Metal Oxide Gas Sensor Drift Compensation Using a Dynamic Classifier Ensemble Based on Fitting

Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. The DWF method uses a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 13; číslo 7; s. 9160 - 9173
Hlavní autori: Liu, Hang, Tang, Zhenan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 17.07.2013
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. The DWF method uses a dynamic weighted combination of support vector machine (SVM) classifiers trained by the datasets that are collected at different time periods. In the testing of future datasets, the classifier weights are predicted by fitting functions, which are obtained by the proper fitting of the optimal weights during training. We compare the performance of the DWF method with that of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the DWF method outperforms the other methods considered. Furthermore, the DWF method can be further optimized by applying a fitting function that more closely matches the variation of the optimal weight over time.
AbstractList Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. The DWF method uses a dynamic weighted combination of support vector machine (SVM) classifiers trained by the datasets that are collected at different time periods. In the testing of future datasets, the classifier weights are predicted by fitting functions, which are obtained by the proper fitting of the optimal weights during training. We compare the performance of the DWF method with that of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the DWF method outperforms the other methods considered. Furthermore, the DWF method can be further optimized by applying a fitting function that more closely matches the variation of the optimal weight over time.
Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. The DWF method uses a dynamic weighted combination of support vector machine (SVM) classifiers trained by the datasets that are collected at different time periods. In the testing of future datasets, the classifier weights are predicted by fitting functions, which are obtained by the proper fitting of the optimal weights during training. We compare the performance of the DWF method with that of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the DWF method outperforms the other methods considered. Furthermore, the DWF method can be further optimized by applying a fitting function that more closely matches the variation of the optimal weight over time.Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. The DWF method uses a dynamic weighted combination of support vector machine (SVM) classifiers trained by the datasets that are collected at different time periods. In the testing of future datasets, the classifier weights are predicted by fitting functions, which are obtained by the proper fitting of the optimal weights during training. We compare the performance of the DWF method with that of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the DWF method outperforms the other methods considered. Furthermore, the DWF method can be further optimized by applying a fitting function that more closely matches the variation of the optimal weight over time.
Author Liu, Hang
Tang, Zhenan
Author_xml – sequence: 1
  givenname: Hang
  surname: Liu
  fullname: Liu, Hang
– sequence: 2
  givenname: Zhenan
  surname: Tang
  fullname: Tang, Zhenan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23867742$$D View this record in MEDLINE/PubMed
BookMark eNptkUlvFDEQRi2UiCxw4QcgS1wipAmu9tpHmCxECsoBcsWqdrsjj7rbg-2RyL-Pk0kginLyolevyv4OyM4cZ0_IB2DHnLfsSwbONGtBsTdkH0QjFqZp2M6z_R45yHnFWMM5N2_JXsON0lo0--T3D19wpFd_Q-_pOWb60885JnqSwlDoMk7resYS4kyvc5hvKNKT2xmn4OhyxJzDEHyip3P2Uzd6-g2z72mFz0IpFX9Hdgccs3__uB6S67PTX8vvi8ur84vl18uFE4aXRcvB4dADgnTctbzXWndND84wPbiWgWQ4aNOCk1z1WgrZCieVlF2DrTOCH5KLrbePuLLrFCZMtzZisA8XMd1YTCW40duhGiVIMB6lUD0aPfBOKdnVpk7Bveto61qn-Gfjc7FTyM6PI84-brIFAaA4GMMr-ukFuoqbNNeXWpBcizqxkpX6-Ehtusn3_8Z7SqECbAu4FHNOfrAulIdPLwnDaIHZ-6Dt_6BryecXJU_WV-A7HXOkeQ
CitedBy_id crossref_primary_10_1016_j_snb_2017_07_175
crossref_primary_10_1109_JSEN_2021_3105414
crossref_primary_10_1007_s11694_018_9893_2
crossref_primary_10_3390_s18030742
crossref_primary_10_1108_SR_02_2021_0038
crossref_primary_10_1016_j_matchemphys_2020_123316
crossref_primary_10_1109_JSEN_2021_3081923
crossref_primary_10_1109_TUFFC_2019_2961180
crossref_primary_10_1016_j_snb_2021_130986
crossref_primary_10_1109_JSEN_2019_2941993
crossref_primary_10_1016_j_eswa_2022_118237
crossref_primary_10_1109_TSMC_2016_2597800
crossref_primary_10_1016_j_snb_2017_06_156
crossref_primary_10_1007_s00607_018_0604_y
crossref_primary_10_1016_j_snb_2020_129162
crossref_primary_10_3390_mi13081260
crossref_primary_10_3390_s140610514
crossref_primary_10_1155_2018_2308237
crossref_primary_10_3390_s150510180
crossref_primary_10_1016_j_foodres_2025_116285
crossref_primary_10_1016_j_snb_2019_04_135
crossref_primary_10_3390_chemosensors9040078
crossref_primary_10_1038_s41598_023_39246_8
crossref_primary_10_1109_TIM_2022_3160834
Cites_doi 10.1016/j.snb.2006.05.029
10.1016/j.snb.2012.10.140
10.1016/j.snb.2006.11.010
10.1016/j.snb.2005.11.002
10.1016/j.snb.2009.06.046
10.1093/oso/9780198559559.001.0001
10.1016/j.snb.2013.03.034
10.1016/0925-4005(91)80213-4
10.1016/S0925-4005(03)00477-5
10.1109/IJCNN.2010.5596638
10.1016/j.snb.2008.10.065
10.1016/S0925-4005(02)00306-4
10.1016/j.snb.2006.03.017
10.1016/j.snb.2005.11.037
10.1016/j.snb.2012.01.074
10.1016/S0925-4005(97)80096-2
10.1109/34.58871
10.1016/S0925-4005(00)00614-6
10.1016/j.snb.2004.04.038
10.1016/S0925-4005(01)00903-0
10.1016/j.snb.2004.12.017
10.1016/j.snb.2009.12.027
10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
10.1016/S0925-4005(02)00036-9
10.1016/S0925-4005(00)00402-0
10.1016/j.snb.2011.03.066
10.1016/0925-4005(94)87049-7
ContentType Journal Article
Copyright Copyright MDPI AG 2013
Copyright_xml – notice: Copyright MDPI AG 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s130709160
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 9173
ExternalDocumentID oai_doaj_org_article_f7fc51518ea546da87f3b665bd77c614
3339921051
23867742
10_3390_s130709160
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c483t-931cafd1a15c3c93d777b2d1c807fc90150af7891c536d754594c5655b2a9c843
IEDL.DBID DOA
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328612800060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:37:30 EDT 2025
Fri Sep 05 13:28:08 EDT 2025
Sat Nov 29 14:45:39 EST 2025
Mon Jul 21 06:05:38 EDT 2025
Sat Nov 29 07:19:25 EST 2025
Tue Nov 18 22:07:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-931cafd1a15c3c93d777b2d1c807fc90150af7891c536d754594c5655b2a9c843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f7fc51518ea546da87f3b665bd77c614
PMID 23867742
PQID 1537489165
PQPubID 2032333
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_f7fc51518ea546da87f3b665bd77c614
proquest_miscellaneous_1411631883
proquest_journals_1537489165
pubmed_primary_23867742
crossref_citationtrail_10_3390_s130709160
crossref_primary_10_3390_s130709160
PublicationCentury 2000
PublicationDate 2013-Jul-17
PublicationDateYYYYMMDD 2013-07-17
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-Jul-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2013
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Artursson (ref_2) 2000; 14
(ref_5) 1994; 18
Gao (ref_24) 2007; 120
Romain (ref_3) 2010; 146
Vergara (ref_8) 2007; 123
Gao (ref_23) 2005; 107
ref_10
Xu (ref_18) 2009; 141
Polikar (ref_13) 2001; 80
Pardo (ref_9) 2000; 67
Brezmes (ref_21) 2007; 122
Shi (ref_16) 2006; 117
Lee (ref_12) 2000; 71
Srivastava (ref_14) 2003; 96
Hansen (ref_22) 1990; 12
ref_25
Muezzinoglu (ref_30) 2009; 137
Romain (ref_4) 2002; 84
Szecowka (ref_17) 2011; 157
ref_1
Vergara (ref_26) 2012; 166-167
Distante (ref_19) 2003; 88
Ge (ref_20) 2006; 117
Yamazoe (ref_6) 1991; 5
ref_28
ref_27
Kadri (ref_29) 2013; 10
Fonollosa (ref_11) 2013; 183
Ciosek (ref_15) 2004; 103
Roth (ref_7) 1996; 36
References_xml – volume: 122
  start-page: 259
  year: 2007
  ident: ref_21
  article-title: Variable selection for support vector machine based multisensor systems
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.05.029
– ident: ref_28
  doi: 10.1016/j.snb.2012.10.140
– volume: 123
  start-page: 1002
  year: 2007
  ident: ref_8
  article-title: Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.11.010
– volume: 117
  start-page: 65
  year: 2006
  ident: ref_16
  article-title: A multi-module artificial neural network approach to pattern recognition with optimized nanostructured sensor array
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2005.11.002
– volume: 141
  start-page: 458
  year: 2009
  ident: ref_18
  article-title: Pattern recognition for sensor array signals using fuzzy ARTMAP
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.06.046
– ident: ref_1
  doi: 10.1093/oso/9780198559559.001.0001
– volume: 183
  start-page: 211
  year: 2013
  ident: ref_11
  article-title: Algorithmic mitigation of sensor failure: Is sensor replacement really necessary?
  publication-title: Sens. Actuators B Chem
  doi: 10.1016/j.snb.2013.03.034
– volume: 5
  start-page: 7
  year: 1991
  ident: ref_6
  article-title: New approaches for improving semiconductor gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(91)80213-4
– volume: 96
  start-page: 24
  year: 2003
  ident: ref_14
  article-title: Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(03)00477-5
– ident: ref_10
  doi: 10.1109/IJCNN.2010.5596638
– volume: 137
  start-page: 507
  year: 2009
  ident: ref_30
  article-title: Acceleration of chemo-sensory information processing using transient features
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2008.10.065
– volume: 88
  start-page: 30
  year: 2003
  ident: ref_19
  article-title: Support vector machines for olfactory signals recognition
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(02)00306-4
– volume: 120
  start-page: 584
  year: 2007
  ident: ref_24
  article-title: Simultaneous estimation of odor classes and concentrations using an electronic nose with function approximation model ensembles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.03.017
– volume: 117
  start-page: 408
  year: 2006
  ident: ref_20
  article-title: Identification of gas mixtures by a distributed support vector machine network and wavelet decomposition from temperature modulated semiconductor gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2005.11.037
– volume: 166-167
  start-page: 320
  year: 2012
  ident: ref_26
  article-title: Chemical gas sensor drift compensation using classifier ensembles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.01.074
– volume: 36
  start-page: 358
  year: 1996
  ident: ref_7
  article-title: Drift reduction of organic coated gas-sensors by temperature modulation
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(97)80096-2
– volume: 12
  start-page: 993
  year: 1990
  ident: ref_22
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell.
  doi: 10.1109/34.58871
– ident: ref_25
– ident: ref_27
– volume: 71
  start-page: 90
  year: 2000
  ident: ref_12
  article-title: Explosive gas recognition system using thick film sensor array and neural network
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(00)00614-6
– volume: 10
  start-page: 129
  year: 2013
  ident: ref_29
  article-title: Neural network ensembles for online gas concentration estimation using an electronic nose
  publication-title: Int. J. Comput. Sci. Issues
– volume: 103
  start-page: 76
  year: 2004
  ident: ref_15
  article-title: Classification of beverages using a reduced sensor array. Sens
  publication-title: Actuators B Chem.
  doi: 10.1016/j.snb.2004.04.038
– volume: 80
  start-page: 243
  year: 2001
  ident: ref_13
  article-title: Artificial intelligence methods for selection of an optimized sensor array for identification of volatile organic compounds
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(01)00903-0
– volume: 107
  start-page: 773
  year: 2005
  ident: ref_23
  article-title: Simultaneous estimation of classes and concentrations of odors by an electronic nose using combinative and modular multilayer perceptrons
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2004.12.017
– volume: 146
  start-page: 502
  year: 2010
  ident: ref_3
  article-title: Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.12.027
– volume: 14
  start-page: 711
  year: 2000
  ident: ref_2
  article-title: Drift correction for gas sensors using multivariate methods
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
– volume: 84
  start-page: 271
  year: 2002
  ident: ref_4
  article-title: Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(02)00036-9
– volume: 67
  start-page: 128
  year: 2000
  ident: ref_9
  article-title: Monitoring reliability of sensors in an array by neural networks
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(00)00402-0
– volume: 157
  start-page: 298
  year: 2011
  ident: ref_17
  article-title: On reliability of neural network sensitivity analysis applied for sensor array optimization
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.03.066
– volume: 18
  start-page: 1
  year: 1994
  ident: ref_5
  article-title: New materials and transducers for chemical sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/0925-4005(94)87049-7
SSID ssj0023338
Score 2.2305038
Snippet Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 9160
SubjectTerms Algorithms
Artificial Intelligence
Data Interpretation, Statistical
Datasets
dynamic weights
ensemble method
Equipment Design
Equipment Failure Analysis
Fuzzy sets
Gases - analysis
metal oxide sensors
Metal oxides
Metals - analysis
Methods
Neural networks
Olfactometry - instrumentation
Oxides - analysis
Pattern recognition systems
sensor drift
Sensors
Signal processing
Support vector machines
Transducers
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3qWBgozohUPUdZzYzglR2oUDFCQe2hORM7arSG1Ski3i5zN2srtFAi4ck4wsOzPj-caZzAewJworKPMJ1VNiluZCYaq9xNTVhUYhKebF_9a-vlPHx3qxKD9OB27DVFa52hPjRm07DGfk--SZoVEKl8XL8-9pYI0KX1cnCo2rcC3QZgc7V4tNwhVmMbYkFZTa7w88GDgNMfstCMVe_X8HmDHQzG__7xTvwK0JYrJXo03chSuuvQc3LzUevA_f3jsC3ezDz8Y69sYM7BNls13PDvvGL1nYI-g66ozFmgJm2OFIXc8ii2bjKZqyo3ZwZ_WpYwcUCi0j4XkTy6gfwJf50efXb9OJaSHFXItlWgqOxltueIECS2GVUnVmOeqZ8hhPRYxXtDQshLSKUFeZI0HBos5MiToX27DVdq3bAWZtlkuSLbixNLaoNUoCobU0XlDyaBJ4sXr1FU5tyAMbxmlF6UhQU7VRUwLP17LnY_ONP0odBA2uJULD7Hij60-qyf8qT-sg6Ma1M0UurdHKi5pMsaalIkGUBHZXOq0mLx6qjUITeLZ-TP4XPqqY1nUXJJNzgrRca5HAw9Fu1jMhOCQJXmeP_j34Y7iRRZKN0K5zF7aW_YV7Atfxx7IZ-qfRpH8B9mL81w
  priority: 102
  providerName: ProQuest
Title Metal Oxide Gas Sensor Drift Compensation Using a Dynamic Classifier Ensemble Based on Fitting
URI https://www.ncbi.nlm.nih.gov/pubmed/23867742
https://www.proquest.com/docview/1537489165
https://www.proquest.com/docview/1411631883
https://doaj.org/article/f7fc51518ea546da87f3b665bd77c614
Volume 13
WOSCitedRecordID wos000328612800060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5By4EeKsozbVkZwYVD1DhObOfYpbsFiV1WvLRciBw_pEhtttpsq5747R072W2RQFy4WIozcqzxOPNNMv4G4A3LDcPIx2dPsSTOmNCxdFzHtsqlZhx9Xji39v2jmE7lfF7M7pT68jlhHT1wp7gjJ5xGn0ulVXnGjZLCsQrHqIwQmocS1mkiinUw1Yda_vnhXFGaxegCk46YlGGAf9RSb-aIipLfXFFg7P87zAzuZvwIdnucSI67-e3BPds8hp077IFP4OfEInImn65rY8mpaskXDEkXS3KyrN2K-I2O10HxJCQGEEVOuvrzJJTCrB26RDJqWntenVkyRH9mCAqP65AL_RS-jUdf372P-3IJsc4kW8UFo1o5QxXNNdMFQwWJKjVUywR1GD5tKCdkQXXOuBEInYpMI57Lq1QVWmbsGWw1i8a-AGJMmnGUzakyODarpOaIJCuuHMMIUEXwdq25Uvdc4r6kxVmJMYXXcnmr5Qheb2QvOgaNP0oN_QJsJDzrdehAWyh7Wyj_ZQsRHK6Xr-y3YlviK90z7FCeR_Bqcxs3kf8zohq7uESZjCIupVKyCJ53y76ZCWIajhg53f8fMzyAh2mop-GZOQ9ha7W8tC_hgb5a1e1yAPfFXIRWDmB7OJrOPg-CXWM7-TXCvtmHyezHDVrD9xo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ58FnaQAEj4MAh6jpOYueAEGW7tOp2QaJFe2pwbKeK1CYl2QL9U_xGxk6yCxJw64FjkpETx8_j9_wxA_CcRZqh8rG7p9jADxlXvshj5ZssEorFOOa5c2ufxnwyEdNp8mEJfvRnYey2yt4nOketK2XnyDexZ9pAKTSOXp998W3WKLu62qfQaGGxZy6-oWRrXu0OsX1fBMFo--Dtjt9lFfBVKNjMTxhVMtdU0kgxlTDNOc8CTZUY8Fy5GQCZc3yTilisOTKMJFRIe6IskIkSIcNyr8BV9OPcij0-XQg8W-s2BCpjyWCzobZD4ScPfhv0XG6AvxNaN7CNbv1vv-Q23OwoNHnTYv4OLJnyLtz4JbDiPTjaNygqyPvvhTbknWzIR1TrVU2GdZHPiPWBeO0wSdyeCSLJ8KKUp4UiLktokSNbINtlY06zE0O2cKjXBI1HhdsmvgqHl1LB-7BcVqVZB6J1EMZoG1GpsWyWCRUjyc5imTMUx9KDl31Tp6oLs26zfZykKLcsLNIFLDx4Nrc9a4OL_NFqyyJmbmEDgrsbVX2cdv4lzbEeSE2pMDIKYy0Fz1mGXS3DqiqkYB5s9BhKOy_VpAsAefB0_hj9i100kqWpztEmpEjZqRDMg7UWp_MvQboXo3wIHvy78Cdwfedgf5yOdyd7D2ElcAlFbGjSDVie1efmEVxTX2dFUz923YnA58sG60_Tf1gC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4P0IFDACDhyiXcd5OAeEKNuFVdtlJR4qF4LjB4rUJiXZAv1r_DrGzqMgAbceOCYZObHzzfgbezwD8IhFiqHnY6On2MQPWSJ9bmLp6zziksU457lza-93ksWC7-2lyzX40Z-FsWGVvU10hlpV0q6Rj1EzbaIUGkdj04VFLKezZ4dffFtByu609uU0Wohs6-Nv6L41T-dT_NePg2C29fbFK7-rMODLkLOVnzIqhVFU0EgymTKVJEkeKCr5JDHSrQYIk-BbZcRilSDbSEOJFCjKA5FKHjJs9wysIyUPgxGsL-e7yw-Du2fHoE2Iylg6GTfUqhd2YPLbFOgqBfyd3rppbnbpfx6gy3CxI9fkeasNV2BNl1fhwi8pF6_Bx12N7gZ5_b1QmrwUDXmDfnxVk2ldmBWx1hGvHVqJi6YggkyPS3FQSOLqhxYGeQTZKht9kO9rsokkQBEUnhUugPw6vDuVDt6AUVmV-hYQpYIwRtmICoVts5zLGOl3HgvD0G0WHjzpf3smuwTstg7IfoaOmIVIdgIRDx4Osodt2pE_Sm1a9AwSNlW4u1HVn7PO8mQG-4GklXItojBWgieG5aiEOXZVIjnzYKPHU9bZryY7AZMHD4bHaHnsdpIodXWEMiFFMk85Zx7cbDE7fAkSwRgdi-D2vxu_D-cQo9nOfLF9B84HrtKIzVm6AaNVfaTvwln5dVU09b1Otwh8Om20_gQgzmJR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+oxide+gas+sensor+drift+compensation+using+a+dynamic+classifier+ensemble+based+on+fitting&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Hang&rft.au=Tang%2C+Zhenan&rft.date=2013-07-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=13&rft.issue=7&rft.spage=9160&rft_id=info:doi/10.3390%2Fs130709160&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon