Machine learning methods for genomic prediction of cow behavioral traits measured by automatic milking systems in North American Holstein cattle
The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In th...
Gespeichert in:
| Veröffentlicht in: | Journal of dairy science Jg. 107; H. 7; S. 4758 - 4771 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.07.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0022-0302, 1525-3198, 1525-3198 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes.
Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs. |
|---|---|
| AbstractList | Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs. Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs. The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes. Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs. |
| Author | Doucette, Jarrod S. Rosa, Guilherme J.M. Brito, Luiz F. Chen, Shi-Yi Pedrosa, Victor B. Boerman, Jacquelyn P. Gloria, Leonardo S. |
| Author_xml | – sequence: 1 givenname: Victor B. orcidid: 0000-0001-8966-2227 surname: Pedrosa fullname: Pedrosa, Victor B. organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 – sequence: 2 givenname: Shi-Yi orcidid: 0000-0002-3955-0101 surname: Chen fullname: Chen, Shi-Yi organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 – sequence: 3 givenname: Leonardo S. orcidid: 0000-0002-2756-5939 surname: Gloria fullname: Gloria, Leonardo S. organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 – sequence: 4 givenname: Jarrod S. orcidid: 0000-0003-4027-2417 surname: Doucette fullname: Doucette, Jarrod S. organization: Agriculture Information Technology (AgIT), Purdue University, West Lafayette, IN 47907 – sequence: 5 givenname: Jacquelyn P. orcidid: 0000-0002-0336-8295 surname: Boerman fullname: Boerman, Jacquelyn P. organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 – sequence: 6 givenname: Guilherme J.M. orcidid: 0000-0001-9172-6461 surname: Rosa fullname: Rosa, Guilherme J.M. organization: Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, 53706 – sequence: 7 givenname: Luiz F. orcidid: 0000-0002-5819-0922 surname: Brito fullname: Brito, Luiz F. email: britol@purdue.edu organization: Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38395400$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUk1v1DAQjVAR3RauHJGPXLL1R-x1jlUFtFILFzhbE2ey6yWxF9vbav8FPxmnW3pAqjjZHr_3NDPvnVUnPnisqveMLgVT-mLbpyWnXNS8oZq_qhZMclkL1uqTakEp5zUVlJ9WZylty5NxKt9Up0KLVjaULqrfd2A3ziMZEaJ3fk0mzJvQJzKESNbow-Qs2UXsnc0ueBIGYsMD6XAD9y5EGEmO4HIqPEj7giPdgcA-hwlyYU5u_DmrpkPKOCXiPPkaYt6Qywmjs-DJdRjLV6lbyHnEt9XrAcaE757O8-rH50_fr67r229fbq4ub2vbaJFr3VI-rFSzEtBYRbXkfSc71WoqxNDIXpSLVF2rSo1z1lkFAkAPwPqOotTivLo56vYBtmYX3QTxYAI481gIcW0glglGNEyxfqB6pXSLjVS24xpoOzCpmO6tkkXr41FrF8OvPaZsJpcsjiN4DPtkBJOlH1Ws-T-UrkSZqmVzhx-eoPtuwv65x7_mFcDyCLAxpBRxeIYwauZ0mJIOM6fDPKajEJp_CNZlmG2dPRxfpukjDYsf9w6jSdahtyUTEW0uC3MvUf8ACvDROg |
| CitedBy_id | crossref_primary_10_1016_j_psj_2025_104812 crossref_primary_10_3168_jdsc_2024_0723 crossref_primary_10_1016_j_compag_2025_110395 crossref_primary_10_1016_j_psj_2024_104489 crossref_primary_10_3390_dairy6050050 crossref_primary_10_3390_ani14203014 crossref_primary_10_4103_jcrt_jcrt_1910_24 crossref_primary_10_63618_omd_isj_v3_n3_64 crossref_primary_10_3168_jds_2024_24953 crossref_primary_10_3390_ani15010031 |
| Cites_doi | 10.3389/frai.2020.00004 10.1186/s12711-020-00531-z 10.1534/genetics.118.301298 10.1093/bfgp/elaa013 10.1007/978-1-62703-447-0_13 10.1002/tpg2.20147 10.1186/1297-9686-43-18 10.1093/jas/sky014 10.1534/genetics.109.101501 10.1016/j.bios.2017.07.015 10.1186/s12864-020-07181-x 10.1038/s42003-020-01233-4 10.1007/s00425-018-2976-9 10.1186/1471-2164-14-860 10.3835/plantgenome2018.07.0052 10.1007/s42979-020-00310-z 10.1016/j.anbehav.2016.12.005 10.1186/1471-2156-12-87 10.1016/j.livsci.2014.05.036 10.1038/s41598-018-30089-2 10.1186/s12864-022-08929-3 10.1038/nrg2575 10.1093/jas/skaa101 10.1111/j.1439-0388.2010.00878.x 10.4238/2015.September.9.26 10.1093/g3journal/jkab032 10.1002/csc2.20163 10.1007/s00500-021-05995-9 10.1016/j.physbeh.2020.113203 10.1111/j.2517-6161.1996.tb02080.x 10.3389/fpls.2020.00025 10.1534/genetics.114.164442 10.1017/S1466252321000177 10.1534/g3.118.200740 10.1186/s12864-020-07319-x 10.1534/genetics.116.199406 10.1007/978-1-0716-2205-6_8 10.1007/s00122-012-1892-9 10.1038/s41576-019-0122-6 10.3168/jds.2011-5019 10.1016/j.neunet.2014.09.003 10.1186/1297-9686-43-7 10.1534/genetics.112.143313 10.1146/annurev-animal-020518-114851 10.1186/s12711-022-00759-x 10.1186/s12711-018-0439-1 10.3390/genes11070790 10.1093/g3journal/jkab206 10.1371/journal.pone.0228724 10.3389/fgene.2018.00078 10.1017/S0016672310000534 10.3168/jds.2017-12954 10.1093/genetics/157.4.1819 10.3390/genes10070553 10.3168/jds.2007-0980 10.3168/jds.2022-22515 10.1534/g3.118.200646 |
| ContentType | Journal Article |
| Copyright | 2024 American Dairy Science Association The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| Copyright_xml | – notice: 2024 American Dairy Science Association – notice: The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 DOA |
| DOI | 10.3168/jds.2023-24082 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1525-3198 |
| EndPage | 4771 |
| ExternalDocumentID | oai_doaj_org_article_161df087689e456cb28a09f15618dc65 38395400 10_3168_jds_2023_24082 S0022030224004971 |
| Genre | Journal Article |
| GroupedDBID | --- --K -~X .GJ 0R~ 0SF 186 18M 1B1 29K 2WC 36B 3V. 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 7X2 7X7 7XC 88E 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 8VB AAEDT AAEDW AAFTH AAHBH AALRI AAQFI AAQXK AAWRB AAXUO ABCQX ABJCF ABJNI ABUWG ABVKL ACGFO ACGFS ACIWK ADBBV ADMUD ADPAM ADVLN AEGXH AENEX AFKRA AFKWA AFRAH AFTJW AHMBA AI. AIAGR AITUG AKRWK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG ATCPS AVWKF AZFZN BELOY BENPR BGLVJ BHPHI BPHCQ BVXVI C1A CCPQU CS3 D-I DU5 E3Z EBS EBU EDH EJD EMB F5P FDB FEDTE FGOYB FYUFA GBLVA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HZ~ K1G L6V L7B M0K M1P M41 M7S N9A NCXOZ NHB O9- OK1 P2P PATMY PQQKQ PROAC PSQYO PTHSS PYCSY Q2X QII QWB R2- ROL RWL S0X SEL SES SSZ SV3 TAE TDS TWZ U5U UHB UKHRP VH1 WOQ XH2 XOL ZGI ZL0 ZXP ~KM AAFWJ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEUPX AEUYN AFFHD AFJKZ AFPKN AFPUW AGQPQ AIGII AKBMS AKYEP APXCP CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c483t-8902f76473a4c60852db5b698033f45d380356b96b69221bc6a3aa8fa1db0e583 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001261533100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-0302 1525-3198 |
| IngestDate | Fri Oct 03 12:48:05 EDT 2025 Wed Oct 01 13:02:31 EDT 2025 Fri Sep 05 09:45:17 EDT 2025 Wed Feb 19 02:07:41 EST 2025 Sat Nov 29 06:10:14 EST 2025 Tue Nov 18 21:58:08 EST 2025 Sat Sep 07 15:50:35 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | deep learning accuracy of prediction automatic milking systems sensor-based systems |
| Language | English |
| License | This is an open access article under the CC BY license. The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-8902f76473a4c60852db5b698033f45d380356b96b69221bc6a3aa8fa1db0e583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2756-5939 0000-0003-4027-2417 0000-0001-8966-2227 0000-0002-0336-8295 0000-0002-5819-0922 0000-0002-3955-0101 0000-0001-9172-6461 |
| OpenAccessLink | https://doaj.org/article/161df087689e456cb28a09f15618dc65 |
| PMID | 38395400 |
| PQID | 3073647918 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_161df087689e456cb28a09f15618dc65 proquest_miscellaneous_3153806152 proquest_miscellaneous_3073647918 pubmed_primary_38395400 crossref_primary_10_3168_jds_2023_24082 crossref_citationtrail_10_3168_jds_2023_24082 elsevier_sciencedirect_doi_10_3168_jds_2023_24082 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 2024-Jul 20240701 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of dairy science |
| PublicationTitleAlternate | J Dairy Sci |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | de los Campos, Naya, Gianola, Crossa, Legarra, Manfredi, Weigel, Cotes (bib11) 2009; 182 Misztal, Tsuruta, Lourenco, Masuda, Aguilar, Legarra, Vitezica (bib39) 2018 Li, Sillanpää (bib33) 2012; 125 Varona, Legarra, Toro, Vitezica (bib63) 2022; 2467 Holland, Marino, Manching, Wisser (bib27) 2020; 60 Passafaro, Lopes, Dorea, Craven, Breen, Hawken, Rosa (bib48) 2020; 21 de los Campos, Hickey, Pong-Wong, Daetwyler, Calus (bib10) 2013; 193 Han, Gondro, Reid, Steibel (bib26) 2021; 11 Ma, Qiu, Song, Li, Cheng, Zhai, Ma (bib35) 2018; 248 Karthick, Sridhar, Pankajavalli (bib28) 2020; 1 Neethirajan, Kemp (bib45) 2021; 32 Misztal, Lourenco, Legarra (bib38) 2020; 98 Guo, Lund, Zhang, Su (bib24) 2010; 127 Pérez, de los Campos (bib51) 2014; 198 Schmidhuber (bib56) 2015; 61 Labroo, Rutkoski (bib29) 2022; 23 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib1) 2016 Bi, Hu (bib5) 2021; 25 Goodfellow, Bengio, Courville (bib23) 2016 Gianola, Okut, Weigel, Rosa (bib19) 2011; 12 Erbe, Hayes, Matukumalli, Goswami, Bowman, Reich, Mason, Goddard (bib14) 2012; 95 Fu, Xu, Tang, Wang, Yin, Fan, Zhang, Deng, Zhang, Zhang, Wang, Xing, Yin, Zhu, Zhu, Yu, Li, Liu, Yuan, Zhao (bib15) 2020; 3 Santantonio, Jannink, Sorrells (bib55) 2019; 9 Waldmann (bib65) 2018; 50 Galli, Alves, Morosini, Fritsche-Neto (bib17) 2020; 15 Pedrosa, Boerman, Gloria, Chen, Montes, Doucette, Brito (bib50) 2023; 106 Pérez-Enciso, Zingaretti (bib52) 2019; 10 Varona, Legarra, Toro, Vitezica (bib62) 2018; 9 Morota, Ventura, Silva, Koyama, Fernando (bib44) 2018; 96 Montesinos-López, Montesinos-López, Pérez-Rodríguez, Barrón-López, Martini, Fajardo-Flores, Gaytan-Lugo, Santana-Mancilla, Crossa (bib42) 2021; 22 Rosenblatt (bib54) 1962 Broom, Johnson, Broom (bib6) 1993 Miller, Halbing, Patisaul, Meitzen (bib37) 2021; 228 Moreira, Pinto, Valloto, Pedrosa (bib43) 2019; 32 Abdollahi-Arpanahi, Gianola, Peñagaricano (bib2) 2020; 52 Chollet (bib7) 2015 Le (bib30) 2020; 19 LeCun, Bengio (bib31) 1995 Goddard, Hayes (bib20) 2009; 10 Lourenco, Legarra, Tsuruta, Masuda, Aguilar, Misztal (bib34) 2020; 11 Clark, van der Werf (bib9) 2013; 1019 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib49) 2011; 12 Tibshirani (bib58) 1996; 58 Eraslan, Avsec, Gagneur, Theis (bib13) 2019; 20 Sun, VanRaden, Cole, O’Connell (bib57) 2014; 9 Weigel, Mikshowsky, Cabrera (bib66) 2015 Garrick, Fernando (bib18) 2022; 54 González-Recio, Rosa, Gianola (bib22) 2014; 166 Ould Estaghvirou, Ogutu, Schulz-Streeck, Knaak, Ouzunova, Gordillo, Piepho (bib47) 2013; 14 Bellot, de Los Campos, Pérez-Enciso (bib3) 2018; 210 Legarra, Robert-Granié, Croiseau, Guillaume, Fritz (bib32) 2011; 93 Momen, Mehrgardi, Sheikhi, Kranis, Tusell, Morota, Rosa, Gianola (bib40) 2018; 8 Halachmi, Guarino, Bewley, Pastell (bib25) 2019; 7 Weigel, VanRaden, Norman, Grosu (bib67) 2017; 100 Vitezica, Legarra, Toro, Varona (bib64) 2017; 206 Zhu, Guo, Yuan, Liu, Li, Han, Zhao, Wu, Sun, Wang, Wang, Liu, Tiambo, Yue, Yang (bib68) 2021; 11 González-Recio, Forni (bib21) 2011; 43 Bhering, Junqueira, Peixoto, Cruz, Laviola (bib4) 2015; 14 Montesinos-López, Montesinos-López, Gianola, Crossa, Hernández-Suárez (bib41) 2018; 8 Meuwissen, Hayes, Goddard (bib36) 2001; 157 Emmert-Streib, Yang, Feng, Tripathi, Dehmer (bib12) 2020; 3 Valletta, Torney, Kings, Thornton, Madden (bib60) 2017; 124 Clark, Hickey, Van der Werf (bib8) 2011; 43 VanRaden (bib61) 2008; 91 Zingaretti, Gezan, Ferrão, Osorio, Monfort, Muñoz, Whitaker, Pérez-Enciso (bib69) 2020; 11 Fuentes, Gonzalez Viejo, Tongson, Dunshea (bib16) 2022; 23 Rice, Lipka (bib53) 2019; 12 Ubbens, Parkin, Eynck, Stavness, Sharpe (bib59) 2021; 14 Neethirajan, Tuteja, Huang, Kelton (bib46) 2017; 98 Misztal (10.3168/jds.2023-24082_bib38) 2020; 98 Rosenblatt (10.3168/jds.2023-24082_bib54) 1962 Fu (10.3168/jds.2023-24082_bib15) 2020; 3 Weigel (10.3168/jds.2023-24082_bib67) 2017; 100 Montesinos-López (10.3168/jds.2023-24082_bib41) 2018; 8 Pedrosa (10.3168/jds.2023-24082_bib50) 2023; 106 Valletta (10.3168/jds.2023-24082_bib60) 2017; 124 Vitezica (10.3168/jds.2023-24082_bib64) 2017; 206 Neethirajan (10.3168/jds.2023-24082_bib45) 2021; 32 VanRaden (10.3168/jds.2023-24082_bib61) 2008; 91 González-Recio (10.3168/jds.2023-24082_bib21) 2011; 43 Pérez-Enciso (10.3168/jds.2023-24082_bib52) 2019; 10 Abadi (10.3168/jds.2023-24082_bib1) 2016 Galli (10.3168/jds.2023-24082_bib17) 2020; 15 Bellot (10.3168/jds.2023-24082_bib3) 2018; 210 Emmert-Streib (10.3168/jds.2023-24082_bib12) 2020; 3 Clark (10.3168/jds.2023-24082_bib9) 2013; 1019 Varona (10.3168/jds.2023-24082_bib62) 2018; 9 Le (10.3168/jds.2023-24082_bib30) 2020; 19 Li (10.3168/jds.2023-24082_bib33) 2012; 125 Bi (10.3168/jds.2023-24082_bib5) 2021; 25 Schmidhuber (10.3168/jds.2023-24082_bib56) 2015; 61 Clark (10.3168/jds.2023-24082_bib8) 2011; 43 LeCun (10.3168/jds.2023-24082_bib31) 1995 Ma (10.3168/jds.2023-24082_bib35) 2018; 248 Ould Estaghvirou (10.3168/jds.2023-24082_bib47) 2013; 14 Weigel (10.3168/jds.2023-24082_bib66) 2015 de los Campos (10.3168/jds.2023-24082_bib11) 2009; 182 Han (10.3168/jds.2023-24082_bib26) 2021; 11 González-Recio (10.3168/jds.2023-24082_bib22) 2014; 166 Bhering (10.3168/jds.2023-24082_bib4) 2015; 14 Misztal (10.3168/jds.2023-24082_bib39) 2018 Waldmann (10.3168/jds.2023-24082_bib65) 2018; 50 Momen (10.3168/jds.2023-24082_bib40) 2018; 8 Goddard (10.3168/jds.2023-24082_bib20) 2009; 10 Fuentes (10.3168/jds.2023-24082_bib16) 2022; 23 Montesinos-López (10.3168/jds.2023-24082_bib42) 2021; 22 Karthick (10.3168/jds.2023-24082_bib28) 2020; 1 Garrick (10.3168/jds.2023-24082_bib18) 2022; 54 Tibshirani (10.3168/jds.2023-24082_bib58) 1996; 58 Ubbens (10.3168/jds.2023-24082_bib59) 2021; 14 Lourenco (10.3168/jds.2023-24082_bib34) 2020; 11 Goodfellow (10.3168/jds.2023-24082_bib23) 2016 Erbe (10.3168/jds.2023-24082_bib14) 2012; 95 Morota (10.3168/jds.2023-24082_bib44) 2018; 96 Zingaretti (10.3168/jds.2023-24082_bib69) 2020; 11 Rice (10.3168/jds.2023-24082_bib53) 2019; 12 Eraslan (10.3168/jds.2023-24082_bib13) 2019; 20 Meuwissen (10.3168/jds.2023-24082_bib36) 2001; 157 de los Campos (10.3168/jds.2023-24082_bib10) 2013; 193 Abdollahi-Arpanahi (10.3168/jds.2023-24082_bib2) 2020; 52 Moreira (10.3168/jds.2023-24082_bib43) 2019; 32 Holland (10.3168/jds.2023-24082_bib27) 2020; 60 Sun (10.3168/jds.2023-24082_bib57) 2014; 9 Varona (10.3168/jds.2023-24082_bib63) 2022; 2467 Legarra (10.3168/jds.2023-24082_bib32) 2011; 93 Santantonio (10.3168/jds.2023-24082_bib55) 2019; 9 Zhu (10.3168/jds.2023-24082_bib68) 2021; 11 Chollet (10.3168/jds.2023-24082_bib7) Pedregosa (10.3168/jds.2023-24082_bib49) 2011; 12 Pérez (10.3168/jds.2023-24082_bib51) 2014; 198 Miller (10.3168/jds.2023-24082_bib37) 2021; 228 Halachmi (10.3168/jds.2023-24082_bib25) 2019; 7 Broom (10.3168/jds.2023-24082_bib6) 1993 Labroo (10.3168/jds.2023-24082_bib29) 2022; 23 Gianola (10.3168/jds.2023-24082_bib19) 2011; 12 Neethirajan (10.3168/jds.2023-24082_bib46) 2017; 98 Guo (10.3168/jds.2023-24082_bib24) 2010; 127 Passafaro (10.3168/jds.2023-24082_bib48) 2020; 21 |
| References_xml | – volume: 198 start-page: 483 year: 2014 end-page: 495 ident: bib51 article-title: Genome-wide regression and prediction with the BGLR statistical package publication-title: Genetics – volume: 14 start-page: 10888 year: 2015 end-page: 10896 ident: bib4 article-title: Comparison of methods used to identify superior individuals in genomic selection in plant breeding publication-title: Genet. Mol. Res. – volume: 91 start-page: 4414 year: 2008 end-page: 4423 ident: bib61 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci. – volume: 193 start-page: 327 year: 2013 end-page: 345 ident: bib10 article-title: Whole-genome regression and prediction methods applied to plant and animal breeding publication-title: Genetics – volume: 23 start-page: 59 year: 2022 end-page: 71 ident: bib16 article-title: The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence publication-title: Anim. Health Res. Rev. – volume: 23 start-page: 736 year: 2022 ident: bib29 article-title: New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection publication-title: BMC Genomics – volume: 11 start-page: 790 year: 2020 ident: bib34 article-title: Single-step genomic evaluations from theory to practice: Using SNP chips and sequence data in BLUPF90 publication-title: Genes (Basel) – volume: 54 start-page: 72 year: 2022 ident: bib18 article-title: A method to obtain exact single-step GBLUP for non-genotyped descendants when the genomic relationship matrix of ancestors is not available publication-title: Genet. Sel. Evol. – volume: 3 start-page: 502 year: 2020 ident: bib15 article-title: A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model publication-title: Commun. Biol. – volume: 166 start-page: 217 year: 2014 end-page: 231 ident: bib22 article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits publication-title: Livest. Sci. – volume: 10 start-page: 553 year: 2019 ident: bib52 article-title: A guide on deep learning for complex trait genomic prediction publication-title: Genes (Basel) – volume: 93 start-page: 77 year: 2011 end-page: 87 ident: bib32 article-title: Improved LASSO for genomic selection publication-title: Genet. Res. (Camb.) – volume: 43 start-page: 7 year: 2011 ident: bib21 article-title: Genome-wide prediction of discrete traits using Bayesian regressions and machine learning publication-title: Genet. Sel. Evol. – volume: 14 year: 2021 ident: bib59 article-title: Deep neural networks for genomic prediction do not estimate marker effects publication-title: Plant Genome – volume: 9 start-page: 675 year: 2019 end-page: 684 ident: bib55 article-title: A low resolution epistasis mapping approach to identify chromosome arm interactions in allohexaploid wheat publication-title: G3 (Bethesda) – volume: 52 start-page: 12 year: 2020 ident: bib2 article-title: Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes publication-title: Genet. Sel. Evol. – volume: 8 year: 2018 ident: bib40 article-title: Predictive ability of genome-assisted statistical models under various forms of gene action publication-title: Sci. Rep. – volume: 9 start-page: 78 year: 2018 ident: bib62 article-title: Non-additive effects in genomic selection publication-title: Front. Genet. – volume: 15 year: 2020 ident: bib17 article-title: On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids publication-title: PLoS One – volume: 1019 start-page: 321 year: 2013 end-page: 330 ident: bib9 article-title: Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values publication-title: Methods Mol. Biol. – year: 2018 ident: bib39 article-title: Manual for BLUPF90 Family of Programs – volume: 210 start-page: 809 year: 2018 end-page: 819 ident: bib3 article-title: Can deep learning improve genomic prediction of complex human traits? publication-title: Genetics – volume: 228 year: 2021 ident: bib37 article-title: Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors publication-title: Physiol. Behav. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib49 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 124 start-page: 203 year: 2017 end-page: 220 ident: bib60 article-title: Applications of machine learning in animal behaviour studies publication-title: Anim. Behav. – volume: 2467 start-page: 219 year: 2022 end-page: 243 ident: bib63 article-title: Genomic prediction methods accounting for nonadditive genetic effects publication-title: Methods Mol. Biol. – volume: 60 start-page: 1863 year: 2020 end-page: 1875 ident: bib27 article-title: Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize publication-title: Crop Sci. – volume: 1 start-page: 301 year: 2020 ident: bib28 article-title: Internet of things in animal healthcare (IoTAH): Review of recent advancements in architecture, sensing technologies and real-time monitoring publication-title: SN Comput. Sci. – volume: 12 start-page: 87 year: 2011 ident: bib19 article-title: Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat publication-title: BMC Genet. – volume: 8 start-page: 3813 year: 2018 end-page: 3828 ident: bib41 article-title: Multi-environment genomic prediction of plant traits using deep learners with dense architecture publication-title: G3 (Bethesda) – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib56 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – volume: 32 year: 2021 ident: bib45 article-title: Digital livestock farming publication-title: Sens. Biosensing Res. – volume: 95 start-page: 4114 year: 2012 end-page: 4129 ident: bib14 article-title: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels publication-title: J. Dairy Sci. – volume: 20 start-page: 389 year: 2019 end-page: 403 ident: bib13 article-title: Deep learning: New computational modelling techniques for genomics publication-title: Nat. Rev. Genet. – start-page: 255 year: 1995 end-page: 258 ident: bib31 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 96 start-page: 1540 year: 2018 end-page: 1550 ident: bib44 article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture publication-title: J. Anim. Sci. – volume: 157 start-page: 1819 year: 2001 end-page: 1829 ident: bib36 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics – volume: 19 start-page: 350 year: 2020 end-page: 363 ident: bib30 article-title: Machine learning-based approaches for disease gene prediction publication-title: Brief. Funct. Genomics – volume: 98 start-page: 398 year: 2017 end-page: 407 ident: bib46 article-title: Recent advancement in biosensors technology for animal and livestock health management publication-title: Biosens. Bioelectron. – start-page: 265 year: 2016 end-page: 283 ident: bib1 article-title: TensorFlow: A system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) – year: 2016 ident: bib23 article-title: Deep Learning – volume: 248 start-page: 1307 year: 2018 end-page: 1318 ident: bib35 article-title: A deep convolutional neural network approach for predicting phenotypes from genotypes publication-title: Planta – volume: 22 start-page: 19 year: 2021 ident: bib42 article-title: A review of deep learning applications for genomic selection publication-title: BMC Genomics – volume: 100 start-page: 10234 year: 2017 end-page: 10250 ident: bib67 article-title: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms publication-title: J. Dairy Sci. – volume: 11 start-page: 25 year: 2020 ident: bib69 article-title: Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species publication-title: Front. Plant Sci. – year: 1993 ident: bib6 article-title: Stress and Animal Welfare – volume: 11 year: 2021 ident: bib26 article-title: Heuristic hyperparameter optimization of deep learning models for genomic prediction publication-title: G3 (Bethesda) – volume: 206 start-page: 1297 year: 2017 end-page: 1307 ident: bib64 article-title: Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations publication-title: Genetics – volume: 50 start-page: 70 year: 2018 ident: bib65 article-title: Approximate Bayesian neural networks in genomic prediction publication-title: Genet. Sel. Evol. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib58 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B – year: 2015 ident: bib66 article-title: Effective use of genomics in sire selection and replacement heifer management. In Proc. Western Dairy Management Conference, Reno, NV – volume: 7 start-page: 403 year: 2019 end-page: 425 ident: bib25 article-title: Smart animal agriculture: Application of real-time sensors to improve animal well-being and production publication-title: Annu. Rev. Anim. Biosci. – volume: 125 start-page: 419 year: 2012 end-page: 435 ident: bib33 article-title: Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection publication-title: Theor. Appl. Genet. – volume: 11 year: 2021 ident: bib68 article-title: Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep publication-title: G3 (Bethesda) – volume: 43 start-page: 18 year: 2011 ident: bib8 article-title: Different models of genetic variation and their effect on genomic evaluation publication-title: Genet. Sel. Evol. – volume: 9 year: 2014 ident: bib57 article-title: Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects publication-title: PLoS One – volume: 14 start-page: 860 year: 2013 ident: bib47 article-title: Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding publication-title: BMC Genomics – volume: 3 start-page: 4 year: 2020 ident: bib12 article-title: An introductory review of deep learning for prediction models with big data publication-title: Front. Artif. Intell. – volume: 25 start-page: 10617 year: 2021 end-page: 10628 ident: bib5 article-title: A genetic algorithm-assisted deep learning approach for crop yield prediction publication-title: Soft Comput. – volume: 182 start-page: 375 year: 2009 end-page: 385 ident: bib11 article-title: Predicting quantitative traits with regression models for dense molecular markers and pedigree publication-title: Genetics – volume: 127 start-page: 423 year: 2010 end-page: 432 ident: bib24 article-title: Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables publication-title: J. Anim. Breed. Genet. – year: 1962 ident: bib54 article-title: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms – volume: 21 start-page: 771 year: 2020 ident: bib48 article-title: Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers publication-title: BMC Genomics – volume: 10 start-page: 381 year: 2009 end-page: 391 ident: bib20 article-title: Mapping genes for complex traits in domestic animals and their use in breeding programmes publication-title: Nat. Rev. Genet. – volume: 12 year: 2019 ident: bib53 article-title: Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum publication-title: Plant Genome – volume: 98 year: 2020 ident: bib38 article-title: Current status of genomic evaluation publication-title: J. Anim. Sci. – volume: 106 start-page: 2613 year: 2023 end-page: 2629 ident: bib50 article-title: Genomic-based genetic parameters for milkability traits derived from automatic milking systems in North American Holstein cattle publication-title: J. Dairy Sci. – year: 2015 ident: bib7 article-title: Keras: Deep learning library for Theano and TensorFlow – volume: 32 start-page: 459 year: 2019 ident: bib43 article-title: Evaluation of genotype by environment interactions on milk production traits of Holstein cows in southern Brazil publication-title: Asian-Australas. J. Anim. Sci. – year: 1993 ident: 10.3168/jds.2023-24082_bib6 – volume: 3 start-page: 4 year: 2020 ident: 10.3168/jds.2023-24082_bib12 article-title: An introductory review of deep learning for prediction models with big data publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.00004 – volume: 52 start-page: 12 year: 2020 ident: 10.3168/jds.2023-24082_bib2 article-title: Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes publication-title: Genet. Sel. Evol. doi: 10.1186/s12711-020-00531-z – volume: 210 start-page: 809 year: 2018 ident: 10.3168/jds.2023-24082_bib3 article-title: Can deep learning improve genomic prediction of complex human traits? publication-title: Genetics doi: 10.1534/genetics.118.301298 – volume: 19 start-page: 350 year: 2020 ident: 10.3168/jds.2023-24082_bib30 article-title: Machine learning-based approaches for disease gene prediction publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elaa013 – volume: 1019 start-page: 321 year: 2013 ident: 10.3168/jds.2023-24082_bib9 article-title: Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-447-0_13 – volume: 14 year: 2021 ident: 10.3168/jds.2023-24082_bib59 article-title: Deep neural networks for genomic prediction do not estimate marker effects publication-title: Plant Genome doi: 10.1002/tpg2.20147 – volume: 43 start-page: 18 year: 2011 ident: 10.3168/jds.2023-24082_bib8 article-title: Different models of genetic variation and their effect on genomic evaluation publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-43-18 – volume: 96 start-page: 1540 year: 2018 ident: 10.3168/jds.2023-24082_bib44 article-title: Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture publication-title: J. Anim. Sci. doi: 10.1093/jas/sky014 – volume: 182 start-page: 375 year: 2009 ident: 10.3168/jds.2023-24082_bib11 article-title: Predicting quantitative traits with regression models for dense molecular markers and pedigree publication-title: Genetics doi: 10.1534/genetics.109.101501 – volume: 9 year: 2014 ident: 10.3168/jds.2023-24082_bib57 article-title: Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects publication-title: PLoS One – year: 2015 ident: 10.3168/jds.2023-24082_bib66 – volume: 98 start-page: 398 year: 2017 ident: 10.3168/jds.2023-24082_bib46 article-title: Recent advancement in biosensors technology for animal and livestock health management publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.07.015 – volume: 21 start-page: 771 year: 2020 ident: 10.3168/jds.2023-24082_bib48 article-title: Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers publication-title: BMC Genomics doi: 10.1186/s12864-020-07181-x – volume: 3 start-page: 502 year: 2020 ident: 10.3168/jds.2023-24082_bib15 article-title: A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model publication-title: Commun. Biol. doi: 10.1038/s42003-020-01233-4 – volume: 248 start-page: 1307 year: 2018 ident: 10.3168/jds.2023-24082_bib35 article-title: A deep convolutional neural network approach for predicting phenotypes from genotypes publication-title: Planta doi: 10.1007/s00425-018-2976-9 – volume: 14 start-page: 860 year: 2013 ident: 10.3168/jds.2023-24082_bib47 article-title: Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding publication-title: BMC Genomics doi: 10.1186/1471-2164-14-860 – volume: 12 year: 2019 ident: 10.3168/jds.2023-24082_bib53 article-title: Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum publication-title: Plant Genome doi: 10.3835/plantgenome2018.07.0052 – volume: 1 start-page: 301 year: 2020 ident: 10.3168/jds.2023-24082_bib28 article-title: Internet of things in animal healthcare (IoTAH): Review of recent advancements in architecture, sensing technologies and real-time monitoring publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-00310-z – start-page: 265 year: 2016 ident: 10.3168/jds.2023-24082_bib1 article-title: TensorFlow: A system for large-scale machine learning – volume: 124 start-page: 203 year: 2017 ident: 10.3168/jds.2023-24082_bib60 article-title: Applications of machine learning in animal behaviour studies publication-title: Anim. Behav. doi: 10.1016/j.anbehav.2016.12.005 – volume: 12 start-page: 87 year: 2011 ident: 10.3168/jds.2023-24082_bib19 article-title: Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat publication-title: BMC Genet. doi: 10.1186/1471-2156-12-87 – volume: 166 start-page: 217 year: 2014 ident: 10.3168/jds.2023-24082_bib22 article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits publication-title: Livest. Sci. doi: 10.1016/j.livsci.2014.05.036 – volume: 8 year: 2018 ident: 10.3168/jds.2023-24082_bib40 article-title: Predictive ability of genome-assisted statistical models under various forms of gene action publication-title: Sci. Rep. doi: 10.1038/s41598-018-30089-2 – volume: 23 start-page: 736 year: 2022 ident: 10.3168/jds.2023-24082_bib29 article-title: New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection publication-title: BMC Genomics doi: 10.1186/s12864-022-08929-3 – volume: 10 start-page: 381 year: 2009 ident: 10.3168/jds.2023-24082_bib20 article-title: Mapping genes for complex traits in domestic animals and their use in breeding programmes publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2575 – volume: 98 year: 2020 ident: 10.3168/jds.2023-24082_bib38 article-title: Current status of genomic evaluation publication-title: J. Anim. Sci. doi: 10.1093/jas/skaa101 – volume: 127 start-page: 423 year: 2010 ident: 10.3168/jds.2023-24082_bib24 article-title: Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables publication-title: J. Anim. Breed. Genet. doi: 10.1111/j.1439-0388.2010.00878.x – volume: 14 start-page: 10888 year: 2015 ident: 10.3168/jds.2023-24082_bib4 article-title: Comparison of methods used to identify superior individuals in genomic selection in plant breeding publication-title: Genet. Mol. Res. doi: 10.4238/2015.September.9.26 – volume: 11 year: 2021 ident: 10.3168/jds.2023-24082_bib26 article-title: Heuristic hyperparameter optimization of deep learning models for genomic prediction publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkab032 – volume: 60 start-page: 1863 year: 2020 ident: 10.3168/jds.2023-24082_bib27 article-title: Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize publication-title: Crop Sci. doi: 10.1002/csc2.20163 – volume: 25 start-page: 10617 year: 2021 ident: 10.3168/jds.2023-24082_bib5 article-title: A genetic algorithm-assisted deep learning approach for crop yield prediction publication-title: Soft Comput. doi: 10.1007/s00500-021-05995-9 – volume: 228 year: 2021 ident: 10.3168/jds.2023-24082_bib37 article-title: Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2020.113203 – year: 1962 ident: 10.3168/jds.2023-24082_bib54 – volume: 58 start-page: 267 year: 1996 ident: 10.3168/jds.2023-24082_bib58 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 11 start-page: 25 year: 2020 ident: 10.3168/jds.2023-24082_bib69 article-title: Exploring deep learning for complex trait genomic prediction in polyploid outcrossing species publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00025 – volume: 198 start-page: 483 year: 2014 ident: 10.3168/jds.2023-24082_bib51 article-title: Genome-wide regression and prediction with the BGLR statistical package publication-title: Genetics doi: 10.1534/genetics.114.164442 – volume: 23 start-page: 59 year: 2022 ident: 10.3168/jds.2023-24082_bib16 article-title: The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence publication-title: Anim. Health Res. Rev. doi: 10.1017/S1466252321000177 – volume: 8 start-page: 3813 year: 2018 ident: 10.3168/jds.2023-24082_bib41 article-title: Multi-environment genomic prediction of plant traits using deep learners with dense architecture publication-title: G3 (Bethesda) doi: 10.1534/g3.118.200740 – volume: 22 start-page: 19 year: 2021 ident: 10.3168/jds.2023-24082_bib42 article-title: A review of deep learning applications for genomic selection publication-title: BMC Genomics doi: 10.1186/s12864-020-07319-x – volume: 206 start-page: 1297 year: 2017 ident: 10.3168/jds.2023-24082_bib64 article-title: Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations publication-title: Genetics doi: 10.1534/genetics.116.199406 – volume: 2467 start-page: 219 year: 2022 ident: 10.3168/jds.2023-24082_bib63 article-title: Genomic prediction methods accounting for nonadditive genetic effects publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2205-6_8 – volume: 125 start-page: 419 year: 2012 ident: 10.3168/jds.2023-24082_bib33 article-title: Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-012-1892-9 – volume: 20 start-page: 389 year: 2019 ident: 10.3168/jds.2023-24082_bib13 article-title: Deep learning: New computational modelling techniques for genomics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 – volume: 95 start-page: 4114 year: 2012 ident: 10.3168/jds.2023-24082_bib14 article-title: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-5019 – volume: 61 start-page: 85 year: 2015 ident: 10.3168/jds.2023-24082_bib56 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 43 start-page: 7 year: 2011 ident: 10.3168/jds.2023-24082_bib21 article-title: Genome-wide prediction of discrete traits using Bayesian regressions and machine learning publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-43-7 – start-page: 255 year: 1995 ident: 10.3168/jds.2023-24082_bib31 article-title: Convolutional networks for images, speech, and time series – volume: 193 start-page: 327 year: 2013 ident: 10.3168/jds.2023-24082_bib10 article-title: Whole-genome regression and prediction methods applied to plant and animal breeding publication-title: Genetics doi: 10.1534/genetics.112.143313 – volume: 7 start-page: 403 year: 2019 ident: 10.3168/jds.2023-24082_bib25 article-title: Smart animal agriculture: Application of real-time sensors to improve animal well-being and production publication-title: Annu. Rev. Anim. Biosci. doi: 10.1146/annurev-animal-020518-114851 – volume: 54 start-page: 72 year: 2022 ident: 10.3168/jds.2023-24082_bib18 article-title: A method to obtain exact single-step GBLUP for non-genotyped descendants when the genomic relationship matrix of ancestors is not available publication-title: Genet. Sel. Evol. doi: 10.1186/s12711-022-00759-x – volume: 50 start-page: 70 year: 2018 ident: 10.3168/jds.2023-24082_bib65 article-title: Approximate Bayesian neural networks in genomic prediction publication-title: Genet. Sel. Evol. doi: 10.1186/s12711-018-0439-1 – volume: 11 start-page: 790 year: 2020 ident: 10.3168/jds.2023-24082_bib34 article-title: Single-step genomic evaluations from theory to practice: Using SNP chips and sequence data in BLUPF90 publication-title: Genes (Basel) doi: 10.3390/genes11070790 – volume: 12 start-page: 2825 year: 2011 ident: 10.3168/jds.2023-24082_bib49 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 11 year: 2021 ident: 10.3168/jds.2023-24082_bib68 article-title: Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkab206 – volume: 15 year: 2020 ident: 10.3168/jds.2023-24082_bib17 article-title: On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids publication-title: PLoS One doi: 10.1371/journal.pone.0228724 – volume: 32 year: 2021 ident: 10.3168/jds.2023-24082_bib45 article-title: Digital livestock farming publication-title: Sens. Biosensing Res. – volume: 9 start-page: 78 year: 2018 ident: 10.3168/jds.2023-24082_bib62 article-title: Non-additive effects in genomic selection publication-title: Front. Genet. doi: 10.3389/fgene.2018.00078 – year: 2018 ident: 10.3168/jds.2023-24082_bib39 – volume: 93 start-page: 77 year: 2011 ident: 10.3168/jds.2023-24082_bib32 article-title: Improved LASSO for genomic selection publication-title: Genet. Res. (Camb.) doi: 10.1017/S0016672310000534 – volume: 100 start-page: 10234 year: 2017 ident: 10.3168/jds.2023-24082_bib67 article-title: A 100-Year Review: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-12954 – volume: 157 start-page: 1819 year: 2001 ident: 10.3168/jds.2023-24082_bib36 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 10 start-page: 553 year: 2019 ident: 10.3168/jds.2023-24082_bib52 article-title: A guide on deep learning for complex trait genomic prediction publication-title: Genes (Basel) doi: 10.3390/genes10070553 – volume: 91 start-page: 4414 year: 2008 ident: 10.3168/jds.2023-24082_bib61 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci. doi: 10.3168/jds.2007-0980 – year: 2016 ident: 10.3168/jds.2023-24082_bib23 – volume: 106 start-page: 2613 year: 2023 ident: 10.3168/jds.2023-24082_bib50 article-title: Genomic-based genetic parameters for milkability traits derived from automatic milking systems in North American Holstein cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.2022-22515 – volume: 9 start-page: 675 year: 2019 ident: 10.3168/jds.2023-24082_bib55 article-title: A low resolution epistasis mapping approach to identify chromosome arm interactions in allohexaploid wheat publication-title: G3 (Bethesda) doi: 10.1534/g3.118.200646 – volume: 32 start-page: 459 year: 2019 ident: 10.3168/jds.2023-24082_bib43 article-title: Evaluation of genotype by environment interactions on milk production traits of Holstein cows in southern Brazil publication-title: Asian-Australas. J. Anim. Sci. – ident: 10.3168/jds.2023-24082_bib7 |
| SSID | ssj0021205 |
| Score | 2.4998803 |
| Snippet | The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes.
Identifying... Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4758 |
| SubjectTerms | accuracy of prediction Algorithms Animals automatic milking systems Bayesian theory Behavior, Animal Cattle - genetics dairy cows dairy science Dairying - methods deep learning family Female Genomics Genotype genotyping Holstein Lactation - genetics Machine Learning Milk neural networks Phenotype prediction quality control sensor-based systems |
| Title | Machine learning methods for genomic prediction of cow behavioral traits measured by automatic milking systems in North American Holstein cattle |
| URI | https://dx.doi.org/10.3168/jds.2023-24082 https://www.ncbi.nlm.nih.gov/pubmed/38395400 https://www.proquest.com/docview/3073647918 https://www.proquest.com/docview/3153806152 https://doaj.org/article/161df087689e456cb28a09f15618dc65 |
| Volume | 107 |
| WOSCitedRecordID | wos001261533100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1525-3198 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021205 issn: 0022-0302 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gCHqjy7PKpBQuIUNbEdxzm2iKoXKg4g7c1y7KQK2ibVJgvqv-hP7oydLPSwcOEWRc7DM2PPN5nJN4x9kIpEr32SyYwn0uU8KXPbJEJVnP4McU42odlEcXGhl8vy6x-tvqgmLNIDR8EdIyLxDfGm6bJGZ-8qrm1aNhh2ZNo7FdhL06Kcg6kp1Mp4LF6kWnU0Yx7pGqlJ0_EPTyzdXFBeQfN77iiw9t_zSrtQZ_A-Zwdsf4KNcBJf9yl7UHfP2JOTy_VEnVE_Z7dfQl1kDVMjiEuI3aEHQFwKxMV61Tq4XlNmhrQBfQOu_wW_f9QH6hcxDnhd-G7ooboBuxn7wOoKV-2KPqtD5H4eoO0gJH1gTvrAeb8aqHkmuMCM_IJ9P_v87dN5MvVbSJzUYkwo5dgUShbCSqcQi3Ff5ZUqdSpEI3Mv8CBXVanwHOdZ5ZQV1urGZr5K61yLl2yv67v6kIEocmWLIvOIfhDyCMut9rh7aFkVGCLpBUtmsRs3kZHTHFcGgxJSk0E1GVKTCWpasI_b8deRhmPnyFPS4nYU0WeHE2hUZjIq8y-jWrBstgEzIZGIMPBW7c4Hv5-NxeASpbyL7ep-MxjaRlGqZab_MoY8D8FLvM-raGnbKQgEsQis09f_Y2pv2GN8Zxkrjt-yvXG9qd-xR-7n2A7rI_awWOqjsJbuAMpKHlA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+methods+for+genomic+prediction+of+cow+behavioral+traits+measured+by+automatic+milking+systems+in+North+American+Holstein+cattle&rft.jtitle=Journal+of+dairy+science&rft.au=Pedrosa%2C+Victor+B&rft.au=Chen%2C+Shi-Yi&rft.au=Gloria%2C+Leonardo+S.&rft.au=Doucette%2C+Jarrod+S.&rft.date=2024-07-01&rft.issn=0022-0302&rft.volume=107&rft.issue=7+p.4758-4771&rft.spage=4758&rft.epage=4771&rft_id=info:doi/10.3168%2Fjds.2023-24082&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon |