Machine learning methods for genomic prediction of cow behavioral traits measured by automatic milking systems in North American Holstein cattle

The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science Vol. 107; no. 7; pp. 4758 - 4771
Main Authors: Pedrosa, Victor B., Chen, Shi-Yi, Gloria, Leonardo S., Doucette, Jarrod S., Boerman, Jacquelyn P., Rosa, Guilherme J.M., Brito, Luiz F.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.07.2024
Elsevier
Subjects:
ISSN:0022-0302, 1525-3198, 1525-3198
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.
AbstractList Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.
Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.
The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.
Author Doucette, Jarrod S.
Rosa, Guilherme J.M.
Brito, Luiz F.
Chen, Shi-Yi
Pedrosa, Victor B.
Boerman, Jacquelyn P.
Gloria, Leonardo S.
Author_xml – sequence: 1
  givenname: Victor B.
  orcidid: 0000-0001-8966-2227
  surname: Pedrosa
  fullname: Pedrosa, Victor B.
  organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
– sequence: 2
  givenname: Shi-Yi
  orcidid: 0000-0002-3955-0101
  surname: Chen
  fullname: Chen, Shi-Yi
  organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
– sequence: 3
  givenname: Leonardo S.
  orcidid: 0000-0002-2756-5939
  surname: Gloria
  fullname: Gloria, Leonardo S.
  organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
– sequence: 4
  givenname: Jarrod S.
  orcidid: 0000-0003-4027-2417
  surname: Doucette
  fullname: Doucette, Jarrod S.
  organization: Agriculture Information Technology (AgIT), Purdue University, West Lafayette, IN 47907
– sequence: 5
  givenname: Jacquelyn P.
  orcidid: 0000-0002-0336-8295
  surname: Boerman
  fullname: Boerman, Jacquelyn P.
  organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
– sequence: 6
  givenname: Guilherme J.M.
  orcidid: 0000-0001-9172-6461
  surname: Rosa
  fullname: Rosa, Guilherme J.M.
  organization: Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, 53706
– sequence: 7
  givenname: Luiz F.
  orcidid: 0000-0002-5819-0922
  surname: Brito
  fullname: Brito, Luiz F.
  email: britol@purdue.edu
  organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38395400$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVAR3RauHJGPXLL1R-x1jlUFtFILFzhbE2ey6yWxF9vbav8FPxmnW3pAqjjZHr_3NDPvnVUnPnisqveMLgVT-mLbpyWnXNS8oZq_qhZMclkL1uqTakEp5zUVlJ9WZylty5NxKt9Up0KLVjaULqrfd2A3ziMZEaJ3fk0mzJvQJzKESNbow-Qs2UXsnc0ueBIGYsMD6XAD9y5EGEmO4HIqPEj7giPdgcA-hwlyYU5u_DmrpkPKOCXiPPkaYt6Qywmjs-DJdRjLV6lbyHnEt9XrAcaE757O8-rH50_fr67r229fbq4ub2vbaJFr3VI-rFSzEtBYRbXkfSc71WoqxNDIXpSLVF2rSo1z1lkFAkAPwPqOotTivLo56vYBtmYX3QTxYAI481gIcW0glglGNEyxfqB6pXSLjVS24xpoOzCpmO6tkkXr41FrF8OvPaZsJpcsjiN4DPtkBJOlH1Ws-T-UrkSZqmVzhx-eoPtuwv65x7_mFcDyCLAxpBRxeIYwauZ0mJIOM6fDPKajEJp_CNZlmG2dPRxfpukjDYsf9w6jSdahtyUTEW0uC3MvUf8ACvDROg
CitedBy_id crossref_primary_10_1016_j_psj_2025_104812
crossref_primary_10_3168_jdsc_2024_0723
crossref_primary_10_1016_j_compag_2025_110395
crossref_primary_10_1016_j_psj_2024_104489
crossref_primary_10_3390_dairy6050050
crossref_primary_10_3390_ani14203014
crossref_primary_10_4103_jcrt_jcrt_1910_24
crossref_primary_10_63618_omd_isj_v3_n3_64
crossref_primary_10_3168_jds_2024_24953
crossref_primary_10_3390_ani15010031
Cites_doi 10.3389/frai.2020.00004
10.1186/s12711-020-00531-z
10.1534/genetics.118.301298
10.1093/bfgp/elaa013
10.1007/978-1-62703-447-0_13
10.1002/tpg2.20147
10.1186/1297-9686-43-18
10.1093/jas/sky014
10.1534/genetics.109.101501
10.1016/j.bios.2017.07.015
10.1186/s12864-020-07181-x
10.1038/s42003-020-01233-4
10.1007/s00425-018-2976-9
10.1186/1471-2164-14-860
10.3835/plantgenome2018.07.0052
10.1007/s42979-020-00310-z
10.1016/j.anbehav.2016.12.005
10.1186/1471-2156-12-87
10.1016/j.livsci.2014.05.036
10.1038/s41598-018-30089-2
10.1186/s12864-022-08929-3
10.1038/nrg2575
10.1093/jas/skaa101
10.1111/j.1439-0388.2010.00878.x
10.4238/2015.September.9.26
10.1093/g3journal/jkab032
10.1002/csc2.20163
10.1007/s00500-021-05995-9
10.1016/j.physbeh.2020.113203
10.1111/j.2517-6161.1996.tb02080.x
10.3389/fpls.2020.00025
10.1534/genetics.114.164442
10.1017/S1466252321000177
10.1534/g3.118.200740
10.1186/s12864-020-07319-x
10.1534/genetics.116.199406
10.1007/978-1-0716-2205-6_8
10.1007/s00122-012-1892-9
10.1038/s41576-019-0122-6
10.3168/jds.2011-5019
10.1016/j.neunet.2014.09.003
10.1186/1297-9686-43-7
10.1534/genetics.112.143313
10.1146/annurev-animal-020518-114851
10.1186/s12711-022-00759-x
10.1186/s12711-018-0439-1
10.3390/genes11070790
10.1093/g3journal/jkab206
10.1371/journal.pone.0228724
10.3389/fgene.2018.00078
10.1017/S0016672310000534
10.3168/jds.2017-12954
10.1093/genetics/157.4.1819
10.3390/genes10070553
10.3168/jds.2007-0980
10.3168/jds.2022-22515
10.1534/g3.118.200646
ContentType Journal Article
Copyright 2024 American Dairy Science Association
The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: 2024 American Dairy Science Association
– notice: The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOA
DOI 10.3168/jds.2023-24082
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3198
EndPage 4771
ExternalDocumentID oai_doaj_org_article_161df087689e456cb28a09f15618dc65
38395400
10_3168_jds_2023_24082
S0022030224004971
Genre Journal Article
GroupedDBID ---
--K
-~X
.GJ
0R~
0SF
186
18M
1B1
29K
2WC
36B
3V.
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
8VB
AAEDT
AAEDW
AAFTH
AAHBH
AALRI
AAQFI
AAQXK
AAWRB
AAXUO
ABCQX
ABJCF
ABJNI
ABUWG
ABVKL
ACGFO
ACGFS
ACIWK
ADBBV
ADMUD
ADPAM
ADVLN
AEGXH
AENEX
AFKRA
AFKWA
AFRAH
AFTJW
AHMBA
AI.
AIAGR
AITUG
AKRWK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
ATCPS
AVWKF
AZFZN
BELOY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DU5
E3Z
EBS
EBU
EDH
EJD
EMB
F5P
FDB
FEDTE
FGOYB
FYUFA
GBLVA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HZ~
K1G
L6V
L7B
M0K
M1P
M41
M7S
N9A
NCXOZ
NHB
O9-
OK1
P2P
PATMY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QII
QWB
R2-
ROL
RWL
S0X
SEL
SES
SSZ
SV3
TAE
TDS
TWZ
U5U
UHB
UKHRP
VH1
WOQ
XH2
XOL
ZGI
ZL0
ZXP
~KM
AAFWJ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEUPX
AEUYN
AFFHD
AFJKZ
AFPKN
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c483t-8902f76473a4c60852db5b698033f45d380356b96b69221bc6a3aa8fa1db0e583
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001261533100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0302
1525-3198
IngestDate Fri Oct 03 12:48:05 EDT 2025
Wed Oct 01 13:02:31 EDT 2025
Fri Sep 05 09:45:17 EDT 2025
Wed Feb 19 02:07:41 EST 2025
Sat Nov 29 06:10:14 EST 2025
Tue Nov 18 21:58:08 EST 2025
Sat Sep 07 15:50:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deep learning
accuracy of prediction
automatic milking systems
sensor-based systems
Language English
License This is an open access article under the CC BY license.
The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-8902f76473a4c60852db5b698033f45d380356b96b69221bc6a3aa8fa1db0e583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2756-5939
0000-0003-4027-2417
0000-0001-8966-2227
0000-0002-0336-8295
0000-0002-5819-0922
0000-0002-3955-0101
0000-0001-9172-6461
OpenAccessLink https://doaj.org/article/161df087689e456cb28a09f15618dc65
PMID 38395400
PQID 3073647918
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_161df087689e456cb28a09f15618dc65
proquest_miscellaneous_3153806152
proquest_miscellaneous_3073647918
pubmed_primary_38395400
crossref_primary_10_3168_jds_2023_24082
crossref_citationtrail_10_3168_jds_2023_24082
elsevier_sciencedirect_doi_10_3168_jds_2023_24082
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of dairy science
PublicationTitleAlternate J Dairy Sci
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References de los Campos, Naya, Gianola, Crossa, Legarra, Manfredi, Weigel, Cotes (bib11) 2009; 182
Misztal, Tsuruta, Lourenco, Masuda, Aguilar, Legarra, Vitezica (bib39) 2018
Li, Sillanpää (bib33) 2012; 125
Varona, Legarra, Toro, Vitezica (bib63) 2022; 2467
Holland, Marino, Manching, Wisser (bib27) 2020; 60
Passafaro, Lopes, Dorea, Craven, Breen, Hawken, Rosa (bib48) 2020; 21
de los Campos, Hickey, Pong-Wong, Daetwyler, Calus (bib10) 2013; 193
Han, Gondro, Reid, Steibel (bib26) 2021; 11
Ma, Qiu, Song, Li, Cheng, Zhai, Ma (bib35) 2018; 248
Karthick, Sridhar, Pankajavalli (bib28) 2020; 1
Neethirajan, Kemp (bib45) 2021; 32
Misztal, Lourenco, Legarra (bib38) 2020; 98
Guo, Lund, Zhang, Su (bib24) 2010; 127
Pérez, de los Campos (bib51) 2014; 198
Schmidhuber (bib56) 2015; 61
Labroo, Rutkoski (bib29) 2022; 23
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib1) 2016
Bi, Hu (bib5) 2021; 25
Goodfellow, Bengio, Courville (bib23) 2016
Gianola, Okut, Weigel, Rosa (bib19) 2011; 12
Erbe, Hayes, Matukumalli, Goswami, Bowman, Reich, Mason, Goddard (bib14) 2012; 95
Fu, Xu, Tang, Wang, Yin, Fan, Zhang, Deng, Zhang, Zhang, Wang, Xing, Yin, Zhu, Zhu, Yu, Li, Liu, Yuan, Zhao (bib15) 2020; 3
Santantonio, Jannink, Sorrells (bib55) 2019; 9
Waldmann (bib65) 2018; 50
Galli, Alves, Morosini, Fritsche-Neto (bib17) 2020; 15
Pedrosa, Boerman, Gloria, Chen, Montes, Doucette, Brito (bib50) 2023; 106
Pérez-Enciso, Zingaretti (bib52) 2019; 10
Varona, Legarra, Toro, Vitezica (bib62) 2018; 9
Morota, Ventura, Silva, Koyama, Fernando (bib44) 2018; 96
Montesinos-López, Montesinos-López, Pérez-Rodríguez, Barrón-López, Martini, Fajardo-Flores, Gaytan-Lugo, Santana-Mancilla, Crossa (bib42) 2021; 22
Rosenblatt (bib54) 1962
Broom, Johnson, Broom (bib6) 1993
Miller, Halbing, Patisaul, Meitzen (bib37) 2021; 228
Moreira, Pinto, Valloto, Pedrosa (bib43) 2019; 32
Abdollahi-Arpanahi, Gianola, Peñagaricano (bib2) 2020; 52
Chollet (bib7) 2015
Le (bib30) 2020; 19
LeCun, Bengio (bib31) 1995
Goddard, Hayes (bib20) 2009; 10
Lourenco, Legarra, Tsuruta, Masuda, Aguilar, Misztal (bib34) 2020; 11
Clark, van der Werf (bib9) 2013; 1019
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib49) 2011; 12
Tibshirani (bib58) 1996; 58
Eraslan, Avsec, Gagneur, Theis (bib13) 2019; 20
Sun, VanRaden, Cole, O’Connell (bib57) 2014; 9
Weigel, Mikshowsky, Cabrera (bib66) 2015
Garrick, Fernando (bib18) 2022; 54
González-Recio, Rosa, Gianola (bib22) 2014; 166
Ould Estaghvirou, Ogutu, Schulz-Streeck, Knaak, Ouzunova, Gordillo, Piepho (bib47) 2013; 14
Bellot, de Los Campos, Pérez-Enciso (bib3) 2018; 210
Legarra, Robert-Granié, Croiseau, Guillaume, Fritz (bib32) 2011; 93
Momen, Mehrgardi, Sheikhi, Kranis, Tusell, Morota, Rosa, Gianola (bib40) 2018; 8
Halachmi, Guarino, Bewley, Pastell (bib25) 2019; 7
Weigel, VanRaden, Norman, Grosu (bib67) 2017; 100
Vitezica, Legarra, Toro, Varona (bib64) 2017; 206
Zhu, Guo, Yuan, Liu, Li, Han, Zhao, Wu, Sun, Wang, Wang, Liu, Tiambo, Yue, Yang (bib68) 2021; 11
González-Recio, Forni (bib21) 2011; 43
Bhering, Junqueira, Peixoto, Cruz, Laviola (bib4) 2015; 14
Montesinos-López, Montesinos-López, Gianola, Crossa, Hernández-Suárez (bib41) 2018; 8
Meuwissen, Hayes, Goddard (bib36) 2001; 157
Emmert-Streib, Yang, Feng, Tripathi, Dehmer (bib12) 2020; 3
Valletta, Torney, Kings, Thornton, Madden (bib60) 2017; 124
Clark, Hickey, Van der Werf (bib8) 2011; 43
VanRaden (bib61) 2008; 91
Zingaretti, Gezan, Ferrão, Osorio, Monfort, Muñoz, Whitaker, Pérez-Enciso (bib69) 2020; 11
Fuentes, Gonzalez Viejo, Tongson, Dunshea (bib16) 2022; 23
Rice, Lipka (bib53) 2019; 12
Ubbens, Parkin, Eynck, Stavness, Sharpe (bib59) 2021; 14
Neethirajan, Tuteja, Huang, Kelton (bib46) 2017; 98
Misztal (10.3168/jds.2023-24082_bib38) 2020; 98
Rosenblatt (10.3168/jds.2023-24082_bib54) 1962
Fu (10.3168/jds.2023-24082_bib15) 2020; 3
Weigel (10.3168/jds.2023-24082_bib67) 2017; 100
Montesinos-López (10.3168/jds.2023-24082_bib41) 2018; 8
Pedrosa (10.3168/jds.2023-24082_bib50) 2023; 106
Valletta (10.3168/jds.2023-24082_bib60) 2017; 124
Vitezica (10.3168/jds.2023-24082_bib64) 2017; 206
Neethirajan (10.3168/jds.2023-24082_bib45) 2021; 32
VanRaden (10.3168/jds.2023-24082_bib61) 2008; 91
González-Recio (10.3168/jds.2023-24082_bib21) 2011; 43
Pérez-Enciso (10.3168/jds.2023-24082_bib52) 2019; 10
Abadi (10.3168/jds.2023-24082_bib1) 2016
Galli (10.3168/jds.2023-24082_bib17) 2020; 15
Bellot (10.3168/jds.2023-24082_bib3) 2018; 210
Emmert-Streib (10.3168/jds.2023-24082_bib12) 2020; 3
Clark (10.3168/jds.2023-24082_bib9) 2013; 1019
Varona (10.3168/jds.2023-24082_bib62) 2018; 9
Le (10.3168/jds.2023-24082_bib30) 2020; 19
Li (10.3168/jds.2023-24082_bib33) 2012; 125
Bi (10.3168/jds.2023-24082_bib5) 2021; 25
Schmidhuber (10.3168/jds.2023-24082_bib56) 2015; 61
Clark (10.3168/jds.2023-24082_bib8) 2011; 43
LeCun (10.3168/jds.2023-24082_bib31) 1995
Ma (10.3168/jds.2023-24082_bib35) 2018; 248
Ould Estaghvirou (10.3168/jds.2023-24082_bib47) 2013; 14
Weigel (10.3168/jds.2023-24082_bib66) 2015
de los Campos (10.3168/jds.2023-24082_bib11) 2009; 182
Han (10.3168/jds.2023-24082_bib26) 2021; 11
González-Recio (10.3168/jds.2023-24082_bib22) 2014; 166
Bhering (10.3168/jds.2023-24082_bib4) 2015; 14
Misztal (10.3168/jds.2023-24082_bib39) 2018
Waldmann (10.3168/jds.2023-24082_bib65) 2018; 50
Momen (10.3168/jds.2023-24082_bib40) 2018; 8
Goddard (10.3168/jds.2023-24082_bib20) 2009; 10
Fuentes (10.3168/jds.2023-24082_bib16) 2022; 23
Montesinos-López (10.3168/jds.2023-24082_bib42) 2021; 22
Karthick (10.3168/jds.2023-24082_bib28) 2020; 1
Garrick (10.3168/jds.2023-24082_bib18) 2022; 54
Tibshirani (10.3168/jds.2023-24082_bib58) 1996; 58
Ubbens (10.3168/jds.2023-24082_bib59) 2021; 14
Lourenco (10.3168/jds.2023-24082_bib34) 2020; 11
Goodfellow (10.3168/jds.2023-24082_bib23) 2016
Erbe (10.3168/jds.2023-24082_bib14) 2012; 95
Morota (10.3168/jds.2023-24082_bib44) 2018; 96
Zingaretti (10.3168/jds.2023-24082_bib69) 2020; 11
Rice (10.3168/jds.2023-24082_bib53) 2019; 12
Eraslan (10.3168/jds.2023-24082_bib13) 2019; 20
Meuwissen (10.3168/jds.2023-24082_bib36) 2001; 157
de los Campos (10.3168/jds.2023-24082_bib10) 2013; 193
Abdollahi-Arpanahi (10.3168/jds.2023-24082_bib2) 2020; 52
Moreira (10.3168/jds.2023-24082_bib43) 2019; 32
Holland (10.3168/jds.2023-24082_bib27) 2020; 60
Sun (10.3168/jds.2023-24082_bib57) 2014; 9
Varona (10.3168/jds.2023-24082_bib63) 2022; 2467
Legarra (10.3168/jds.2023-24082_bib32) 2011; 93
Santantonio (10.3168/jds.2023-24082_bib55) 2019; 9
Zhu (10.3168/jds.2023-24082_bib68) 2021; 11
Chollet (10.3168/jds.2023-24082_bib7)
Pedregosa (10.3168/jds.2023-24082_bib49) 2011; 12
Pérez (10.3168/jds.2023-24082_bib51) 2014; 198
Miller (10.3168/jds.2023-24082_bib37) 2021; 228
Halachmi (10.3168/jds.2023-24082_bib25) 2019; 7
Broom (10.3168/jds.2023-24082_bib6) 1993
Labroo (10.3168/jds.2023-24082_bib29) 2022; 23
Gianola (10.3168/jds.2023-24082_bib19) 2011; 12
Neethirajan (10.3168/jds.2023-24082_bib46) 2017; 98
Guo (10.3168/jds.2023-24082_bib24) 2010; 127
Passafaro (10.3168/jds.2023-24082_bib48) 2020; 21
References_xml – volume: 198
  start-page: 483
  year: 2014
  end-page: 495
  ident: bib51
  article-title: Genome-wide regression and prediction with the BGLR statistical package
  publication-title: Genetics
– volume: 14
  start-page: 10888
  year: 2015
  end-page: 10896
  ident: bib4
  article-title: Comparison of methods used to identify superior individuals in genomic selection in plant breeding
  publication-title: Genet. Mol. Res.
– volume: 91
  start-page: 4414
  year: 2008
  end-page: 4423
  ident: bib61
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci.
– volume: 193
  start-page: 327
  year: 2013
  end-page: 345
  ident: bib10
  article-title: Whole-genome regression and prediction methods applied to plant and animal breeding
  publication-title: Genetics
– volume: 23
  start-page: 59
  year: 2022
  end-page: 71
  ident: bib16
  article-title: The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence
  publication-title: Anim. Health Res. Rev.
– volume: 23
  start-page: 736
  year: 2022
  ident: bib29
  article-title: New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection
  publication-title: BMC Genomics
– volume: 11
  start-page: 790
  year: 2020
  ident: bib34
  article-title: Single-step genomic evaluations from theory to practice: Using SNP chips and sequence data in BLUPF90
  publication-title: Genes (Basel)
– volume: 54
  start-page: 72
  year: 2022
  ident: bib18
  article-title: A method to obtain exact single-step GBLUP for non-genotyped descendants when the genomic relationship matrix of ancestors is not available
  publication-title: Genet. Sel. Evol.
– volume: 3
  start-page: 502
  year: 2020
  ident: bib15
  article-title: A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model
  publication-title: Commun. Biol.
– volume: 166
  start-page: 217
  year: 2014
  end-page: 231
  ident: bib22
  article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
  publication-title: Livest. Sci.
– volume: 10
  start-page: 553
  year: 2019
  ident: bib52
  article-title: A guide on deep learning for complex trait genomic prediction
  publication-title: Genes (Basel)
– volume: 93
  start-page: 77
  year: 2011
  end-page: 87
  ident: bib32
  article-title: Improved LASSO for genomic selection
  publication-title: Genet. Res. (Camb.)
– volume: 43
  start-page: 7
  year: 2011
  ident: bib21
  article-title: Genome-wide prediction of discrete traits using Bayesian regressions and machine learning
  publication-title: Genet. Sel. Evol.
– volume: 14
  year: 2021
  ident: bib59
  article-title: Deep neural networks for genomic prediction do not estimate marker effects
  publication-title: Plant Genome
– volume: 9
  start-page: 675
  year: 2019
  end-page: 684
  ident: bib55
  article-title: A low resolution epistasis mapping approach to identify chromosome arm interactions in allohexaploid wheat
  publication-title: G3 (Bethesda)
– volume: 52
  start-page: 12
  year: 2020
  ident: bib2
  article-title: Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
  publication-title: Genet. Sel. Evol.
– volume: 8
  year: 2018
  ident: bib40
  article-title: Predictive ability of genome-assisted statistical models under various forms of gene action
  publication-title: Sci. Rep.
– volume: 9
  start-page: 78
  year: 2018
  ident: bib62
  article-title: Non-additive effects in genomic selection
  publication-title: Front. Genet.
– volume: 15
  year: 2020
  ident: bib17
  article-title: On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids
  publication-title: PLoS One
– volume: 1019
  start-page: 321
  year: 2013
  end-page: 330
  ident: bib9
  article-title: Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values
  publication-title: Methods Mol. Biol.
– year: 2018
  ident: bib39
  article-title: Manual for BLUPF90 Family of Programs
– volume: 210
  start-page: 809
  year: 2018
  end-page: 819
  ident: bib3
  article-title: Can deep learning improve genomic prediction of complex human traits?
  publication-title: Genetics
– volume: 228
  year: 2021
  ident: bib37
  article-title: Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors
  publication-title: Physiol. Behav.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib49
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 124
  start-page: 203
  year: 2017
  end-page: 220
  ident: bib60
  article-title: Applications of machine learning in animal behaviour studies
  publication-title: Anim. Behav.
– volume: 2467
  start-page: 219
  year: 2022
  end-page: 243
  ident: bib63
  article-title: Genomic prediction methods accounting for nonadditive genetic effects
  publication-title: Methods Mol. Biol.
– volume: 60
  start-page: 1863
  year: 2020
  end-page: 1875
  ident: bib27
  article-title: Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize
  publication-title: Crop Sci.
– volume: 1
  start-page: 301
  year: 2020
  ident: bib28
  article-title: Internet of things in animal healthcare (IoTAH): Review of recent advancements in architecture, sensing technologies and real-time monitoring
  publication-title: SN Comput. Sci.
– volume: 12
  start-page: 87
  year: 2011
  ident: bib19
  article-title: Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat
  publication-title: BMC Genet.
– volume: 8
  start-page: 3813
  year: 2018
  end-page: 3828
  ident: bib41
  article-title: Multi-environment genomic prediction of plant traits using deep learners with dense architecture
  publication-title: G3 (Bethesda)
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib56
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 32
  year: 2021
  ident: bib45
  article-title: Digital livestock farming
  publication-title: Sens. Biosensing Res.
– volume: 95
  start-page: 4114
  year: 2012
  end-page: 4129
  ident: bib14
  article-title: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels
  publication-title: J. Dairy Sci.
– volume: 20
  start-page: 389
  year: 2019
  end-page: 403
  ident: bib13
  article-title: Deep learning: New computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
– start-page: 255
  year: 1995
  end-page: 258
  ident: bib31
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 96
  start-page: 1540
  year: 2018
  end-page: 1550
  ident: bib44
  article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
  publication-title: J. Anim. Sci.
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: bib36
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
– volume: 19
  start-page: 350
  year: 2020
  end-page: 363
  ident: bib30
  article-title: Machine learning-based approaches for disease gene prediction
  publication-title: Brief. Funct. Genomics
– volume: 98
  start-page: 398
  year: 2017
  end-page: 407
  ident: bib46
  article-title: Recent advancement in biosensors technology for animal and livestock health management
  publication-title: Biosens. Bioelectron.
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib1
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
– year: 2016
  ident: bib23
  article-title: Deep Learning
– volume: 248
  start-page: 1307
  year: 2018
  end-page: 1318
  ident: bib35
  article-title: A deep convolutional neural network approach for predicting phenotypes from genotypes
  publication-title: Planta
– volume: 22
  start-page: 19
  year: 2021
  ident: bib42
  article-title: A review of deep learning applications for genomic selection
  publication-title: BMC Genomics
– volume: 100
  start-page: 10234
  year: 2017
  end-page: 10250
  ident: bib67
  article-title: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms
  publication-title: J. Dairy Sci.
– volume: 11
  start-page: 25
  year: 2020
  ident: bib69
  article-title: Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species
  publication-title: Front. Plant Sci.
– year: 1993
  ident: bib6
  article-title: Stress and Animal Welfare
– volume: 11
  year: 2021
  ident: bib26
  article-title: Heuristic hyperparameter optimization of deep learning models for genomic prediction
  publication-title: G3 (Bethesda)
– volume: 206
  start-page: 1297
  year: 2017
  end-page: 1307
  ident: bib64
  article-title: Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations
  publication-title: Genetics
– volume: 50
  start-page: 70
  year: 2018
  ident: bib65
  article-title: Approximate Bayesian neural networks in genomic prediction
  publication-title: Genet. Sel. Evol.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib58
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
– year: 2015
  ident: bib66
  article-title: Effective use of genomics in sire selection and replacement heifer management. In Proc. Western Dairy Management Conference, Reno, NV
– volume: 7
  start-page: 403
  year: 2019
  end-page: 425
  ident: bib25
  article-title: Smart animal agriculture: Application of real-time sensors to improve animal well-being and production
  publication-title: Annu. Rev. Anim. Biosci.
– volume: 125
  start-page: 419
  year: 2012
  end-page: 435
  ident: bib33
  article-title: Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection
  publication-title: Theor. Appl. Genet.
– volume: 11
  year: 2021
  ident: bib68
  article-title: Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep
  publication-title: G3 (Bethesda)
– volume: 43
  start-page: 18
  year: 2011
  ident: bib8
  article-title: Different models of genetic variation and their effect on genomic evaluation
  publication-title: Genet. Sel. Evol.
– volume: 9
  year: 2014
  ident: bib57
  article-title: Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects
  publication-title: PLoS One
– volume: 14
  start-page: 860
  year: 2013
  ident: bib47
  article-title: Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding
  publication-title: BMC Genomics
– volume: 3
  start-page: 4
  year: 2020
  ident: bib12
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Front. Artif. Intell.
– volume: 25
  start-page: 10617
  year: 2021
  end-page: 10628
  ident: bib5
  article-title: A genetic algorithm-assisted deep learning approach for crop yield prediction
  publication-title: Soft Comput.
– volume: 182
  start-page: 375
  year: 2009
  end-page: 385
  ident: bib11
  article-title: Predicting quantitative traits with regression models for dense molecular markers and pedigree
  publication-title: Genetics
– volume: 127
  start-page: 423
  year: 2010
  end-page: 432
  ident: bib24
  article-title: Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables
  publication-title: J. Anim. Breed. Genet.
– year: 1962
  ident: bib54
  article-title: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms
– volume: 21
  start-page: 771
  year: 2020
  ident: bib48
  article-title: Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers
  publication-title: BMC Genomics
– volume: 10
  start-page: 381
  year: 2009
  end-page: 391
  ident: bib20
  article-title: Mapping genes for complex traits in domestic animals and their use in breeding programmes
  publication-title: Nat. Rev. Genet.
– volume: 12
  year: 2019
  ident: bib53
  article-title: Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum
  publication-title: Plant Genome
– volume: 98
  year: 2020
  ident: bib38
  article-title: Current status of genomic evaluation
  publication-title: J. Anim. Sci.
– volume: 106
  start-page: 2613
  year: 2023
  end-page: 2629
  ident: bib50
  article-title: Genomic-based genetic parameters for milkability traits derived from automatic milking systems in North American Holstein cattle
  publication-title: J. Dairy Sci.
– year: 2015
  ident: bib7
  article-title: Keras: Deep learning library for Theano and TensorFlow
– volume: 32
  start-page: 459
  year: 2019
  ident: bib43
  article-title: Evaluation of genotype by environment interactions on milk production traits of Holstein cows in southern Brazil
  publication-title: Asian-Australas. J. Anim. Sci.
– year: 1993
  ident: 10.3168/jds.2023-24082_bib6
– volume: 3
  start-page: 4
  year: 2020
  ident: 10.3168/jds.2023-24082_bib12
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2020.00004
– volume: 52
  start-page: 12
  year: 2020
  ident: 10.3168/jds.2023-24082_bib2
  article-title: Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/s12711-020-00531-z
– volume: 210
  start-page: 809
  year: 2018
  ident: 10.3168/jds.2023-24082_bib3
  article-title: Can deep learning improve genomic prediction of complex human traits?
  publication-title: Genetics
  doi: 10.1534/genetics.118.301298
– volume: 19
  start-page: 350
  year: 2020
  ident: 10.3168/jds.2023-24082_bib30
  article-title: Machine learning-based approaches for disease gene prediction
  publication-title: Brief. Funct. Genomics
  doi: 10.1093/bfgp/elaa013
– volume: 1019
  start-page: 321
  year: 2013
  ident: 10.3168/jds.2023-24082_bib9
  article-title: Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-447-0_13
– volume: 14
  year: 2021
  ident: 10.3168/jds.2023-24082_bib59
  article-title: Deep neural networks for genomic prediction do not estimate marker effects
  publication-title: Plant Genome
  doi: 10.1002/tpg2.20147
– volume: 43
  start-page: 18
  year: 2011
  ident: 10.3168/jds.2023-24082_bib8
  article-title: Different models of genetic variation and their effect on genomic evaluation
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-43-18
– volume: 96
  start-page: 1540
  year: 2018
  ident: 10.3168/jds.2023-24082_bib44
  article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/sky014
– volume: 182
  start-page: 375
  year: 2009
  ident: 10.3168/jds.2023-24082_bib11
  article-title: Predicting quantitative traits with regression models for dense molecular markers and pedigree
  publication-title: Genetics
  doi: 10.1534/genetics.109.101501
– volume: 9
  year: 2014
  ident: 10.3168/jds.2023-24082_bib57
  article-title: Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects
  publication-title: PLoS One
– year: 2015
  ident: 10.3168/jds.2023-24082_bib66
– volume: 98
  start-page: 398
  year: 2017
  ident: 10.3168/jds.2023-24082_bib46
  article-title: Recent advancement in biosensors technology for animal and livestock health management
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.07.015
– volume: 21
  start-page: 771
  year: 2020
  ident: 10.3168/jds.2023-24082_bib48
  article-title: Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-07181-x
– volume: 3
  start-page: 502
  year: 2020
  ident: 10.3168/jds.2023-24082_bib15
  article-title: A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01233-4
– volume: 248
  start-page: 1307
  year: 2018
  ident: 10.3168/jds.2023-24082_bib35
  article-title: A deep convolutional neural network approach for predicting phenotypes from genotypes
  publication-title: Planta
  doi: 10.1007/s00425-018-2976-9
– volume: 14
  start-page: 860
  year: 2013
  ident: 10.3168/jds.2023-24082_bib47
  article-title: Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-860
– volume: 12
  year: 2019
  ident: 10.3168/jds.2023-24082_bib53
  article-title: Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2018.07.0052
– volume: 1
  start-page: 301
  year: 2020
  ident: 10.3168/jds.2023-24082_bib28
  article-title: Internet of things in animal healthcare (IoTAH): Review of recent advancements in architecture, sensing technologies and real-time monitoring
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00310-z
– start-page: 265
  year: 2016
  ident: 10.3168/jds.2023-24082_bib1
  article-title: TensorFlow: A system for large-scale machine learning
– volume: 124
  start-page: 203
  year: 2017
  ident: 10.3168/jds.2023-24082_bib60
  article-title: Applications of machine learning in animal behaviour studies
  publication-title: Anim. Behav.
  doi: 10.1016/j.anbehav.2016.12.005
– volume: 12
  start-page: 87
  year: 2011
  ident: 10.3168/jds.2023-24082_bib19
  article-title: Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-12-87
– volume: 166
  start-page: 217
  year: 2014
  ident: 10.3168/jds.2023-24082_bib22
  article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2014.05.036
– volume: 8
  year: 2018
  ident: 10.3168/jds.2023-24082_bib40
  article-title: Predictive ability of genome-assisted statistical models under various forms of gene action
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30089-2
– volume: 23
  start-page: 736
  year: 2022
  ident: 10.3168/jds.2023-24082_bib29
  article-title: New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection
  publication-title: BMC Genomics
  doi: 10.1186/s12864-022-08929-3
– volume: 10
  start-page: 381
  year: 2009
  ident: 10.3168/jds.2023-24082_bib20
  article-title: Mapping genes for complex traits in domestic animals and their use in breeding programmes
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2575
– volume: 98
  year: 2020
  ident: 10.3168/jds.2023-24082_bib38
  article-title: Current status of genomic evaluation
  publication-title: J. Anim. Sci.
  doi: 10.1093/jas/skaa101
– volume: 127
  start-page: 423
  year: 2010
  ident: 10.3168/jds.2023-24082_bib24
  article-title: Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2010.00878.x
– volume: 14
  start-page: 10888
  year: 2015
  ident: 10.3168/jds.2023-24082_bib4
  article-title: Comparison of methods used to identify superior individuals in genomic selection in plant breeding
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2015.September.9.26
– volume: 11
  year: 2021
  ident: 10.3168/jds.2023-24082_bib26
  article-title: Heuristic hyperparameter optimization of deep learning models for genomic prediction
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkab032
– volume: 60
  start-page: 1863
  year: 2020
  ident: 10.3168/jds.2023-24082_bib27
  article-title: Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize
  publication-title: Crop Sci.
  doi: 10.1002/csc2.20163
– volume: 25
  start-page: 10617
  year: 2021
  ident: 10.3168/jds.2023-24082_bib5
  article-title: A genetic algorithm-assisted deep learning approach for crop yield prediction
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05995-9
– volume: 228
  year: 2021
  ident: 10.3168/jds.2023-24082_bib37
  article-title: Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2020.113203
– year: 1962
  ident: 10.3168/jds.2023-24082_bib54
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.3168/jds.2023-24082_bib58
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 11
  start-page: 25
  year: 2020
  ident: 10.3168/jds.2023-24082_bib69
  article-title: Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00025
– volume: 198
  start-page: 483
  year: 2014
  ident: 10.3168/jds.2023-24082_bib51
  article-title: Genome-wide regression and prediction with the BGLR statistical package
  publication-title: Genetics
  doi: 10.1534/genetics.114.164442
– volume: 23
  start-page: 59
  year: 2022
  ident: 10.3168/jds.2023-24082_bib16
  article-title: The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence
  publication-title: Anim. Health Res. Rev.
  doi: 10.1017/S1466252321000177
– volume: 8
  start-page: 3813
  year: 2018
  ident: 10.3168/jds.2023-24082_bib41
  article-title: Multi-environment genomic prediction of plant traits using deep learners with dense architecture
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.118.200740
– volume: 22
  start-page: 19
  year: 2021
  ident: 10.3168/jds.2023-24082_bib42
  article-title: A review of deep learning applications for genomic selection
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-07319-x
– volume: 206
  start-page: 1297
  year: 2017
  ident: 10.3168/jds.2023-24082_bib64
  article-title: Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations
  publication-title: Genetics
  doi: 10.1534/genetics.116.199406
– volume: 2467
  start-page: 219
  year: 2022
  ident: 10.3168/jds.2023-24082_bib63
  article-title: Genomic prediction methods accounting for nonadditive genetic effects
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-2205-6_8
– volume: 125
  start-page: 419
  year: 2012
  ident: 10.3168/jds.2023-24082_bib33
  article-title: Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-012-1892-9
– volume: 20
  start-page: 389
  year: 2019
  ident: 10.3168/jds.2023-24082_bib13
  article-title: Deep learning: New computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
– volume: 95
  start-page: 4114
  year: 2012
  ident: 10.3168/jds.2023-24082_bib14
  article-title: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-5019
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.3168/jds.2023-24082_bib56
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 43
  start-page: 7
  year: 2011
  ident: 10.3168/jds.2023-24082_bib21
  article-title: Genome-wide prediction of discrete traits using Bayesian regressions and machine learning
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-43-7
– start-page: 255
  year: 1995
  ident: 10.3168/jds.2023-24082_bib31
  article-title: Convolutional networks for images, speech, and time series
– volume: 193
  start-page: 327
  year: 2013
  ident: 10.3168/jds.2023-24082_bib10
  article-title: Whole-genome regression and prediction methods applied to plant and animal breeding
  publication-title: Genetics
  doi: 10.1534/genetics.112.143313
– volume: 7
  start-page: 403
  year: 2019
  ident: 10.3168/jds.2023-24082_bib25
  article-title: Smart animal agriculture: Application of real-time sensors to improve animal well-being and production
  publication-title: Annu. Rev. Anim. Biosci.
  doi: 10.1146/annurev-animal-020518-114851
– volume: 54
  start-page: 72
  year: 2022
  ident: 10.3168/jds.2023-24082_bib18
  article-title: A method to obtain exact single-step GBLUP for non-genotyped descendants when the genomic relationship matrix of ancestors is not available
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/s12711-022-00759-x
– volume: 50
  start-page: 70
  year: 2018
  ident: 10.3168/jds.2023-24082_bib65
  article-title: Approximate Bayesian neural networks in genomic prediction
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/s12711-018-0439-1
– volume: 11
  start-page: 790
  year: 2020
  ident: 10.3168/jds.2023-24082_bib34
  article-title: Single-step genomic evaluations from theory to practice: Using SNP chips and sequence data in BLUPF90
  publication-title: Genes (Basel)
  doi: 10.3390/genes11070790
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.3168/jds.2023-24082_bib49
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 11
  year: 2021
  ident: 10.3168/jds.2023-24082_bib68
  article-title: Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkab206
– volume: 15
  year: 2020
  ident: 10.3168/jds.2023-24082_bib17
  article-title: On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0228724
– volume: 32
  year: 2021
  ident: 10.3168/jds.2023-24082_bib45
  article-title: Digital livestock farming
  publication-title: Sens. Biosensing Res.
– volume: 9
  start-page: 78
  year: 2018
  ident: 10.3168/jds.2023-24082_bib62
  article-title: Non-additive effects in genomic selection
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00078
– year: 2018
  ident: 10.3168/jds.2023-24082_bib39
– volume: 93
  start-page: 77
  year: 2011
  ident: 10.3168/jds.2023-24082_bib32
  article-title: Improved LASSO for genomic selection
  publication-title: Genet. Res. (Camb.)
  doi: 10.1017/S0016672310000534
– volume: 100
  start-page: 10234
  year: 2017
  ident: 10.3168/jds.2023-24082_bib67
  article-title: A 100-Year Review: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-12954
– volume: 157
  start-page: 1819
  year: 2001
  ident: 10.3168/jds.2023-24082_bib36
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 10
  start-page: 553
  year: 2019
  ident: 10.3168/jds.2023-24082_bib52
  article-title: A guide on deep learning for complex trait genomic prediction
  publication-title: Genes (Basel)
  doi: 10.3390/genes10070553
– volume: 91
  start-page: 4414
  year: 2008
  ident: 10.3168/jds.2023-24082_bib61
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0980
– year: 2016
  ident: 10.3168/jds.2023-24082_bib23
– volume: 106
  start-page: 2613
  year: 2023
  ident: 10.3168/jds.2023-24082_bib50
  article-title: Genomic-based genetic parameters for milkability traits derived from automatic milking systems in North American Holstein cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2022-22515
– volume: 9
  start-page: 675
  year: 2019
  ident: 10.3168/jds.2023-24082_bib55
  article-title: A low resolution epistasis mapping approach to identify chromosome arm interactions in allohexaploid wheat
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.118.200646
– volume: 32
  start-page: 459
  year: 2019
  ident: 10.3168/jds.2023-24082_bib43
  article-title: Evaluation of genotype by environment interactions on milk production traits of Holstein cows in southern Brazil
  publication-title: Asian-Australas. J. Anim. Sci.
– ident: 10.3168/jds.2023-24082_bib7
SSID ssj0021205
Score 2.4998803
Snippet The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Identifying...
Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4758
SubjectTerms accuracy of prediction
Algorithms
Animals
automatic milking systems
Bayesian theory
Behavior, Animal
Cattle - genetics
dairy cows
dairy science
Dairying - methods
deep learning
family
Female
Genomics
Genotype
genotyping
Holstein
Lactation - genetics
Machine Learning
Milk
neural networks
Phenotype
prediction
quality control
sensor-based systems
Title Machine learning methods for genomic prediction of cow behavioral traits measured by automatic milking systems in North American Holstein cattle
URI https://dx.doi.org/10.3168/jds.2023-24082
https://www.ncbi.nlm.nih.gov/pubmed/38395400
https://www.proquest.com/docview/3073647918
https://www.proquest.com/docview/3153806152
https://doaj.org/article/161df087689e456cb28a09f15618dc65
Volume 107
WOSCitedRecordID wos001261533100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1525-3198
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021205
  issn: 0022-0302
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gCHqjy7PKpBQuIUNbGdxDm2iKoXKg4g7c2yHacK2ibVJgvqv-hP7oydLPSwcOEWRU5ie8aZbzzjbxj7oKxxhZN1wm3e0JEclRgpKVyI6N-ppjapC8UmyosLtVxWX_8o9UU5YZEeOE7cMSKSuiHeNFV5NPbOcmXSqkG3I1O1KwJ7aVpWszM1uVoZj8mLlKuOaswjXSMVaTr-URNLNxcUV1D8njkKrP33rNIu1Bmsz9kB259gI5zE7j5lD3z3jD05uVxP1Bn-Obv9EvIiPUyFIC4hVoceAHEpEBfrVevgek2RGZIG9A24_hf8PqgPVC9iHPC5sG9Yg70Bsxn7wOoKV-2KttUhcj8P0HYQgj4wB33gvF8NVDwTXGBGfsG-n33-9uk8meotJE4qMSYUcmzKQpbCSFcgFuO1zW1RqVSIRua1wIu8sFWB9zjPrCuMMEY1Jqtt6nMlXrK9ru_8IQNvFXdeKt5UmUSnyGalKIRwwhs67povWDJPu3YTGTmNcaXRKSExaRSTJjHpIKYF-7htfx1pOHa2PCUpblsRfXa4gUqlJ6XS_1KqBctmHdATEokIA1_V7vzw-1lZNC5RiruYzvebQdNvFGe1ytRf2pDlIXiJ73kVNW07BIEgFoF1-vp_DO0Ne4x9ljHj-C3bG9cb_449cj_HdlgfsYflUh2FtXQHQRAfwQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+methods+for+genomic+prediction+of+cow+behavioral+traits+measured+by+automatic+milking+systems+in+North+American+Holstein+cattle&rft.jtitle=Journal+of+dairy+science&rft.au=Pedrosa%2C+Victor+B.&rft.au=Chen%2C+Shi-Yi&rft.au=Gloria%2C+Leonardo+S.&rft.au=Doucette%2C+Jarrod+S.&rft.date=2024-07-01&rft.issn=0022-0302&rft.volume=107&rft.issue=7&rft.spage=4758&rft.epage=4771&rft_id=info:doi/10.3168%2Fjds.2023-24082&rft.externalDBID=n%2Fa&rft.externalDocID=10_3168_jds_2023_24082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon