INSPIRE]
B. Bortolato, B. M. Dillon, J. F. Kamenik and A. Smolkovič, Bump Hunting in Latent Space, arXiv:2103.06595 [INSPIRE].
KomiskePTMetodievEMNachmanBSchwartzMDLearning to classify from impure samples with high-dimensional dataPhys. Rev. D20189801150210.1103/PhysRevD.98.0115022018PhRvD..98a1502K[arXiv:1801.10158] [INSPIRE]
CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C201272189610.1140/epjc/s10052-012-1896-22012EPJC...72.1896C[arXiv:1111.6097] [INSPIRE]
P. Kirichenko, P. Izmailov and A. G. Wilson, Why Normalizing Flows Fail to Detect Out-of-Distribution Data, arXiv:2006.08545.
B. M. Dillon, Learning the latent structure of collider events, in Anomaly Detection Mini-Workshop — LHC Summer Olympics, (2020) [https://indico.desy.de/event/25341/contributions/56828/].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
B. Zong et al., Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection, in International Conference on Learning Representations, Vancouver Convention Center, Vancouver, BC, Canada, April 30 – May 3, 2018 [https://openreview.net/forum?id=BJJLHbb0-].
A. Tong, G. Wolf and S. Krishnaswamy, Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators, arXiv:1905.10710.
BonneelNRabinJPeyréGPfisterHSliced and Radon Wasserstein Barycenters of MeasuresJ. Math. Imag. Vis.20155122330048210.1007/s10851-014-0506-3
T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational Autoencoders for Anomalous Jet Tagging, arXiv:2007.01850 [INSPIRE].
HeimelTKasieczkaGPlehnTThompsonJMQCD or What?SciPost Phys.2019603010.21468/SciPostPhys.6.3.0302019ScPP....6...30H[arXiv:1808.08979] [INSPIRE]
G. Kasieczka, T. Plehn, J. Thompson and M. Russel, Top Quark Tagging Reference Dataset, https://doi.org/10.5281/zenodo.2603256 (2019).
LeeJSHLeeSMLeeYParkIWatsonIJYangSQuark Gluon Jet Discrimination with Weakly Supervised LearningJ. Korean Phys. Soc.20197565210.3938/jkps.75.6522019JKPS...75..652L[arXiv:2012.02540] [INSPIRE]
CerriONguyenTQPieriniMSpiropuluMVlimantJ-RVariational Autoencoders for New Physics Mining at the Large Hadron ColliderJHEP20190503610.1007/JHEP05(2019)0362019JHEP...05..036C[arXiv:1811.10276] [INSPIRE]
S. Alexander et al., Decoding Dark Matter Substructure without Supervision, arXiv:2008.12731 [INSPIRE].
M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/ (2015).
M. Feickert and B. Nachman, A Living Review of Machine Learning for Particle Physics, arXiv:2102.02770 [INSPIRE].
T. S. Roy and A. H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].
M. D. Schwartz, Modern Machine Learning and Particle Physics, arXiv:2103.12226 [INSPIRE].
R. Chalapathy and S. Chawla, Deep Learning for Anomaly Detection: A Survey, arXiv:1901.03407.
BourilkovDMachine and Deep Learning Applications in Particle PhysicsInt. J. Mod. Phys. A202034193001910.1142/S0217751X193001992019IJMPA..3430019B[arXiv:1912.08245] [INSPIRE]
B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better Latent Spaces for Better Autoencoders, arXiv:2104.08291 [INSPIRE].
BernreutherEFinkeTKahlhoeferFKrämerMMückACasting a graph net to catch dark showersSciPost Phys.20211004610.21468/SciPostPhys.10.2.0462021ScPP...10...46B[arXiv:2006.08639] [INSPIRE]
RuffLA Unifying Review of Deep and Shallow Anomaly DetectionProc. IEEE202110975610.1109/JPROC.2021.3052449[arXiv:2009.11732]
J. Ren et al., Likelihood Ratios for Out-of-Distribution Detection, arXiv:1906.02845.
KasieczkaGPlehnTRussellMSchellTDeep-learning Top Taggers or The End of QCD?JHEP20170500610.1007/JHEP05(2017)0062017JHEP...05..006K[arXiv:1701.08784] [INSPIRE]
D. Gong et al., Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection, [arXiv:1904.02639].
G. Kasieczka et al., The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics, arXiv:2101.08320 [INSPIRE].
ArazJYSpannowskyMCombine and Conquer: Event Reconstruction with Bayesian Ensemble Neural NetworksJHEP20210429610.1007/JHEP04(2021)2962021JHEP...04..296A[arXiv:2102.01078] [INSPIRE]
J. Serrà et al., Input complexity and out-of-distribution detection with likelihood-based generative models, arXiv:1909.11480.
MetodievEMNachmanBThalerJClassification without labels: Learning from mixed samples in high energy physicsJHEP20171017410.1007/JHEP10(2017)1742017JHEP...10..174M[arXiv:1708.02949] [INSPIRE]
RubnerYTomasiCGuibasLJThe Earth Mover’s Distance as a Metric for Image RetrievalInt. J. Comput. Vision2000409910.1023/A:1026543900054
E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur and B. Lakshminarayanan, Do Deep Generative Models Know What They Don’t Know?, arXiv:1810.09136.
J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv:1704.02124 [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
BorisyakMKazeevNMachine Learning on data with sPlot background subtractionJINST20191410.1088/1748-0221/14/08/P080202019JInst..14P8020B[arXiv:1905.11719] [INSPIRE]
D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].
ButterAThe Machine Learning landscape of top taggersSciPost Phys.2019701410.21468/SciPostPhys.7.6.0752019ScPP....7...14K[arXiv:1902.09914] [INSPIRE]
T. Cohen, M. Freytsis and B. Ostdiek, (Machine) Learning to Do More with Less, JHEP02 (2018) 034 [arXiv:1706.09451] [INSPIRE].
AmramOSuarezCMTag N’ Train: a technique to train improved classifiers on unlabeled dataJHEP20210115310.1007/JHEP01(2021)1532021JHEP...01..153A[arXiv:2002.12376] [INSPIRE]
J. H. Collins, P. Martín-Ramiro, B. Nachman and D. Shih, Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection, arXiv:2104.02092 [INSPIRE].
D Bourilkov (16073_CR5) 2020; 34
O Cerri (16073_CR27) 2019; 05
LM Dery (16073_CR9) 2017; 05
16073_CR38
L Ruff (16073_CR16) 2021; 109
Y Bengio (16073_CR21) 2013; 35
16073_CR36
16073_CR37
16073_CR34
16073_CR35
16073_CR32
16073_CR33
J Hajer (16073_CR23) 2020; 101
M Cacciari (16073_CR62) 2012; 72
T Heimel (16073_CR30) 2019; 6
G Kasieczka (16073_CR40) 2017; 05
JY Araz (16073_CR44) 2021; 04
A Blance (16073_CR26) 2019; 10
M Crispim Romão (16073_CR24) 2021; 81
E Bernreuther (16073_CR65) 2021; 10
A Butter (16073_CR45) 2018; 5
16073_CR49
16073_CR47
Y Rubner (16073_CR53) 2000; 40
16073_CR48
16073_CR46
16073_CR41
S Macaluso (16073_CR42) 2018; 10
G Pang (16073_CR22) 2021; 54
EM Metodiev (16073_CR11) 2017; 10
16073_CR2
P Baldi (16073_CR20) 1989; 2
16073_CR1
16073_CR4
16073_CR3
16073_CR18
16073_CR19
16073_CR17
16073_CR58
16073_CR59
16073_CR57
M Cacciari (16073_CR63) 2008; 04
16073_CR10
I Oleksiyuk (16073_CR56) 2021
16073_CR52
16073_CR50
M Farina (16073_CR31) 2020; 101
J Batson (16073_CR51) 2021; 04
N Bonneel (16073_CR54) 2015; 51
T Finke (16073_CR55) 2020
K Albertsson (16073_CR7) 2018; 1085
16073_CR29
A Butter (16073_CR43) 2019; 7
16073_CR28
16073_CR25
O Amram (16073_CR14) 2021; 01
LG Almeida (16073_CR39) 2015; 07
16073_CR64
16073_CR61
16073_CR60
AJ Larkoski (16073_CR8) 2020; 841
PT Komiske (16073_CR12) 2018; 98
M Borisyak (16073_CR13) 2019; 14
JSH Lee (16073_CR15) 2019; 75
D Guest (16073_CR6) 2018; 68
References_xml – reference: BengioYCourvilleAVincentPRepresentation learning: A review and new perspectivesIEEE Trans. Pattern Anal. Machine Intell.201335179810.1109/TPAMI.2013.50[arXiv:1206.5538]
– reference: B. Zong et al., Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection, in International Conference on Learning Representations, Vancouver Convention Center, Vancouver, BC, Canada, April 30 – May 3, 2018 [https://openreview.net/forum?id=BJJLHbb0-].
– reference: FinkeTDeep Learning for New Physics Searches at the LHC2020Master ThesisRWTH Aachen University
– reference: DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
– reference: J. Serrà et al., Input complexity and out-of-distribution detection with likelihood-based generative models, arXiv:1909.11480.
– reference: E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur and B. Lakshminarayanan, Do Deep Generative Models Know What They Don’t Know?, arXiv:1810.09136.
– reference: M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/ (2015).
– reference: F. Chollet et al., Keras, https://github.com/fchollet/keras (2015).
– reference: BorisyakMKazeevNMachine Learning on data with sPlot background subtractionJINST20191410.1088/1748-0221/14/08/P080202019JInst..14P8020B[arXiv:1905.11719] [INSPIRE]
– reference: GuestDCranmerKWhitesonDDeep Learning and its Application to LHC PhysicsAnn. Rev. Nucl. Part. Sci.20186816110.1146/annurev-nucl-101917-0210192018ARNPS..68..161G[arXiv:1806.11484] [INSPIRE]
– reference: CacciariMSalamGPSoyezGThe anti-ktjet clustering algorithmJHEP20080406310.1088/1126-6708/2008/04/0632008JHEP...04..063C[arXiv:0802.1189] [INSPIRE]
– reference: BaldiPHornikKNeural networks and principal component analysis: Learning from examples without local minimaNeural Networks198925310.1016/0893-6080(89)90014-2
– reference: M. Feickert and B. Nachman, A Living Review of Machine Learning for Particle Physics, arXiv:2102.02770 [INSPIRE].
– reference: T. S. Roy and A. H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].
– reference: CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
– reference: KasieczkaGPlehnTRussellMSchellTDeep-learning Top Taggers or The End of QCD?JHEP20170500610.1007/JHEP05(2017)0062017JHEP...05..006K[arXiv:1701.08784] [INSPIRE]
– reference: A. Tong, G. Wolf and S. Krishnaswamy, Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators, arXiv:1905.10710.
– reference: MetodievEMNachmanBThalerJClassification without labels: Learning from mixed samples in high energy physicsJHEP20171017410.1007/JHEP10(2017)1742017JHEP...10..174M[arXiv:1708.02949] [INSPIRE]
– reference: LeeJSHLeeSMLeeYParkIWatsonIJYangSQuark Gluon Jet Discrimination with Weakly Supervised LearningJ. Korean Phys. Soc.20197565210.3938/jkps.75.6522019JKPS...75..652L[arXiv:2012.02540] [INSPIRE]
– reference: R. T. Schirrmeister, Y. Zhou, T. Ball and D. Zhang, Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features, arXiv:2006.10848.
– reference: LarkoskiAJMoultINachmanBJet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine LearningPhys. Rept.2020841110.1016/j.physrep.2019.11.0012020PhR...841....1L[arXiv:1709.04464] [INSPIRE]
– reference: BernreutherEFinkeTKahlhoeferFKrämerMMückACasting a graph net to catch dark showersSciPost Phys.20211004610.21468/SciPostPhys.10.2.0462021ScPP...10...46B[arXiv:2006.08639] [INSPIRE]
– reference: R. Chalapathy and S. Chawla, Deep Learning for Anomaly Detection: A Survey, arXiv:1901.03407.
– reference: HajerJLiY-YLiuTWangHNovelty Detection Meets Collider PhysicsPhys. Rev. D202010107601510.1103/PhysRevD.101.0760152020PhRvD.101g6015H[arXiv:1807.10261] [INSPIRE]
– reference: D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].
– reference: Crispim RomãoMCastroNFPedroRFinding New Physics without learning about it: Anomaly Detection as a tool for Searches at CollidersEur. Phys. J. C2021812710.1140/epjc/s10052-020-08807-w2021EPJC...81...27C[arXiv:2006.05432] [INSPIRE]
– reference: J. Ren et al., Likelihood Ratios for Out-of-Distribution Detection, arXiv:1906.02845.
– reference: B. Nachman, Anomaly Detection for Physics Analysis and Less than Supervised Learning, arXiv:2010.14554 [INSPIRE].
– reference: G. Kasieczka, T. Plehn, J. Thompson and M. Russel, Top Quark Tagging Reference Dataset, https://doi.org/10.5281/zenodo.2603256 (2019).
– reference: T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
– reference: J. H. Collins, P. Martín-Ramiro, B. Nachman and D. Shih, Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection, arXiv:2104.02092 [INSPIRE].
– reference: PangGShenCCaoLHengelAVDDeep Learning for Anomaly DetectionACM Computing Surveys202154110.1145/3439950[arXiv:2007.02500]
– reference: CerriONguyenTQPieriniMSpiropuluMVlimantJ-RVariational Autoencoders for New Physics Mining at the Large Hadron ColliderJHEP20190503610.1007/JHEP05(2019)0362019JHEP...05..036C[arXiv:1811.10276] [INSPIRE]
– reference: AlbertssonKMachine Learning in High Energy Physics Community White PaperJ. Phys. Conf. Ser.2018108502200810.1088/1742-6596/1085/2/022008[arXiv:1807.02876] [INSPIRE]
– reference: FarinaMNakaiYShihDSearching for New Physics with Deep AutoencodersPhys. Rev. D202010107502110.1103/PhysRevD.101.0750212020PhRvD.101g5021F[arXiv:1808.08992] [INSPIRE]
– reference: ButterAKasieczkaGPlehnTRussellMDeep-learned Top Tagging with a Lorentz LayerSciPost Phys.2018502810.21468/SciPostPhys.5.3.0282018ScPP....5...28B[arXiv:1707.08966] [INSPIRE]
– reference: AlmeidaLGBackovićMClicheMLeeSJPerelsteinMPlaying Tag with ANN: Boosted Top Identification with Pattern RecognitionJHEP20150708610.1007/JHEP07(2015)0862015JHEP...07..086A[arXiv:1501.05968] [INSPIRE]
– reference: B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better Latent Spaces for Better Autoencoders, arXiv:2104.08291 [INSPIRE].
– reference: RuffLA Unifying Review of Deep and Shallow Anomaly DetectionProc. IEEE202110975610.1109/JPROC.2021.3052449[arXiv:2009.11732]
– reference: ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
– reference: Y. Gershtein, D. Jaroslawski, K. Nasha, D. Shih and M. Tran, Anomaly detection with convolutional autoencoders and latent space analysis, in Anomaly Detection Mini-Workshop — LHC Summer Olympics, (2020) and publication in preparation [https://indico.desy.de/event/25341/contributions/56829/].
– reference: P. Kirichenko, P. Izmailov and A. G. Wilson, Why Normalizing Flows Fail to Detect Out-of-Distribution Data, arXiv:2006.08545.
– reference: T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational Autoencoders for Anomalous Jet Tagging, arXiv:2007.01850 [INSPIRE].
– reference: ArazJYSpannowskyMCombine and Conquer: Event Reconstruction with Bayesian Ensemble Neural NetworksJHEP20210429610.1007/JHEP04(2021)2962021JHEP...04..296A[arXiv:2102.01078] [INSPIRE]
– reference: OleksiyukIUnsupervised learning for tagging anomalous jets at the LHC2021Bachelor ThesisRWTH Aachen University
– reference: BonneelNRabinJPeyréGPfisterHSliced and Radon Wasserstein Barycenters of MeasuresJ. Math. Imag. Vis.20155122330048210.1007/s10851-014-0506-3
– reference: M. D. Schwartz, Modern Machine Learning and Particle Physics, arXiv:2103.12226 [INSPIRE].
– reference: AmramOSuarezCMTag N’ Train: a technique to train improved classifiers on unlabeled dataJHEP20210115310.1007/JHEP01(2021)1532021JHEP...01..153A[arXiv:2002.12376] [INSPIRE]
– reference: DeryLMNachmanBRubboFSchwartzmanAWeakly Supervised Classification in High Energy PhysicsJHEP20170514510.1007/JHEP05(2017)1452017JHEP...05..145D[arXiv:1702.00414] [INSPIRE]
– reference: T. Cohen, M. Freytsis and B. Ostdiek, (Machine) Learning to Do More with Less, JHEP02 (2018) 034 [arXiv:1706.09451] [INSPIRE].
– reference: B. M. Dillon, Learning the latent structure of collider events, in Anomaly Detection Mini-Workshop — LHC Summer Olympics, (2020) [https://indico.desy.de/event/25341/contributions/56828/].
– reference: BourilkovDMachine and Deep Learning Applications in Particle PhysicsInt. J. Mod. Phys. A202034193001910.1142/S0217751X193001992019IJMPA..3430019B[arXiv:1912.08245] [INSPIRE]
– reference: S. Alexander et al., Decoding Dark Matter Substructure without Supervision, arXiv:2008.12731 [INSPIRE].
– reference: BatsonJHaafCGKahnYRobertsDATopological Obstructions to AutoencodingJHEP202104280427617010.1007/JHEP04(2021)2802021JHEP...04..280B[arXiv:2102.08380] [INSPIRE]
– reference: D. Gong et al., Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection, [arXiv:1904.02639].
– reference: J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv:1704.02124 [INSPIRE].
– reference: CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C201272189610.1140/epjc/s10052-012-1896-22012EPJC...72.1896C[arXiv:1111.6097] [INSPIRE]
– reference: KomiskePTMetodievEMNachmanBSchwartzMDLearning to classify from impure samples with high-dimensional dataPhys. Rev. D20189801150210.1103/PhysRevD.98.0115022018PhRvD..98a1502K[arXiv:1801.10158] [INSPIRE]
– reference: B. Bortolato, B. M. Dillon, J. F. Kamenik and A. Smolkovič, Bump Hunting in Latent Space, arXiv:2103.06595 [INSPIRE].
– reference: RubnerYTomasiCGuibasLJThe Earth Mover’s Distance as a Metric for Image RetrievalInt. J. Comput. Vision2000409910.1023/A:1026543900054
– reference: G. Kasieczka et al., The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics, arXiv:2101.08320 [INSPIRE].
– reference: BlanceASpannowskyMWaitePAdversarially-trained autoencoders for robust unsupervised new physics searchesJHEP20191004710.1007/JHEP10(2019)0472019JHEP...10..047B[arXiv:1905.10384] [INSPIRE]
– reference: HeimelTKasieczkaGPlehnTThompsonJMQCD or What?SciPost Phys.2019603010.21468/SciPostPhys.6.3.0302019ScPP....6...30H[arXiv:1808.08979] [INSPIRE]
– reference: MacalusoSShihDPulling Out All the Tops with Computer Vision and Deep LearningJHEP20181012110.1007/JHEP10(2018)1212018JHEP...10..121M[arXiv:1803.00107] [INSPIRE]
– reference: ButterAThe Machine Learning landscape of top taggersSciPost Phys.2019701410.21468/SciPostPhys.7.6.0752019ScPP....7...14K[arXiv:1902.09914] [INSPIRE]
– ident: 16073_CR48
– volume: 54
  start-page: 1
  year: 2021
  ident: 16073_CR22
  publication-title: ACM Computing Surveys
  doi: 10.1145/3439950
– volume-title: Unsupervised learning for tagging anomalous jets at the LHC
  year: 2021
  ident: 16073_CR56
– ident: 16073_CR25
– volume: 10
  start-page: 047
  year: 2019
  ident: 16073_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)047
– volume: 04
  start-page: 063
  year: 2008
  ident: 16073_CR63
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/063
– volume: 6
  start-page: 030
  year: 2019
  ident: 16073_CR30
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.6.3.030
– volume: 98
  start-page: 011502
  year: 2018
  ident: 16073_CR12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.011502
– ident: 16073_CR2
– ident: 16073_CR50
– volume: 10
  start-page: 046
  year: 2021
  ident: 16073_CR65
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.10.2.046
– volume: 14
  year: 2019
  ident: 16073_CR13
  publication-title: JINST
  doi: 10.1088/1748-0221/14/08/P08020
– ident: 16073_CR18
– volume: 101
  start-page: 076015
  year: 2020
  ident: 16073_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.076015
– ident: 16073_CR35
– ident: 16073_CR46
  doi: 10.5281/zenodo.2603256
– volume: 51
  start-page: 22
  year: 2015
  ident: 16073_CR54
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-014-0506-3
– volume: 05
  start-page: 036
  year: 2019
  ident: 16073_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)036
– volume: 07
  start-page: 086
  year: 2015
  ident: 16073_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)086
– ident: 16073_CR49
– volume: 10
  start-page: 174
  year: 2017
  ident: 16073_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)174
– ident: 16073_CR28
– ident: 16073_CR41
– ident: 16073_CR3
– volume: 72
  start-page: 1896
  year: 2012
  ident: 16073_CR62
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-1896-2
– volume: 841
  start-page: 1
  year: 2020
  ident: 16073_CR8
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2019.11.001
– ident: 16073_CR10
  doi: 10.1007/JHEP02(2018)034
– ident: 16073_CR59
– ident: 16073_CR38
– volume: 10
  start-page: 121
  year: 2018
  ident: 16073_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)121
– ident: 16073_CR61
  doi: 10.1007/JHEP02(2014)057
– ident: 16073_CR34
– ident: 16073_CR17
– volume: 05
  start-page: 145
  year: 2017
  ident: 16073_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)145
– volume: 109
  start-page: 756
  year: 2021
  ident: 16073_CR16
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3052449
– volume: 34
  start-page: 1930019
  year: 2020
  ident: 16073_CR5
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X19300199
– volume: 5
  start-page: 028
  year: 2018
  ident: 16073_CR45
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.5.3.028
– volume: 1085
  start-page: 022008
  year: 2018
  ident: 16073_CR7
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1085/2/022008
– volume: 04
  start-page: 296
  year: 2021
  ident: 16073_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)296
– ident: 16073_CR4
– volume: 68
  start-page: 161
  year: 2018
  ident: 16073_CR6
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-101917-021019
– volume: 35
  start-page: 1798
  year: 2013
  ident: 16073_CR21
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 40
  start-page: 99
  year: 2000
  ident: 16073_CR53
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1026543900054
– ident: 16073_CR33
– volume: 101
  start-page: 075021
  year: 2020
  ident: 16073_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.075021
– volume-title: Deep Learning for New Physics Searches at the LHC
  year: 2020
  ident: 16073_CR55
– volume: 75
  start-page: 652
  year: 2019
  ident: 16073_CR15
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.75.652
– ident: 16073_CR37
– ident: 16073_CR52
– ident: 16073_CR47
– ident: 16073_CR58
  doi: 10.1007/JHEP10(2020)206
– ident: 16073_CR64
– ident: 16073_CR60
  doi: 10.1016/j.cpc.2015.01.024
– volume: 81
  start-page: 27
  year: 2021
  ident: 16073_CR24
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08807-w
– ident: 16073_CR29
– volume: 04
  start-page: 280
  year: 2021
  ident: 16073_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)280
– volume: 01
  start-page: 153
  year: 2021
  ident: 16073_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)153
– volume: 2
  start-page: 53
  year: 1989
  ident: 16073_CR20
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90014-2
– volume: 05
  start-page: 006
  year: 2017
  ident: 16073_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)006
– ident: 16073_CR1
– ident: 16073_CR57
– ident: 16073_CR32
– volume: 7
  start-page: 014
  year: 2019
  ident: 16073_CR43
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.7.6.075
– ident: 16073_CR19
– ident: 16073_CR36
SSID ssj0015190
Score 2.6531794
Snippet A bstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy...
Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as...
Abstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anomalies
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Jets
Machine learning
Marking
Particle physics
Physics
Physics and Astronomy
QCD Phenomenology
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RaCUuFEortnzIBw5wSFnn0z4hilitEFrtARDqJbLGDkKCZLvJVuq_74yTLAKJXrgmdmTljT3PnvEbgENpiASoNA0MFiqIjZKBxsQG2hYSyWFHodcpuL3KJhN1d6en3YFb3aVV9muiX6hthXxGfhJyhIecm0xPZ78DrhrF0dWuhMYHWGOVBC7dME1-LaMIxE6GvZzPMDu5HF9Mh-kRbfflsUzlC0_kBftfsMxXgVHvb0af3zvSTdjomKY4a01jC1Zc-QU--YxPrLdhdLZoKlax5ExmQdRVLMp6MeOlo3ZWmLJ6Mo9_hXWNT9YqxUMpWNtYOH9bULRHIvVXuBldXJ-Pg66oQoCxipqA-BpiHBmXuNREhtiPNJl2qSpUiFYyIyyMkwSdTGxSWKVDnqSRIWpEuzMZfYPVsirdDgibOOqNmSbaEruMmI1JiNCxppdGq6MB_Oh_cI6d4jgXvnjMe63kFpGcEckJkQEcLTvMWrGNt5v-ZMSWzVgl2z-o5vd5N-mICChtVUF7QAxjRKkU2sQMjY2Us1hkA9jrEcy7qVvnz_AN4Li3gefXb4zn-_8_tQvr3LLNMduD1Wa-cPvwEf80D_X8wFvtP9VT8yE
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7EB3jxLa6ukoOH9VDZ9JkcVXYRkcWDircSJqksrO2y7Qr-eydpu7KKB72VdgJhJsl805n5AnDOFYEAEceewkx4oRLckxhpT-qMIznswHc8Bc_3yWgkXl7kwwrwthfGVbu3KUl3UrfNbne3g4d-3KNgnV9wG_CsRVxIW8V3YxscmsQBAZJ-y-Dzc9CS83Ec_UvA8lsu1LmY4fY_JrcDWw2eZFf1AtiFFZPvwYar68RyH4ZX86qwXJW2XpkRQGXzvJxP7QFRGs1UXrypyQfTpnIlWTkb58wyGDPjegJZ_eOjPICn4eDx5tZrrk7wMBRB5REqQwwDZSITq0ARxuEqkSYWmfBRc4v7MmU4GYhHOsq0kL7dioEiAEQxGA8OYTUvcnMETEeGRmMiCZyEJiH8oiKCbZa5S6KWQQcuW52m2PCK2-stJmnLiFwrJ7XKSUk5HegtBkxrSo3fRa-tkRZilgvbvShmr2mztcjdC6lFRpEe-iEiFwJ1pPpKB8JozJIOdFsTp80GLVPfJgwJK_G4AxetSb8-_zKf4z_InsCmfazLyrqwWs3m5hTW8b0al7Mzt2o_AaUC5po
  priority: 102
  providerName: Springer Nature
Title Autoencoders for unsupervised anomaly detection in high energy physics
URI https://link.springer.com/article/10.1007/JHEP06(2021)161
https://www.proquest.com/docview/2545809116
https://doaj.org/article/ba89d8f495c24cc188cd5a0ad38edcf7
Volume 2021
WOSCitedRecordID wos000669612300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pa9swFMcfW7dBL2U_qfsj6LBDcvBq-ad0bENCNrZgxjayXYz2JEMgdUrtFPrf90m2s2YQdtnFB1sy4vss9JH19BXAe64IAkSa-gpL4cdKcF9ion2pS440YEeh8yn48Tmbz8ViIfNHR33ZnLDWHrgV7uK3ElKLkjgewxiRC4E6UYHSkTAaS7ePPMhkP5nq1g-IS4LeyCfILj7NJnmQDmmiz0c85TtjkLPq3-HLv5ZE3UgzfQlHHSKyy7Zpr-CJqV7DC5eqifUbmF5umrW1n7QpyIyYk22qenNj-3xtNFPV-lqt7pk2jcuyqtiyYtaUmBm3zY-1_zLqt_B9Ovk2nvndaQg-xiJqfAItxDhSJjGpihRhC1eZNKkoRYiaW5QrleGkOU90UmohQ9u7IkVMQ9MqHr2Dg2pdmWNgOjFUGzNJvBGbjJBEJURi1oxLopaRBx96fQrsrMLtiRWrojc5bgUtrKAFCerBcFvhpnXJ2F_0ygq-LWbtrd0NCnrRBb34V9A9OOvDVXR9ri5CuwZI-MNTD0Z9CP883tOek__RnlM4tO9rU8jO4KC53ZhzeI53zbK-HcCzq8k8_zqAp-MwHrgPla558oue5B-_5D8fAIwA68Y
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguPItYKOADSO0hdJ2nfUCoQFe7dLvaQ0HllFpjB1UqybLJtuqf4jcyk8dWRSq3HrgmseXEX2Y-e8bfALyRhkiAimPPYKa80CjpaYysp20mkRx24Nc6Bd8myXSqjo70bA1-d2dhOK2ys4m1obYF8h75js8RHnJuMv4w_-Vx1SiOrnYlNBpY7LuLc1qyle_Hn2l-3_r-cO_w08hrqwp4GKqg8oiwIIaBcZGLTWDI_UuTaBerTPloJVOizDhJY5eRjTKrtM8oDQxxA1qeyID6vQXrIYO9B-uz8cHs-ypuQXxo0AkIDZKdL6O92SDe8smRbstYXvF9dYmAK7z2r1Bs7eGGD_63b_MQ7rdcWuw24H8Eay5_DHfqnFYsn8Bwd1kVrNPJudqCyLlY5uVyzsaxdFaYvPhpTi-EdVWdjpaLk1ywerNw9XlI0Wz6lBvw9UZe4in08iJ3z0DYyFFrTDQRs9AlxN1MRJSVVcs0Wh304V03oSm2mupc2uM07dSgGwSkjICUENCHrVWDeSMncv2jHxkhq8dYB7y-UCx-pK1ZIaqjtFUZrXLRDxGlUmgjMzA2UM5ilvRhs0NM2hqnMr2ESx-2O8xd3r5mPM__3dVruDs6PJikk_F0_wXc41ZNRt0m9KrF0r2E23hWnZSLV-0_I-D4pqH4B4rwUB0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8lAv5S2WFvABpPYQdp2nfUCo0K5aWq32AKjiklpjB1UqybLJFvWv8euYcZKtilRuPXBNbCuOP898tsffALyWhkiAStPAYKGC2CgZaExsoG0hkRx2FHqdgq9H2WSijo_1dAV-93dhOKyyt4neUNsKeY98GPIJDzk3mQ6LLixiujt-P_sZcAYpPmnt02m0EDl0F79o-Va_O9ilsX4ThuO9zx_3gy7DQICxipqAyAtiHBmXuNREhqiANJl2qSpUiFYyPSqMk9QPmdiksEqHjNjIEE-gpYqMqN1bcDujNSaHE06Tb8sTDGJGo15KaJQNP-3vTUfpVkgudVum8ooX9MkCrjDcvw5lva8b3_-f_9IDWO8Ytthpp8RDWHHlI7jrI12xfgzjnUVTsXonR3ALouxiUdaLGZvM2llhyuqHObsQ1jU-SK0Up6VgTWfh_C1J0W4F1U_gy4104imsllXpnoGwiaPamGmia7HLiNGZhIgsa5lptDoawNt-cHPslNY54cdZ3mtEt2jIGQ05oWEAW8sKs1Zk5PqiHxgty2KsDu4fVPPveWdsiAApbVVBa18MY0SpFNrEjIyNlLNYZAPY7NGTdyarzi-hM4DtHn-Xr6_5nuf_buoV3CP85UcHk8MNWONKbZjdJqw284V7AXfwvDmt5y_95BFwctM4_APxoFeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoders+for+unsupervised+anomaly+detection+in+high+energy+physics&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Thorben+Finke&rft.au=Michael+Kr%C3%A4mer&rft.au=Alessandro+Morandini&rft.au=Alexander+M%C3%BCck&rft.date=2021-06-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2021&rft.issue=6&rft.spage=1&rft.epage=32&rft_id=info:doi/10.1007%2FJHEP06%282021%29161&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ba89d8f495c24cc188cd5a0ad38edcf7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon