Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
Abstract Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking...
Uložené v:
| Vydané v: | Briefings in bioinformatics Ročník 22; číslo 4 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms. |
|---|---|
| AbstractList | Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms. Abstract Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms. Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms. |
| Author | Zuo, Chunman Chen, Luonan |
| Author_xml | – sequence: 1 givenname: Chunman surname: Zuo fullname: Zuo, Chunman email: cmzuo13@163.com – sequence: 2 givenname: Luonan surname: Chen fullname: Chen, Luonan email: lnchen@sibs.ac.cn |
| BookMark | eNp9kctq3TAQhkVJaC7tqi8gKJRCcSJbsiVvCiG9BQLZtGsxkseJDrLkSnbhvH1lzumioXQ1w-ibXzPzX5CTEAMS8qZmVzXr-bVx5toYgEbJF-S8FlJWgrXiZMs7WbWi42fkIucdYw2Tqn5JzjhvWEnlOcFPiHO1iy4slUdIwYVHCgH8PrtMpzigp3GkuZQ9Uove0yVByDa5eYkTFnagccZA7VOKEywuULAWc3bGebfs6QALvCKnI_iMr4_xkvz48vn77bfq_uHr3e3NfWWF4kslDYzdAKLnvGt7ppQxvFVsEMw0coDGCtF3vOsQwUrbIwz10EM3cmUNUxz5Jfl40J1XM-FgMZRhvZ6TmyDtdQSn_34J7kk_xl9aNT1XtSoC748CKf5cMS96cnnbGgLGNetGdDXvFWs29O0zdBfXVC5XqDI8E6KVrFD1gbIp5pxw1NYt5Upx-995XTO9maiLifpoYun58KznzwL_pt8d6LjO_wV_Ay6Qr1o |
| CitedBy_id | crossref_primary_10_1016_j_coisb_2021_04_006 crossref_primary_10_1038_s41467_025_60575_x crossref_primary_10_1093_nar_gkae409 crossref_primary_10_1093_bib_bbae485 crossref_primary_10_1016_j_gpb_2022_11_013 crossref_primary_10_1016_j_biopha_2023_115077 crossref_primary_10_1093_bib_bbaf136 crossref_primary_10_1016_j_gpb_2022_11_011 crossref_primary_10_1093_bib_bbad313 crossref_primary_10_1186_s13059_022_02739_2 crossref_primary_10_1038_s41467_022_33619_9 crossref_primary_10_1016_j_asoc_2024_112541 crossref_primary_10_1186_s13059_023_02850_y crossref_primary_10_1109_TFUZZ_2024_3399740 crossref_primary_10_1002_qub2_91 crossref_primary_10_1016_j_hpj_2025_08_004 crossref_primary_10_1007_s43657_023_00125_x crossref_primary_10_1016_j_tig_2024_09_006 crossref_primary_10_1093_bib_bbaf244 crossref_primary_10_1016_j_canlet_2024_216675 crossref_primary_10_1016_j_bspc_2024_106587 crossref_primary_10_3389_fgene_2022_867880 crossref_primary_10_1186_s13073_024_01415_3 crossref_primary_10_1109_TCBBIO_2025_3555170 crossref_primary_10_1002_advs_202401815 crossref_primary_10_3389_fgene_2022_977968 crossref_primary_10_1038_s41592_025_02737_9 crossref_primary_10_1002_alz_13790 crossref_primary_10_1371_journal_pcbi_1012625 crossref_primary_10_1093_bib_bbad293 crossref_primary_10_1016_j_compbiomed_2024_108561 crossref_primary_10_1093_bib_bbaf157 crossref_primary_10_1093_bib_bbaf355 crossref_primary_10_1093_bib_bbae102 crossref_primary_10_1093_nar_gkac006 crossref_primary_10_3389_fmicb_2025_1678891 crossref_primary_10_1002_aisy_202200247 crossref_primary_10_1093_bib_bbab473 crossref_primary_10_3389_fgene_2025_1566675 crossref_primary_10_1002_ctm2_70331 crossref_primary_10_15252_msb_202211001 crossref_primary_10_1186_s13059_024_03211_z crossref_primary_10_1109_JBHI_2025_3532784 crossref_primary_10_3390_ijms22062822 crossref_primary_10_1016_j_crmeth_2021_100071 crossref_primary_10_1186_s13059_021_02595_6 crossref_primary_10_1007_s11390_025_4342_2 crossref_primary_10_1186_s13059_021_02556_z crossref_primary_10_3390_ijms221910891 crossref_primary_10_1038_s41580_023_00615_w crossref_primary_10_1186_s12859_024_05880_w crossref_primary_10_2174_1574893618666221130094050 crossref_primary_10_1093_bib_bbaf184 crossref_primary_10_1016_j_compbiomed_2023_106865 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1145_3641284 crossref_primary_10_1038_s41467_023_43019_2 crossref_primary_10_1038_s41467_024_49171_7 crossref_primary_10_1146_annurev_biodatasci_020422_050645 crossref_primary_10_1360_TB_2024_0416 crossref_primary_10_1007_s11831_025_10230_x crossref_primary_10_1093_nar_gkac781 |
| Cites_doi | 10.1186/s13059-019-1854-5 10.1016/j.celrep.2014.04.011 10.1038/s41592-018-0229-2 10.15252/msb.20178124 10.1038/nmeth.4236 10.1038/s41587-019-0113-3 10.1186/s13059-017-1269-0 10.1038/s41587-019-0290-0 10.1016/j.tig.2016.12.003 10.4169/000298910x523344 10.1016/j.tig.2018.06.001 10.1109/ICCV.2017.545 10.1371/journal.pone.0176278 10.1016/j.coisb.2018.01.003 10.11613/BM.2012.031 10.1146/annurev-genom-091416-035324 10.1093/hmg/ddv235 10.1371/journal.pgen.0020190 10.1186/s13059-017-1305-0 10.1093/nar/gky1226 10.1126/science.aan6826 10.1038/nmeth.3035 10.1038/s41587-019-0379-5 10.1073/pnas.1805681115 10.1126/science.1254257 10.1126/science.aau0730 10.1038/s41467-019-12630-7 10.1016/j.cell.2019.05.006 10.1038/nmeth.3742 10.1016/j.tig.2013.05.010 10.1016/j.molcel.2017.01.023 10.1038/s41467-018-08205-7 10.1093/nar/gkx1013 10.1093/database/bav095 10.15252/msb.20188746 10.1016/j.cell.2019.05.031 10.1038/nmeth.4401 10.1038/540153a |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020. Published by Oxford University Press. 2020 The Author(s) 2020. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| DOI | 10.1093/bib/bbaa287 |
| DatabaseName | Oxford Academic : Oxford Journals Open Access Collection journals [open access] CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | PMC8293818 10_1093_bib_bbaa287 10.1093/bib/bbaa287 |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: 2017SHZDZX01 – fundername: ; grantid: 2017YFA0505500 – fundername: ; grantid: XDB38040400 – fundername: ; grantid: 31930022; 31771476 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c483t-7baf6da4933659088bb3580d40b27da2c4496366eeac7c9ead1d9a6f38cb083e3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709466800058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Tue Sep 30 16:41:07 EDT 2025 Fri Sep 05 09:07:09 EDT 2025 Sun Nov 30 04:21:16 EST 2025 Sat Nov 29 05:43:22 EST 2025 Tue Nov 18 22:36:16 EST 2025 Wed Aug 28 03:20:04 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | single-cell multiple omics data data integration multimodal variational autoencoder deep joint-learning model |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-7baf6da4933659088bb3580d40b27da2c4496366eeac7c9ead1d9a6f38cb083e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/bib/bbaa287 |
| PMID | 33200787 |
| PQID | 2590044570 |
| PQPubID | 26846 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293818 proquest_miscellaneous_2461398028 proquest_journals_2590044570 crossref_citationtrail_10_1093_bib_bbaa287 crossref_primary_10_1093_bib_bbaa287 oup_primary_10_1093_bib_bbaa287 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationYear | 2021 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Han (2021072112310100100_ref40) 2018; 46 Mahata (2021072112310100100_ref3) 2014; 7 Welch (2021072112310100100_ref24) 2017; 18 Zappia (2021072112310100100_ref33) 2017; 18 Patterson (2021072112310100100_ref44) 2006; 2 Svensson (2021072112310100100_ref46) 2020; 38 Colomé-Tatché (2021072112310100100_ref20) 2018; 7 He (2021072112310100100_ref34) 2006 (2021072112310100100_ref36) 1999 Goyal (2021072112310100100_ref28) 2017; 2017 Ngiam (2021072112310100100_ref47) 2011 Grønbech (2021072112310100100_ref32) 2020 Luecken (2021072112310100100_ref18) 2019; 15 Liu (2021072112310100100_ref42) 2015; 2015 Smallwood (2021072112310100100_ref6) 2014; 11 Liu (2021072112310100100_ref10) 2019; 10 Chen (2021072112310100100_ref11) 2019; 37 Chen (2021072112310100100_ref19) 2019; 20 Kiselev (2021072112310100100_ref43) 2017; 14 Eisenberg (2021072112310100100_ref37) 2013; 29 Fessenden (2021072112310100100_ref8) 2016; 540 Wills (2021072112310100100_ref2) 2015; 24 Nakazawa (2021072112310100100_ref39) Kelsey (2021072112310100100_ref5) 2017; 358 Chappell (2021072112310100100_ref48) 2018; 19 Duren (2021072112310100100_ref23) 2018; 115 Rappoport (2021072112310100100_ref14) 2019; 47 Argelaguet (2021072112310100100_ref15) 2018; 14 (2021072112310100100_ref49) 2019 Stuart (2021072112310100100_ref25) 2019; 177 Cao (2021072112310100100_ref9) 2018; 361 (2021072112310100100_ref29) 2016 (2021072112310100100_ref16) 2020 Farris (2021072112310100100_ref35) 2010; 117 Packer (2021072112310100100_ref12) 2018; 34 McHugh (2021072112310100100_ref38) 2012; 22 Mike Wu (2021072112310100100_ref30) 2018 Patel (2021072112310100100_ref1) 2014; 344 Welch (2021072112310100100_ref22) 2019; 177 Ziegenhain (2021072112310100100_ref4) 2017; 65 Chalise (2021072112310100100_ref17) 2017; 12 Hie (2021072112310100100_ref21) 2019; 37 (2021072112310100100_ref45) 2019 Frei (2021072112310100100_ref7) 2016; 13 Lopez (2021072112310100100_ref26) 2018; 15 Xiong (2021072112310100100_ref27) 2019; 10 Schep (2021072112310100100_ref41) 2017; 14 Macaulay (2021072112310100100_ref13) 2017; 33 Yifeng Li (2021072112310100100_ref31) 2018; 19 |
| References_xml | – year: 2020 ident: 2021072112310100100_ref16 article-title: Benchmarking joint multi-omics dimensionality reduction approaches for cancer study publication-title: bioRxiv – volume: 20 start-page: 241 year: 2019 ident: 2021072112310100100_ref19 article-title: Assessment of computational methods for the analysis of single-cell ATAC-seq data publication-title: Genome Biol doi: 10.1186/s13059-019-1854-5 – start-page: 1905.02269 volume-title: arXiv year: 2019 ident: 2021072112310100100_ref49 article-title: joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements – volume: 7 start-page: 1130 year: 2014 ident: 2021072112310100100_ref3 article-title: Single-cell RNA sequencing reveals T helper cells synthesizing steroids De Novo to contribute to immune homeostasis publication-title: Cell Rep doi: 10.1016/j.celrep.2014.04.011 – volume: 15 start-page: 1053 year: 2018 ident: 2021072112310100100_ref26 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat Methods doi: 10.1038/s41592-018-0229-2 – volume: 14 start-page: e8124 year: 2018 ident: 2021072112310100100_ref15 article-title: Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets publication-title: Mol Syst Biol doi: 10.15252/msb.20178124 – volume: 14 start-page: 483 year: 2017 ident: 2021072112310100100_ref43 article-title: SC3: consensus clustering of single-cell RNA-seq data publication-title: Nat Methods doi: 10.1038/nmeth.4236 – volume: 37 start-page: 685 year: 2019 ident: 2021072112310100100_ref21 article-title: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0113-3 – volume: 18 start-page: 138 year: 2017 ident: 2021072112310100100_ref24 article-title: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics publication-title: Genome Biol doi: 10.1186/s13059-017-1269-0 – volume: 37 start-page: 1452 year: 2019 ident: 2021072112310100100_ref11 article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0290-0 – volume: 33 start-page: 155 year: 2017 ident: 2021072112310100100_ref13 article-title: Single-cell Multiomics: multiple measurements from single cells publication-title: Trends Genet doi: 10.1016/j.tig.2016.12.003 – volume: 117 start-page: 851 year: 2010 ident: 2021072112310100100_ref35 article-title: The Gini index and measures of inequality publication-title: The American Mathematical Monthly doi: 10.4169/000298910x523344 – volume: 34 start-page: 653 year: 2018 ident: 2021072112310100100_ref12 article-title: Single-cell multi-omics: an engine for new quantitative models of gene regulation publication-title: Trends Genet doi: 10.1016/j.tig.2018.06.001 – volume: 2017 start-page: 5104 year: 2017 ident: 2021072112310100100_ref28 article-title: Nonparametric variational auto-encoders for hierarchical representation learning publication-title: Ieee International Conference on Computer Vision (Iccv) doi: 10.1109/ICCV.2017.545 – volume: 12 start-page: e0176278 year: 2017 ident: 2021072112310100100_ref17 article-title: Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm publication-title: PloS one doi: 10.1371/journal.pone.0176278 – volume: 7 start-page: 54 year: 2018 ident: 2021072112310100100_ref20 article-title: Statistical single cell multi-omics integration publication-title: Current Opinion in Systems Biology doi: 10.1016/j.coisb.2018.01.003 – volume-title: 32nd Conference on Neural Information Processing Systems year: 2018 ident: 2021072112310100100_ref30 – year: 1999 ident: 2021072112310100100_ref36 article-title: Relative Distribution Methods in the Social Sciences – volume: 22 start-page: 276 year: 2012 ident: 2021072112310100100_ref38 article-title: Interrater reliability: the kappa statistic publication-title: Biochem Med doi: 10.11613/BM.2012.031 – volume: 19 start-page: 15 year: 2018 ident: 2021072112310100100_ref48 article-title: Single-cell (multi)omics technologies publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev-genom-091416-035324 – volume: 24 start-page: R74 year: 2015 ident: 2021072112310100100_ref2 article-title: Application of single-cell genomics in cancer: promise and challenges publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv235 – volume: 2 start-page: e190 year: 2006 ident: 2021072112310100100_ref44 article-title: Population structure and eigenanalysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020190 – start-page: 507 volume-title: Advances in neural information processing systems year: 2006 ident: 2021072112310100100_ref34 – volume: 18 start-page: 1 year: 2017 ident: 2021072112310100100_ref33 article-title: Splatter: simulation of single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-017-1305-0 – volume: 47 start-page: 1044 year: 2019 ident: 2021072112310100100_ref14 article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark (vol 46, pg 10546, 2018) publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1226 – volume: 358 start-page: 69 year: 2017 ident: 2021072112310100100_ref5 article-title: Single-cell epigenomics: recording the past and predicting the future publication-title: Science doi: 10.1126/science.aan6826 – year: 2016 ident: 2021072112310100100_ref29 article-title: Joint multimodal learning with deep generative models publication-title: arXiv – volume: 11 start-page: 817 year: 2014 ident: 2021072112310100100_ref6 article-title: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity publication-title: Nat Methods doi: 10.1038/nmeth.3035 – volume: 38 start-page: 147 year: 2020 ident: 2021072112310100100_ref46 article-title: Droplet scRNA-seq is not zero-inflated publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0379-5 – volume: 115 start-page: 7723 year: 2018 ident: 2021072112310100100_ref23 article-title: Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1805681115 – volume: 344 start-page: 1396 year: 2014 ident: 2021072112310100100_ref1 article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – volume: 361 start-page: 1380 year: 2018 ident: 2021072112310100100_ref9 article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells publication-title: Science doi: 10.1126/science.aau0730 – volume: 10 start-page: 4576 year: 2019 ident: 2021072112310100100_ref27 article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction publication-title: Nat Commun doi: 10.1038/s41467-019-12630-7 – volume: 177 start-page: 1873 year: 2019 ident: 2021072112310100100_ref22 article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 13 start-page: 269 year: 2016 ident: 2021072112310100100_ref7 article-title: Highly multiplexed simultaneous detection of RNAs and proteins in single cells publication-title: Nat Methods doi: 10.1038/nmeth.3742 – volume: 29 start-page: 569 year: 2013 ident: 2021072112310100100_ref37 article-title: Human housekeeping genes, revisited publication-title: Trends Genet doi: 10.1016/j.tig.2013.05.010 – volume-title: arXiv year: 2019 ident: 2021072112310100100_ref45 article-title: joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements – volume: 65 start-page: 631 year: 2017 ident: 2021072112310100100_ref4 article-title: Comparative analysis of single-cell RNA sequencing methods publication-title: Mol Cell doi: 10.1016/j.molcel.2017.01.023 – volume: 10 start-page: 470 year: 2019 ident: 2021072112310100100_ref10 article-title: Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity publication-title: Nat Commun doi: 10.1038/s41467-018-08205-7 – start-page: btaa293 year: 2020 ident: 2021072112310100100_ref32 article-title: scVAE: variational auto-encoders for single-cell gene expression data publication-title: Bioinformatics – volume: 46 start-page: D380 year: 2018 ident: 2021072112310100100_ref40 article-title: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1013 – volume: 2015 start-page: bav095 year: 2015 ident: 2021072112310100100_ref42 article-title: RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse publication-title: Database doi: 10.1093/database/bav095 – volume-title: Proceedings of the 28th International Conference on International Conference on Machine Learning year: 2011 ident: 2021072112310100100_ref47 article-title: Multimodal deep learning – volume: 19 start-page: 325 year: 2018 ident: 2021072112310100100_ref31 article-title: A review on machine learning principles for multi-view biological data integration publication-title: Brief Bioinform – volume: 15 start-page: e8746 year: 2019 ident: 2021072112310100100_ref18 article-title: Current best practices in single-cell RNA-seq analysis: a tutorial publication-title: Mol Syst Biol doi: 10.15252/msb.20188746 – ident: 2021072112310100100_ref39 article-title: Functions for Medical Statistics Book with Some Demographic Data – volume: 177 start-page: 1888 year: 2019 ident: 2021072112310100100_ref25 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 14 start-page: 975 year: 2017 ident: 2021072112310100100_ref41 article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data publication-title: Nat Methods doi: 10.1038/nmeth.4401 – volume: 540 start-page: 153 year: 2016 ident: 2021072112310100100_ref8 article-title: Metabolomics: small molecules, single cells publication-title: Nature doi: 10.1038/540153a |
| SSID | ssj0020781 |
| Score | 2.578373 |
| Snippet | Abstract
Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to... Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand... |
| SourceID | pubmedcentral proquest crossref oup |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accessibility Chromatin Datasets Heterogeneity Learning Multilayers Normal distribution Probabilistic models Problem Solving Protocol Regulatory mechanisms (biology) Transcription Transcriptomes |
| Title | Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data |
| URI | https://www.proquest.com/docview/2590044570 https://www.proquest.com/docview/2461398028 https://pubmed.ncbi.nlm.nih.gov/PMC8293818 |
| Volume | 22 |
| WOSCitedRecordID | wos000709466800058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL3ooODGtzg-xgiuhGLbpE26FB-4UhcKsyt5VUe0HWaq4N-b28bBiqjr3JJw8zpNTs4BODI8FlFokoDrkKGoNgtkgkwARbUwRRJxyRqzCX59LYbD7NYTZKc_XOFn9ESN1IlSUjps75baKBFoVHB3M5z9V6FeTfuIiAeo7u6f4X37trPxdB6zIabsMiK_bDGXK_9t3CosexBJTtteX4M5W67DYmsr-b4B9tzacfBUjco68K4QD0R69RHSeN-QqiB4SvBsCR7dkxq3rGYBqV6sizUEbbWIfpxUCGlLIhtjxZZK-06QV7oJ95cXd2dXgbdTCDQTtA64kkVqJMsoTdHpXCiFd6CGhSrmRsaaMTcb09S6tZjrzA2xyGQyLajQygE1S7egV1al3QaiMx2F1rA40ppZ5HaqMIulZFFBpTBJH44_c51rrzWOlhfPeXvnTXOXt9znrQ9Hs-BxK7Hxc9iB67TfI_Y-OzT3M3Gax2iLyljCwz4czordHMLsytJWry6GOVCTCQe1-sA7A2FWHapwd0vK0WOjxi0cYHKoZ-fP5u3CUoyEmIbruwe9evJq92FBv9Wj6WQA83woBs3A_gCBu_gK |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-joint-learning+analysis+model+of+single+cell+transcriptome+and+open+chromatin+accessibility+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zuo%2C+Chunman&rft.au=Chen%2C+Luonan&rft.date=2021-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa287&rft.externalDocID=10.1093%2Fbib%2Fbbaa287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |