A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection

Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 192; p. 116366
Main Authors: Scarpiniti, Michele, Sarv Ahrabi, Sima, Baccarelli, Enzo, Piazzo, Lorenzo, Momenzadeh, Alireza
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 15.04.2022
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793, 0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost. •Unsupervised high-performance automatic COVID-19 disease detection.•Deep Denoising Convolutional Autoencoders for CT scans classification.•Distance-based hidden feature robust statistical representation for anomaly detection.
AbstractList Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost. •Unsupervised high-performance automatic COVID-19 disease detection.•Deep Denoising Convolutional Autoencoders for CT scans classification.•Distance-based hidden feature robust statistical representation for anomaly detection.
Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost.
Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost.Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost.
ArticleNumber 116366
Author Sarv Ahrabi, Sima
Momenzadeh, Alireza
Baccarelli, Enzo
Scarpiniti, Michele
Piazzo, Lorenzo
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0000-0002-3164-6256
  surname: Scarpiniti
  fullname: Scarpiniti, Michele
  email: michele.scarpiniti@uniroma1.it
– sequence: 2
  givenname: Sima
  orcidid: 0000-0001-8379-8799
  surname: Sarv Ahrabi
  fullname: Sarv Ahrabi, Sima
  email: sima.sarvahrabi@uniroma1.it
– sequence: 3
  givenname: Enzo
  orcidid: 0000-0002-9791-7901
  surname: Baccarelli
  fullname: Baccarelli, Enzo
  email: enzo.baccarelli@uniroma1.it
– sequence: 4
  givenname: Lorenzo
  orcidid: 0000-0002-5325-8561
  surname: Piazzo
  fullname: Piazzo, Lorenzo
  email: lorenzo.piazzo@uniroma1.it
– sequence: 5
  givenname: Alireza
  orcidid: 0000-0002-5682-4186
  surname: Momenzadeh
  fullname: Momenzadeh, Alireza
  email: alireza.momenzadeh@uniroma1.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34937995$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNU7Lb6BXyQgC--zJpMZvMHRFi2rRYKfVFfQya5080ym4zJzFa_vRm2Fu1DXxLCPedwbn5n6CTEAAi9pWRJCeUfd0vI92ZZk5ouKeWM8xdoQaVgFReKnaAFUStRNVQ0p-gs5x0hVBAiXqFT1igmlFot0K81DvEAPZ5CngZIB5_BYTMMKRq7xa2ZnzHgcQt4652DgDsw45Qg49jhC4ChHCH67MMdXk9jhGCjg5RxFxPe3P64vqiowq7klizsYAQ7-hheo5ed6TO8ebjP0fery2-br9XN7Zfrzfqmso1kYyUbR5UpxZVwLUBtVdNZkJ1hwEiZSNEBNytnBBOWckOa1lreKtm1gknTsHP0-Zg7TO0enIUwJtPrIfm9Sb91NF7_Pwl-q-_iQUsuVnQ1B3x4CEjx5wR51HufLfS9CRCnrGtOWa0Il6RI3z-R7uKUQlmvqBpKCiImi-rdv40eq_yFUgT1UWBTzDlB9yihRM_k9U7P5PVMXh_JF5N8YrJ-NPNPl618_7z109EKhcPBQ9LZ-oIRnE8FlnbRP2f_A-vSyr4
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125597
crossref_primary_10_1016_j_bbe_2022_04_005
crossref_primary_10_3390_app12042080
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1051_bioconf_20248601003
crossref_primary_10_1016_j_eswa_2023_119513
crossref_primary_10_3390_electronics12051167
crossref_primary_10_1007_s11227_022_04775_y
crossref_primary_10_1007_s00521_022_07424_w
crossref_primary_10_1016_j_compbiomed_2022_105461
crossref_primary_10_1109_ACCESS_2025_3550949
crossref_primary_10_1016_j_jbi_2024_104706
crossref_primary_10_1177_20552076221092543
crossref_primary_10_1016_j_dcit_2024_100032
crossref_primary_10_1109_ACCESS_2022_3190497
crossref_primary_10_3390_healthcare10020403
crossref_primary_10_1109_JBHI_2023_3285936
crossref_primary_10_1016_j_eswa_2025_126911
crossref_primary_10_1109_TETCI_2022_3174868
crossref_primary_10_3390_foods11131936
crossref_primary_10_1016_j_compeleceng_2022_108396
crossref_primary_10_1016_j_knosys_2025_114334
crossref_primary_10_1016_j_media_2025_103559
crossref_primary_10_1007_s11042_024_19918_x
crossref_primary_10_1109_TPWRS_2022_3204176
crossref_primary_10_1007_s11227_022_04349_y
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_3390_bioengineering12030311
Cites_doi 10.1007/s13755-020-00116-6
10.1016/j.patcog.2016.05.029
10.14257/ijgdc.2016.9.10.10
10.3389/fmed.2020.608525
10.1016/j.chest.2020.06.025
10.1146/annurev-bioeng-071516-044442
10.1109/TMI.2021.3066161
10.1186/s12880-020-00529-5
10.1016/j.eswa.2020.113909
10.1109/TBDATA.2017.2777862
10.1016/j.eswa.2021.114677
10.1007/s13755-021-00140-0
10.3390/sym12081251
10.1155/2020/8843664
10.1007/s11356-020-10133-3
10.1109/CVPR.2015.7298594
10.1109/TMI.2015.2458702
10.1148/rg.2020200159
10.1109/TMI.2020.2996645
10.1007/BF00332918
10.1109/ACCESS.2021.3058021
10.3390/computation9010003
10.1155/2020/9756518
10.1097/JCMA.0000000000000336
10.1109/ITCC.2001.918848
10.1016/j.eswa.2020.114054
10.1016/0165-1684(96)00030-8
10.1016/S2213-2600(20)30233-2
10.1109/TSMC.1973.4309314
10.1145/1541880.1541882
10.3390/jcm8030316
10.1038/s41598-021-90766-7
10.1016/j.comcom.2016.12.010
10.1016/j.imu.2020.100427
10.1109/TVT.2007.900514
ContentType Journal Article
Copyright 2021 Elsevier Ltd
2021 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Apr 15, 2022
2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: 2021 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Apr 15, 2022
– notice: 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.eswa.2021.116366
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
0957-4174
EndPage 116366
ExternalDocumentID PMC8675154
34937995
10_1016_j_eswa_2021_116366
S0957417421016614
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
BNPGV
NPM
SSH
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c483t-84d19a01797dbee2c94fce8fa3e3019a87fe6a5da737c16a04bcc6b98fb738a43
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744171900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 04 01:49:49 EST 2025
Sun Nov 09 14:08:30 EST 2025
Fri Jul 25 03:35:06 EDT 2025
Thu Apr 03 07:06:43 EDT 2025
Sat Nov 29 06:45:07 EST 2025
Tue Nov 18 22:23:53 EST 2025
Fri Feb 23 02:43:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Pneumonia
Convolutional autoencoders
Computed Tomography (CT)
Coronavirus disease 2019
Deep denoising autoencoder
Feature learning
Anomaly detection
Language English
License 2021 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-84d19a01797dbee2c94fce8fa3e3019a87fe6a5da737c16a04bcc6b98fb738a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9791-7901
0000-0002-3164-6256
0000-0002-5682-4186
0000-0001-8379-8799
0000-0002-5325-8561
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8675154
PMID 34937995
PQID 2641063638
PQPubID 2045477
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675154
proquest_miscellaneous_2613290680
proquest_journals_2641063638
pubmed_primary_34937995
crossref_primary_10_1016_j_eswa_2021_116366
crossref_citationtrail_10_1016_j_eswa_2021_116366
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_116366
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Expert systems with applications
PublicationTitleAlternate Expert Syst Appl
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D. (2015). Going deeper with convolutions. In
Gomes, de Barbosa, Santana, Bandeira, Valença, de Souza (b19) 2020
Mishra, Das, Roy, Bandyopadhyay (b38) 2020; 2020
Shen, Zhou, Yang, Yu, Dong, Yang (b46) 2017; 61
Kullback (b33) 1997
Aiello, Cavaliere, D’Albore, Salvatore (b2) 2019; 8
Chen, Chen, Yang, Chien, Wang, Lin (b15) 2020; 83
Fan, Zhou, Ji, Zhou, Chen, Fu (b18) 2020; 39
Hsieh (b26) 2009
Tan, Liu, Li, Liu, Zhou, Chen (b50) 2021; 9
Lerum, Aaløkken, Brønstad, Aarli, Ikdahl, Lund (b35) 2020; 57
Al-Ameen, Sulong (b3) 2016; 9
Haralick, Shanmungam, Dinstein (b25) 1973; SMC-3
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
Baccarelli, Biagi (b7) 2003; Vol. 2775
Suetens (b48) 2009
.
Silva, Luz, Silva, Moreira, Silva, Lucio (b47) 2020; 20
Baccarelli, Scarpiniti, Momenzadeh, Sarv Ahrabi (b10) 2021; 9
Boston, MA, USA.
Chandola, Banerjee, Kumar (b13) 2009; 41
Baccarelli, Cusani (b9) 1996; 51
Sharma (b44) 2020; 27
Gunraj, Sabri, Koff, Wong (b22) 2021
(b56) 2017
Masci, Meier, Cireşan, Schmidhuber (b37) 2011; Vol. 6791
Yao, Xiao, Liu, Zhou (b55) 2021
Gunraj, Wang, Wong (b23) 2020; 7
Saood, Hatem (b41) 2021; 21
Shah, Keniya, Shridharani, Punjabi, Shah, Mehendale (b43) 2021
Krizhevsky, Sutskever, Hinton (b32) 2012
Vidal, de Moura, Novo, Ortega (b51) 2021; 173
Sarv Ahrabi, Scarpiniti, Baccarelli, Momenzadeh (b42) 2021; 9
(pp. 1–15). San Diego, USA. URL
Alain, Bengio (b4) 2014; 15
Li, Fu, Xu (b36) 2020
Adams, Kwee, Yakar, Hope, Kwee (b1) 2020; 158
Ozsahin, Sekeroglu, Musa, Mustapha, Ozsahin (b39) 2020; 2020
Vincent, Larochelle, Bengio, Manzagol (b52) 2008
Ioffe, Szegedy (b27) 2015; Vol. 37
Xu, Xiang, Liu, Gilmore, Wu, Tang (b54) 2016; 35
Chandra, Verma, Singh, Jain, Netam (b14) 2021; 165
Elmuogy, Hikal, Hassan (b17) 2021; 40
Shen, Wu, Suk (b45) 2017; 19
Amarbayasgalan, Pham, Theera-Umpon, Ryu (b6) 2020; 12
Hammer, Raptis, Henry, Shah, Bhalla, Hope (b24) 2020; 8
Goodfellow, Bengio, Courville (b21) 2016
Kwee, Kwee (b34) 2020; 40
Baccarelli, Biagi, Pelizzoni, Cordeschi (b8) 2007; 56
Alpaydin (b5) 2014
Baccarelli, Vinueza Naranjo, Shojafar, Scarpiniti (b11) 2017; 102
Ismael, Şengür (b29) 2021; 164
(pp. 511–515). Las Vegas, NV, USA.
Bourlard, Kamp (b12) 1988; 59
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b53) 2010; 11
Gomes, Masood, de S. Silva, da Cruz Ferreira, Freire Junior, dos Santos Rocha (b20) 2021; 11
Chen, Shi, Zhang, Wu, Guizani (b16) 2017
Kan, C., & Srinath, M. D. (2001). Combined features of cubic B-spline wavelet moments and Zernicke moments for invariant character recognition. In
Ismael, Şengür (b28) 2020; 8
Rahman, Sarker, Miraj, Nihal, Haque, Noman (b40) 2021
Baccarelli (10.1016/j.eswa.2021.116366_b8) 2007; 56
Chandra (10.1016/j.eswa.2021.116366_b14) 2021; 165
10.1016/j.eswa.2021.116366_b31
Krizhevsky (10.1016/j.eswa.2021.116366_b32) 2012
10.1016/j.eswa.2021.116366_b30
Hsieh (10.1016/j.eswa.2021.116366_b26) 2009
Kwee (10.1016/j.eswa.2021.116366_b34) 2020; 40
Elmuogy (10.1016/j.eswa.2021.116366_b17) 2021; 40
Shen (10.1016/j.eswa.2021.116366_b45) 2017; 19
Li (10.1016/j.eswa.2021.116366_b36) 2020
Vincent (10.1016/j.eswa.2021.116366_b53) 2010; 11
Chen (10.1016/j.eswa.2021.116366_b16) 2017
Hammer (10.1016/j.eswa.2021.116366_b24) 2020; 8
Baccarelli (10.1016/j.eswa.2021.116366_b11) 2017; 102
Silva (10.1016/j.eswa.2021.116366_b47) 2020; 20
Vidal (10.1016/j.eswa.2021.116366_b51) 2021; 173
Xu (10.1016/j.eswa.2021.116366_b54) 2016; 35
Ismael (10.1016/j.eswa.2021.116366_b29) 2021; 164
Goodfellow (10.1016/j.eswa.2021.116366_b21) 2016
Chen (10.1016/j.eswa.2021.116366_b15) 2020; 83
Gomes (10.1016/j.eswa.2021.116366_b20) 2021; 11
Saood (10.1016/j.eswa.2021.116366_b41) 2021; 21
Gunraj (10.1016/j.eswa.2021.116366_b23) 2020; 7
Alpaydin (10.1016/j.eswa.2021.116366_b5) 2014
Yao (10.1016/j.eswa.2021.116366_b55) 2021
Haralick (10.1016/j.eswa.2021.116366_b25) 1973; SMC-3
Shen (10.1016/j.eswa.2021.116366_b46) 2017; 61
Shah (10.1016/j.eswa.2021.116366_b43) 2021
Mishra (10.1016/j.eswa.2021.116366_b38) 2020; 2020
Kullback (10.1016/j.eswa.2021.116366_b33) 1997
Baccarelli (10.1016/j.eswa.2021.116366_b7) 2003; Vol. 2775
Sharma (10.1016/j.eswa.2021.116366_b44) 2020; 27
Alain (10.1016/j.eswa.2021.116366_b4) 2014; 15
Vincent (10.1016/j.eswa.2021.116366_b52) 2008
Adams (10.1016/j.eswa.2021.116366_b1) 2020; 158
Tan (10.1016/j.eswa.2021.116366_b50) 2021; 9
Ismael (10.1016/j.eswa.2021.116366_b28) 2020; 8
Rahman (10.1016/j.eswa.2021.116366_b40) 2021
Al-Ameen (10.1016/j.eswa.2021.116366_b3) 2016; 9
Masci (10.1016/j.eswa.2021.116366_b37) 2011; Vol. 6791
Ozsahin (10.1016/j.eswa.2021.116366_b39) 2020; 2020
Amarbayasgalan (10.1016/j.eswa.2021.116366_b6) 2020; 12
Baccarelli (10.1016/j.eswa.2021.116366_b10) 2021; 9
Baccarelli (10.1016/j.eswa.2021.116366_b9) 1996; 51
(10.1016/j.eswa.2021.116366_b56) 2017
Gunraj (10.1016/j.eswa.2021.116366_b22) 2021
10.1016/j.eswa.2021.116366_b49
Bourlard (10.1016/j.eswa.2021.116366_b12) 1988; 59
Sarv Ahrabi (10.1016/j.eswa.2021.116366_b42) 2021; 9
Lerum (10.1016/j.eswa.2021.116366_b35) 2020; 57
Chandola (10.1016/j.eswa.2021.116366_b13) 2009; 41
Gomes (10.1016/j.eswa.2021.116366_b19) 2020
Aiello (10.1016/j.eswa.2021.116366_b2) 2019; 8
Fan (10.1016/j.eswa.2021.116366_b18) 2020; 39
Ioffe (10.1016/j.eswa.2021.116366_b27) 2015; Vol. 37
Suetens (10.1016/j.eswa.2021.116366_b48) 2009
References_xml – volume: 61
  start-page: 663
  year: 2017
  end-page: 673
  ident: b46
  article-title: Multi-crop convolutional neural networks forl ung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognition
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b32
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: 25th international conference on neural information processing systems
– reference: (pp. 1–15). San Diego, USA. URL:
– volume: 40
  start-page: 1848
  year: 2020
  end-page: 1865
  ident: b34
  article-title: Chest CT in COVID-19: What the radiologist needs to know
  publication-title: RadioGraphics
– volume: 27
  start-page: 37155
  year: 2020
  end-page: 37163
  ident: b44
  article-title: Drawing insights from COVID-19-infected patients using CT scan images and machine learning techniques: A study on 200 patients
  publication-title: Environmental Science and Pollution Research
– volume: 83
  start-page: 644
  year: 2020
  end-page: 647
  ident: b15
  article-title: Use of radiographic features in COVID-19 diagnosis: Challenges and perspectives
  publication-title: Journal of the Chinese Medical Association
– year: 2020
  ident: b19
  article-title: IKONOS: An intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images
  publication-title: Research on Biomedical Engineering
– volume: 8
  start-page: 29
  year: 2020
  ident: b28
  article-title: The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection
  publication-title: Health Information Science and Systems
– start-page: 1
  year: 2021
  end-page: 9
  ident: b43
  article-title: Diagnosis of COVID-19 using CT scan images and deep learning techniques
  publication-title: Emergency Radiology
– reference: Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
– reference: . Boston, MA, USA.
– volume: 15
  start-page: 3743
  year: 2014
  end-page: 3773
  ident: b4
  article-title: What regularized auto-encoders learn from the datagenerating distribution
  publication-title: Journal of Machine Learning Research
– volume: 40
  start-page: 5225
  year: 2021
  end-page: 5238
  ident: b17
  article-title: An efficient technique for CT scan images classification of COVID-19
  publication-title: Journal of Intelligent & Fuzzy Systems
– year: 2021
  ident: b55
  article-title: Label-free segmentation of COVID-19 lesions in lung CT
  publication-title: IEEE Transactions on Medical Imaging
– volume: 9
  start-page: 3
  year: 2021
  ident: b42
  article-title: An accuracy vs. complexity comparison of deep learning architectures for the detection of COVID-19 disease
  publication-title: Computation
– volume: 11
  year: 2021
  ident: b20
  article-title: COVID-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences
  publication-title: Scientific Reports
– year: 2017
  ident: b56
  article-title: Deep learning for medical image analysis
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D. (2015). Going deeper with convolutions. In
– volume: 12
  start-page: 1251
  year: 2020
  ident: b6
  article-title: Unsupervised anomaly detection approach for time-series in multi-domains using deep reconstruction error
  publication-title: Simmetry
– volume: 165
  year: 2021
  ident: b14
  article-title: Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 2571
  year: 2021
  end-page: 25757
  ident: b10
  article-title: Learning-in-the-fog (LiFo): Deep learning meets fog computing for the minimum-energy distributed early-exit of inference in delay-critical IoT realms
  publication-title: IEEE Access
– volume: 9
  start-page: 107
  year: 2016
  end-page: 118
  ident: b3
  article-title: Prevalent degradations and processing challenges of computed tomography medical images: A compendious analysis
  publication-title: International Journal of Grid and Distributed Computing
– year: 2009
  ident: b26
  article-title: Computed tomography: principles, design, artifacts, and recent advances
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b53
  article-title: Stacked denoising autoencoders: Learning useful representationsina deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 173
  year: 2021
  ident: b51
  article-title: Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
  publication-title: Expert Systems with Applications
– volume: Vol. 37
  start-page: 448
  year: 2015
  end-page: 456
  ident: b27
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd international conference on machine learning
– year: 2020
  ident: b36
  article-title: Stacked-autoencoder-based model for COVID-19 diagnosis on CT images
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– start-page: 1
  year: 2017
  end-page: 10
  ident: b16
  article-title: Deep features learning for medical image analysis with convolutional autoencoder neural network
  publication-title: IEEE Transactions on Big Data
– volume: Vol. 2775
  start-page: 138
  year: 2003
  end-page: 152
  ident: b7
  article-title: Optimized power allocation and signal shaping for interference-limited multi-antenna “Ad Hoc” networks
  publication-title: IFIP international conference on personal wireless communications
– volume: 8
  start-page: 534
  year: 2020
  end-page: 536
  ident: b24
  article-title: Challenges in the interpretation and application of typical imaging features of COVID-19
  publication-title: The LANCET Respiratory Medicine
– year: 2021
  ident: b22
  article-title: COVID-Net CT-2: Enhanced deep neural networks for detection of COVID-19 from chest CT images through bigger, more diverse learning
– volume: 164
  year: 2021
  ident: b29
  article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images
  publication-title: Expert Systems with Applications
– volume: 7
  year: 2020
  ident: b23
  article-title: COVIDNet-CT: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest CT images
  publication-title: Frontiers in Medicine
– volume: 35
  start-page: 119
  year: 2016
  end-page: 130
  ident: b54
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Transactions on Medical Imaging
– year: 2009
  ident: b48
  article-title: Fundamentals of medical imaging
– volume: 2020
  year: 2020
  ident: b38
  article-title: Identifying COVID19 from chest CT images: A deep convolutional neural networks based approach
  publication-title: Journal of Healthcare Engineering
– year: 2021
  ident: b40
  article-title: Deep learning–driven automated detection of COVID-19 from radiography images: A comparative analysis
  publication-title: Cognitive Computation
– volume: 8
  start-page: 316
  year: 2019
  ident: b2
  article-title: The challenges of diagnostic imaging in the era of big data
  publication-title: Journal of Clinical Medicine
– volume: Vol. 6791
  start-page: 52
  year: 2011
  end-page: 59
  ident: b37
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Proceedings of the 21st international conference on artificial neural networks
– volume: 158
  start-page: 1885
  year: 2020
  end-page: 1895
  ident: b1
  article-title: Chest CT imaging signature of coronavirus disease 2019 infection: In pursuit of the scientific evidence
  publication-title: Chest Infections
– volume: 39
  start-page: 2626
  year: 2020
  end-page: 2637
  ident: b18
  article-title: Inf-Net: Automatic COVID-19 lung infection segmentation from CT images
  publication-title: IEEE Transactions on Medical Imaging
– reference: (pp. 511–515). Las Vegas, NV, USA.
– year: 2014
  ident: b5
  article-title: Introduction to machine learning
– volume: 57
  year: 2020
  ident: b35
  article-title: Dyspnoea, lung function and CT findings three months after hospital admission for COVID-19
  publication-title: European Respiratory Journal
– volume: 56
  start-page: 3089
  year: 2007
  end-page: 3105
  ident: b8
  article-title: Optimized power-allocation for multiantenna systems impaired by multiple access interference and imperfect channel estimation
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 51
  start-page: 55
  year: 1996
  end-page: 64
  ident: b9
  article-title: Recursive Kalman-type optimal estimation and detection of hidden Markov chains
  publication-title: Signal Processing
– volume: 2020
  year: 2020
  ident: b39
  article-title: Review on diagnosis of COVID-19 from chest CT images using artificial intelligence
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 20
  year: 2020
  ident: b47
  article-title: COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis
  publication-title: Informatics in Medicine Unlocked
– volume: SMC-3
  start-page: 610
  year: 1973
  end-page: 621
  ident: b25
  article-title: Textural features for images classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– year: 1997
  ident: b33
  article-title: Information theory and statistics
– volume: 9
  start-page: 10
  year: 2021
  ident: b50
  article-title: Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network
  publication-title: Health Information Science and Systems
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b52
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on machine learning
– volume: 102
  start-page: 89
  year: 2017
  end-page: 106
  ident: b11
  article-title: Q*: Energy and delay-efficient dynamic queue management in TCP/IP virtualized data centers
  publication-title: Computer Communications
– reference: .
– volume: 41
  start-page: 15
  year: 2009
  ident: b13
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: b45
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
– volume: 59
  start-page: 291
  year: 1988
  end-page: 294
  ident: b12
  article-title: Auto-association by multilayer perceptrons andsingular value decomposition
  publication-title: Biological Cybernetics
– reference: Kan, C., & Srinath, M. D. (2001). Combined features of cubic B-spline wavelet moments and Zernicke moments for invariant character recognition. In
– volume: 21
  start-page: 19
  year: 2021
  ident: b41
  article-title: COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
  publication-title: BMC Medical Imaging
– year: 2016
  ident: b21
  article-title: Deep learning
– volume: 8
  start-page: 29
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b28
  article-title: The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-020-00116-6
– volume: 61
  start-page: 663
  year: 2017
  ident: 10.1016/j.eswa.2021.116366_b46
  article-title: Multi-crop convolutional neural networks forl ung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.05.029
– year: 2009
  ident: 10.1016/j.eswa.2021.116366_b48
– volume: Vol. 37
  start-page: 448
  year: 2015
  ident: 10.1016/j.eswa.2021.116366_b27
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 1096
  year: 2008
  ident: 10.1016/j.eswa.2021.116366_b52
  article-title: Extracting and composing robust features with denoising autoencoders
– year: 2020
  ident: 10.1016/j.eswa.2021.116366_b19
  article-title: IKONOS: An intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images
  publication-title: Research on Biomedical Engineering
– volume: 9
  start-page: 107
  year: 2016
  ident: 10.1016/j.eswa.2021.116366_b3
  article-title: Prevalent degradations and processing challenges of computed tomography medical images: A compendious analysis
  publication-title: International Journal of Grid and Distributed Computing
  doi: 10.14257/ijgdc.2016.9.10.10
– volume: 7
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b23
  article-title: COVIDNet-CT: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest CT images
  publication-title: Frontiers in Medicine
  doi: 10.3389/fmed.2020.608525
– volume: 158
  start-page: 1885
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b1
  article-title: Chest CT imaging signature of coronavirus disease 2019 infection: In pursuit of the scientific evidence
  publication-title: Chest Infections
  doi: 10.1016/j.chest.2020.06.025
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.eswa.2021.116366_b45
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev-bioeng-071516-044442
– year: 2021
  ident: 10.1016/j.eswa.2021.116366_b55
  article-title: Label-free segmentation of COVID-19 lesions in lung CT
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2021.3066161
– volume: 21
  start-page: 19
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b41
  article-title: COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
  publication-title: BMC Medical Imaging
  doi: 10.1186/s12880-020-00529-5
– volume: 165
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b14
  article-title: Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113909
– year: 2016
  ident: 10.1016/j.eswa.2021.116366_b21
– year: 2021
  ident: 10.1016/j.eswa.2021.116366_b22
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2021.116366_b16
  article-title: Deep features learning for medical image analysis with convolutional autoencoder neural network
  publication-title: IEEE Transactions on Big Data
  doi: 10.1109/TBDATA.2017.2777862
– volume: Vol. 6791
  start-page: 52
  year: 2011
  ident: 10.1016/j.eswa.2021.116366_b37
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
– volume: 173
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b51
  article-title: Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114677
– volume: 9
  start-page: 10
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b50
  article-title: Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-021-00140-0
– volume: 12
  start-page: 1251
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b6
  article-title: Unsupervised anomaly detection approach for time-series in multi-domains using deep reconstruction error
  publication-title: Simmetry
  doi: 10.3390/sym12081251
– volume: 2020
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b38
  article-title: Identifying COVID19 from chest CT images: A deep convolutional neural networks based approach
  publication-title: Journal of Healthcare Engineering
  doi: 10.1155/2020/8843664
– volume: 27
  start-page: 37155
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b44
  article-title: Drawing insights from COVID-19-infected patients using CT scan images and machine learning techniques: A study on 200 patients
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-020-10133-3
– year: 2009
  ident: 10.1016/j.eswa.2021.116366_b26
– year: 2017
  ident: 10.1016/j.eswa.2021.116366_b56
– volume: 40
  start-page: 5225
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b17
  article-title: An efficient technique for CT scan images classification of COVID-19
  publication-title: Journal of Intelligent & Fuzzy Systems
– start-page: 1097
  year: 2012
  ident: 10.1016/j.eswa.2021.116366_b32
  article-title: ImageNet classification with deep convolutional neural networks
– ident: 10.1016/j.eswa.2021.116366_b49
  doi: 10.1109/CVPR.2015.7298594
– volume: 35
  start-page: 119
  year: 2016
  ident: 10.1016/j.eswa.2021.116366_b54
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 40
  start-page: 1848
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b34
  article-title: Chest CT in COVID-19: What the radiologist needs to know
  publication-title: RadioGraphics
  doi: 10.1148/rg.2020200159
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b43
  article-title: Diagnosis of COVID-19 using CT scan images and deep learning techniques
  publication-title: Emergency Radiology
– volume: 39
  start-page: 2626
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b18
  article-title: Inf-Net: Automatic COVID-19 lung infection segmentation from CT images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2996645
– year: 2021
  ident: 10.1016/j.eswa.2021.116366_b40
  article-title: Deep learning–driven automated detection of COVID-19 from radiography images: A comparative analysis
  publication-title: Cognitive Computation
– volume: 59
  start-page: 291
  year: 1988
  ident: 10.1016/j.eswa.2021.116366_b12
  article-title: Auto-association by multilayer perceptrons andsingular value decomposition
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00332918
– year: 2014
  ident: 10.1016/j.eswa.2021.116366_b5
– volume: 9
  start-page: 2571
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b10
  article-title: Learning-in-the-fog (LiFo): Deep learning meets fog computing for the minimum-energy distributed early-exit of inference in delay-critical IoT realms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058021
– volume: 9
  start-page: 3
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b42
  article-title: An accuracy vs. complexity comparison of deep learning architectures for the detection of COVID-19 disease
  publication-title: Computation
  doi: 10.3390/computation9010003
– volume: 2020
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b39
  article-title: Review on diagnosis of COVID-19 from chest CT images using artificial intelligence
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2020/9756518
– volume: 83
  start-page: 644
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b15
  article-title: Use of radiographic features in COVID-19 diagnosis: Challenges and perspectives
  publication-title: Journal of the Chinese Medical Association
  doi: 10.1097/JCMA.0000000000000336
– ident: 10.1016/j.eswa.2021.116366_b30
  doi: 10.1109/ITCC.2001.918848
– year: 1997
  ident: 10.1016/j.eswa.2021.116366_b33
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.eswa.2021.116366_b53
  article-title: Stacked denoising autoencoders: Learning useful representationsina deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 15
  start-page: 3743
  year: 2014
  ident: 10.1016/j.eswa.2021.116366_b4
  article-title: What regularized auto-encoders learn from the datagenerating distribution
  publication-title: Journal of Machine Learning Research
– year: 2020
  ident: 10.1016/j.eswa.2021.116366_b36
  article-title: Stacked-autoencoder-based model for COVID-19 diagnosis on CT images
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 164
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b29
  article-title: Deep learning approaches for COVID-19 detection based on chest X-ray images
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114054
– volume: 51
  start-page: 55
  year: 1996
  ident: 10.1016/j.eswa.2021.116366_b9
  article-title: Recursive Kalman-type optimal estimation and detection of hidden Markov chains
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(96)00030-8
– volume: 8
  start-page: 534
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b24
  article-title: Challenges in the interpretation and application of typical imaging features of COVID-19
  publication-title: The LANCET Respiratory Medicine
  doi: 10.1016/S2213-2600(20)30233-2
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: 10.1016/j.eswa.2021.116366_b25
  article-title: Textural features for images classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– volume: 41
  start-page: 15
  year: 2009
  ident: 10.1016/j.eswa.2021.116366_b13
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/1541880.1541882
– volume: 8
  start-page: 316
  year: 2019
  ident: 10.1016/j.eswa.2021.116366_b2
  article-title: The challenges of diagnostic imaging in the era of big data
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm8030316
– volume: 11
  year: 2021
  ident: 10.1016/j.eswa.2021.116366_b20
  article-title: COVID-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-90766-7
– volume: 102
  start-page: 89
  year: 2017
  ident: 10.1016/j.eswa.2021.116366_b11
  article-title: Q*: Energy and delay-efficient dynamic queue management in TCP/IP virtualized data centers
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2016.12.010
– volume: 20
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b47
  article-title: COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100427
– volume: 56
  start-page: 3089
  year: 2007
  ident: 10.1016/j.eswa.2021.116366_b8
  article-title: Optimized power-allocation for multiantenna systems impaired by multiple access interference and imperfect channel estimation
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2007.900514
– volume: 57
  year: 2020
  ident: 10.1016/j.eswa.2021.116366_b35
  article-title: Dyspnoea, lung function and CT findings three months after hospital admission for COVID-19
  publication-title: European Respiratory Journal
– volume: Vol. 2775
  start-page: 138
  year: 2003
  ident: 10.1016/j.eswa.2021.116366_b7
  article-title: Optimized power allocation and signal shaping for interference-limited multi-antenna “Ad Hoc” networks
– ident: 10.1016/j.eswa.2021.116366_b31
SSID ssj0017007
Score 2.4918034
Snippet Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116366
SubjectTerms Algorithms
Anomaly detection
Chest
Computed tomography
Computed Tomography (CT)
Convolutional autoencoders
Coronavirus disease 2019
Coronaviruses
COVID-19
Deep denoising autoencoder
Exploitation
Feature learning
Histograms
Inspection
Medical imaging
Noise reduction
Pneumonia
Representations
Viral diseases
Title A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection
URI https://dx.doi.org/10.1016/j.eswa.2021.116366
https://www.ncbi.nlm.nih.gov/pubmed/34937995
https://www.proquest.com/docview/2641063638
https://www.proquest.com/docview/2613290680
https://pubmed.ncbi.nlm.nih.gov/PMC8675154
Volume 192
WOSCitedRecordID wos000744171900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jQMXvhmFMRmJW5QpH06cHMNWxBAaSBuot8hJHDVT5VRtWqr-S_yTPMd21nTaxA5crCp2LKfv5_f87OffQ-ijF7OgKIPQLhyHg4MSZDDnCmI7OaFB6OeEMZVsgl5cRONx_GMw-GPuwqymVIhovY5n_1XU8AyELa_OPkDcXafwAH6D0KEEsUP5T4JPLFGv-NRaisVyJjXBAtaUhjrcklar0CcE1kTyhwir5C27ZxvUccb5DApRV-0mQrJsakl1KcOd24jE0--_zs9sNzYnO1bBmzaaS_T2-CWBcqNpos0Fuq2j8t7xTyXjl0wIP592SLtk85WVTOYsa2svqxsT8onlMmRtqu52j8Sm7lR8xTabdvv3Wz3npkJva4BHLPkTg97-JLWJq1L4dKpa5c3TytaFtaRK2XLLDqgtiesTvvgtyaU89-SmcZ90e8cYdiGKJvrtOpV9pLKPVPWxhw48GsSgQg-S89H4a3doRR11O9-MXN_RUuGEuyO5ax1028_ZDdfdWv9cPUNPtOOCEwW452jAxQv01CQFwdpGvETrBLf4w9v4wwZ_uMUfrgUG_GGFP2zwh-sSS_zhDn94G38Y8IcN_rDGH-7w9wr9_Dy6Ov1i6_Qedk4iv7EjUrgxkxaBFhnnXh6TMudRyXwOVidmES15CJqEUZ_mbsgckuV5mMVRmVE_YsR_jfZFLfgbhEmRF37oZ7wICuJ6jGVBmYUhg9cyr-T-ELnmz05zzX0vU7BM07vFPERW985MMb_c2zowMkz12lWtSVOA5L3vHRmBp1qJLFJwUlxwHcA0DtGHrhr0vjzMY4LXS9nG9WWqhsgZokOFj26YPgGnI46DIaI95HQNJKd8v0ZUk5ZbPgopeDjk7YM-_h16fDOFj9B-M1_y9-hRvmqqxfwY7dFxdKwny1_UNPOl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+unsupervised+approach+based+on+the+hidden+features+of+Deep+Denoising+Autoencoders+for+COVID-19+disease+detection&rft.jtitle=Expert+systems+with+applications&rft.au=Scarpiniti%2C+Michele&rft.au=Sarv+Ahrabi%2C+Sima&rft.au=Baccarelli%2C+Enzo&rft.au=Piazzo%2C+Lorenzo&rft.date=2022-04-15&rft.issn=0957-4174&rft.volume=192&rft.spage=116366&rft_id=info:doi/10.1016%2Fj.eswa.2021.116366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_116366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon