Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data

Abstract Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Briefings in bioinformatics Ročník 22; číslo 4
Hlavní autori: Zuo, Chunman, Chen, Luonan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Predmet:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.
AbstractList Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.
Abstract Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.
Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.
Author Zuo, Chunman
Chen, Luonan
Author_xml – sequence: 1
  givenname: Chunman
  surname: Zuo
  fullname: Zuo, Chunman
  email: cmzuo13@163.com
– sequence: 2
  givenname: Luonan
  surname: Chen
  fullname: Chen, Luonan
  email: lnchen@sibs.ac.cn
BookMark eNp9kctq3TAQhkVJaC7tqi8gKJRCcSJbsiVvCiG9BQLZtGsxkseJDrLkSnbhvH1lzumioXQ1w-ibXzPzX5CTEAMS8qZmVzXr-bVx5toYgEbJF-S8FlJWgrXiZMs7WbWi42fkIucdYw2Tqn5JzjhvWEnlOcFPiHO1iy4slUdIwYVHCgH8PrtMpzigp3GkuZQ9Uove0yVByDa5eYkTFnagccZA7VOKEywuULAWc3bGebfs6QALvCKnI_iMr4_xkvz48vn77bfq_uHr3e3NfWWF4kslDYzdAKLnvGt7ppQxvFVsEMw0coDGCtF3vOsQwUrbIwz10EM3cmUNUxz5Jfl40J1XM-FgMZRhvZ6TmyDtdQSn_34J7kk_xl9aNT1XtSoC748CKf5cMS96cnnbGgLGNetGdDXvFWs29O0zdBfXVC5XqDI8E6KVrFD1gbIp5pxw1NYt5Upx-995XTO9maiLifpoYun58KznzwL_pt8d6LjO_wV_Ay6Qr1o
CitedBy_id crossref_primary_10_1016_j_coisb_2021_04_006
crossref_primary_10_1038_s41467_025_60575_x
crossref_primary_10_1093_nar_gkae409
crossref_primary_10_1093_bib_bbae485
crossref_primary_10_1016_j_gpb_2022_11_013
crossref_primary_10_1016_j_biopha_2023_115077
crossref_primary_10_1093_bib_bbaf136
crossref_primary_10_1016_j_gpb_2022_11_011
crossref_primary_10_1093_bib_bbad313
crossref_primary_10_1186_s13059_022_02739_2
crossref_primary_10_1038_s41467_022_33619_9
crossref_primary_10_1016_j_asoc_2024_112541
crossref_primary_10_1186_s13059_023_02850_y
crossref_primary_10_1109_TFUZZ_2024_3399740
crossref_primary_10_1002_qub2_91
crossref_primary_10_1016_j_hpj_2025_08_004
crossref_primary_10_1007_s43657_023_00125_x
crossref_primary_10_1016_j_tig_2024_09_006
crossref_primary_10_1093_bib_bbaf244
crossref_primary_10_1016_j_canlet_2024_216675
crossref_primary_10_1016_j_bspc_2024_106587
crossref_primary_10_3389_fgene_2022_867880
crossref_primary_10_1186_s13073_024_01415_3
crossref_primary_10_1109_TCBBIO_2025_3555170
crossref_primary_10_1002_advs_202401815
crossref_primary_10_3389_fgene_2022_977968
crossref_primary_10_1038_s41592_025_02737_9
crossref_primary_10_1002_alz_13790
crossref_primary_10_1371_journal_pcbi_1012625
crossref_primary_10_1093_bib_bbad293
crossref_primary_10_1016_j_compbiomed_2024_108561
crossref_primary_10_1093_bib_bbaf157
crossref_primary_10_1093_bib_bbaf355
crossref_primary_10_1093_bib_bbae102
crossref_primary_10_1093_nar_gkac006
crossref_primary_10_3389_fmicb_2025_1678891
crossref_primary_10_1002_aisy_202200247
crossref_primary_10_1093_bib_bbab473
crossref_primary_10_3389_fgene_2025_1566675
crossref_primary_10_1002_ctm2_70331
crossref_primary_10_15252_msb_202211001
crossref_primary_10_1186_s13059_024_03211_z
crossref_primary_10_1109_JBHI_2025_3532784
crossref_primary_10_3390_ijms22062822
crossref_primary_10_1016_j_crmeth_2021_100071
crossref_primary_10_1186_s13059_021_02595_6
crossref_primary_10_1007_s11390_025_4342_2
crossref_primary_10_1186_s13059_021_02556_z
crossref_primary_10_3390_ijms221910891
crossref_primary_10_1038_s41580_023_00615_w
crossref_primary_10_1186_s12859_024_05880_w
crossref_primary_10_2174_1574893618666221130094050
crossref_primary_10_1093_bib_bbaf184
crossref_primary_10_1016_j_compbiomed_2023_106865
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1145_3641284
crossref_primary_10_1038_s41467_023_43019_2
crossref_primary_10_1038_s41467_024_49171_7
crossref_primary_10_1146_annurev_biodatasci_020422_050645
crossref_primary_10_1360_TB_2024_0416
crossref_primary_10_1007_s11831_025_10230_x
crossref_primary_10_1093_nar_gkac781
Cites_doi 10.1186/s13059-019-1854-5
10.1016/j.celrep.2014.04.011
10.1038/s41592-018-0229-2
10.15252/msb.20178124
10.1038/nmeth.4236
10.1038/s41587-019-0113-3
10.1186/s13059-017-1269-0
10.1038/s41587-019-0290-0
10.1016/j.tig.2016.12.003
10.4169/000298910x523344
10.1016/j.tig.2018.06.001
10.1109/ICCV.2017.545
10.1371/journal.pone.0176278
10.1016/j.coisb.2018.01.003
10.11613/BM.2012.031
10.1146/annurev-genom-091416-035324
10.1093/hmg/ddv235
10.1371/journal.pgen.0020190
10.1186/s13059-017-1305-0
10.1093/nar/gky1226
10.1126/science.aan6826
10.1038/nmeth.3035
10.1038/s41587-019-0379-5
10.1073/pnas.1805681115
10.1126/science.1254257
10.1126/science.aau0730
10.1038/s41467-019-12630-7
10.1016/j.cell.2019.05.006
10.1038/nmeth.3742
10.1016/j.tig.2013.05.010
10.1016/j.molcel.2017.01.023
10.1038/s41467-018-08205-7
10.1093/nar/gkx1013
10.1093/database/bav095
10.15252/msb.20188746
10.1016/j.cell.2019.05.031
10.1038/nmeth.4401
10.1038/540153a
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaa287
DatabaseName Oxford Academic : Oxford Journals Open Access Collection journals [open access]
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

Genetics Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8293818
10_1093_bib_bbaa287
10.1093/bib/bbaa287
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 2017SHZDZX01
– fundername: ;
  grantid: 2017YFA0505500
– fundername: ;
  grantid: XDB38040400
– fundername: ;
  grantid: 31930022; 31771476
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c483t-7baf6da4933659088bb3580d40b27da2c4496366eeac7c9ead1d9a6f38cb083e3
IEDL.DBID TOX
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709466800058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 16:41:07 EDT 2025
Fri Sep 05 09:07:09 EDT 2025
Sun Nov 30 04:21:16 EST 2025
Sat Nov 29 05:43:22 EST 2025
Tue Nov 18 22:36:16 EST 2025
Wed Aug 28 03:20:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords single-cell multiple omics data
data integration
multimodal variational autoencoder
deep joint-learning model
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-7baf6da4933659088bb3580d40b27da2c4496366eeac7c9ead1d9a6f38cb083e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbaa287
PMID 33200787
PQID 2590044570
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293818
proquest_miscellaneous_2461398028
proquest_journals_2590044570
crossref_citationtrail_10_1093_bib_bbaa287
crossref_primary_10_1093_bib_bbaa287
oup_primary_10_1093_bib_bbaa287
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Han (2021072112310100100_ref40) 2018; 46
Mahata (2021072112310100100_ref3) 2014; 7
Welch (2021072112310100100_ref24) 2017; 18
Zappia (2021072112310100100_ref33) 2017; 18
Patterson (2021072112310100100_ref44) 2006; 2
Svensson (2021072112310100100_ref46) 2020; 38
Colomé-Tatché (2021072112310100100_ref20) 2018; 7
He (2021072112310100100_ref34) 2006
(2021072112310100100_ref36) 1999
Goyal (2021072112310100100_ref28) 2017; 2017
Ngiam (2021072112310100100_ref47) 2011
Grønbech (2021072112310100100_ref32) 2020
Luecken (2021072112310100100_ref18) 2019; 15
Liu (2021072112310100100_ref42) 2015; 2015
Smallwood (2021072112310100100_ref6) 2014; 11
Liu (2021072112310100100_ref10) 2019; 10
Chen (2021072112310100100_ref11) 2019; 37
Chen (2021072112310100100_ref19) 2019; 20
Kiselev (2021072112310100100_ref43) 2017; 14
Eisenberg (2021072112310100100_ref37) 2013; 29
Fessenden (2021072112310100100_ref8) 2016; 540
Wills (2021072112310100100_ref2) 2015; 24
Nakazawa (2021072112310100100_ref39)
Kelsey (2021072112310100100_ref5) 2017; 358
Chappell (2021072112310100100_ref48) 2018; 19
Duren (2021072112310100100_ref23) 2018; 115
Rappoport (2021072112310100100_ref14) 2019; 47
Argelaguet (2021072112310100100_ref15) 2018; 14
(2021072112310100100_ref49) 2019
Stuart (2021072112310100100_ref25) 2019; 177
Cao (2021072112310100100_ref9) 2018; 361
(2021072112310100100_ref29) 2016
(2021072112310100100_ref16) 2020
Farris (2021072112310100100_ref35) 2010; 117
Packer (2021072112310100100_ref12) 2018; 34
McHugh (2021072112310100100_ref38) 2012; 22
Mike Wu (2021072112310100100_ref30) 2018
Patel (2021072112310100100_ref1) 2014; 344
Welch (2021072112310100100_ref22) 2019; 177
Ziegenhain (2021072112310100100_ref4) 2017; 65
Chalise (2021072112310100100_ref17) 2017; 12
Hie (2021072112310100100_ref21) 2019; 37
(2021072112310100100_ref45) 2019
Frei (2021072112310100100_ref7) 2016; 13
Lopez (2021072112310100100_ref26) 2018; 15
Xiong (2021072112310100100_ref27) 2019; 10
Schep (2021072112310100100_ref41) 2017; 14
Macaulay (2021072112310100100_ref13) 2017; 33
Yifeng Li (2021072112310100100_ref31) 2018; 19
References_xml – year: 2020
  ident: 2021072112310100100_ref16
  article-title: Benchmarking joint multi-omics dimensionality reduction approaches for cancer study
  publication-title: bioRxiv
– volume: 20
  start-page: 241
  year: 2019
  ident: 2021072112310100100_ref19
  article-title: Assessment of computational methods for the analysis of single-cell ATAC-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1854-5
– start-page: 1905.02269
  volume-title: arXiv
  year: 2019
  ident: 2021072112310100100_ref49
  article-title: joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements
– volume: 7
  start-page: 1130
  year: 2014
  ident: 2021072112310100100_ref3
  article-title: Single-cell RNA sequencing reveals T helper cells synthesizing steroids De Novo to contribute to immune homeostasis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.04.011
– volume: 15
  start-page: 1053
  year: 2018
  ident: 2021072112310100100_ref26
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 14
  start-page: e8124
  year: 2018
  ident: 2021072112310100100_ref15
  article-title: Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– volume: 14
  start-page: 483
  year: 2017
  ident: 2021072112310100100_ref43
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4236
– volume: 37
  start-page: 685
  year: 2019
  ident: 2021072112310100100_ref21
  article-title: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0113-3
– volume: 18
  start-page: 138
  year: 2017
  ident: 2021072112310100100_ref24
  article-title: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1269-0
– volume: 37
  start-page: 1452
  year: 2019
  ident: 2021072112310100100_ref11
  article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0290-0
– volume: 33
  start-page: 155
  year: 2017
  ident: 2021072112310100100_ref13
  article-title: Single-cell Multiomics: multiple measurements from single cells
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2016.12.003
– volume: 117
  start-page: 851
  year: 2010
  ident: 2021072112310100100_ref35
  article-title: The Gini index and measures of inequality
  publication-title: The American Mathematical Monthly
  doi: 10.4169/000298910x523344
– volume: 34
  start-page: 653
  year: 2018
  ident: 2021072112310100100_ref12
  article-title: Single-cell multi-omics: an engine for new quantitative models of gene regulation
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2018.06.001
– volume: 2017
  start-page: 5104
  year: 2017
  ident: 2021072112310100100_ref28
  article-title: Nonparametric variational auto-encoders for hierarchical representation learning
  publication-title: Ieee International Conference on Computer Vision (Iccv)
  doi: 10.1109/ICCV.2017.545
– volume: 12
  start-page: e0176278
  year: 2017
  ident: 2021072112310100100_ref17
  article-title: Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm
  publication-title: PloS one
  doi: 10.1371/journal.pone.0176278
– volume: 7
  start-page: 54
  year: 2018
  ident: 2021072112310100100_ref20
  article-title: Statistical single cell multi-omics integration
  publication-title: Current Opinion in Systems Biology
  doi: 10.1016/j.coisb.2018.01.003
– volume-title: 32nd Conference on Neural Information Processing Systems
  year: 2018
  ident: 2021072112310100100_ref30
– year: 1999
  ident: 2021072112310100100_ref36
  article-title: Relative Distribution Methods in the Social Sciences
– volume: 22
  start-page: 276
  year: 2012
  ident: 2021072112310100100_ref38
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem Med
  doi: 10.11613/BM.2012.031
– volume: 19
  start-page: 15
  year: 2018
  ident: 2021072112310100100_ref48
  article-title: Single-cell (multi)omics technologies
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-091416-035324
– volume: 24
  start-page: R74
  year: 2015
  ident: 2021072112310100100_ref2
  article-title: Application of single-cell genomics in cancer: promise and challenges
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv235
– volume: 2
  start-page: e190
  year: 2006
  ident: 2021072112310100100_ref44
  article-title: Population structure and eigenanalysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020190
– start-page: 507
  volume-title: Advances in neural information processing systems
  year: 2006
  ident: 2021072112310100100_ref34
– volume: 18
  start-page: 1
  year: 2017
  ident: 2021072112310100100_ref33
  article-title: Splatter: simulation of single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1305-0
– volume: 47
  start-page: 1044
  year: 2019
  ident: 2021072112310100100_ref14
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark (vol 46, pg 10546, 2018)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1226
– volume: 358
  start-page: 69
  year: 2017
  ident: 2021072112310100100_ref5
  article-title: Single-cell epigenomics: recording the past and predicting the future
  publication-title: Science
  doi: 10.1126/science.aan6826
– year: 2016
  ident: 2021072112310100100_ref29
  article-title: Joint multimodal learning with deep generative models
  publication-title: arXiv
– volume: 11
  start-page: 817
  year: 2014
  ident: 2021072112310100100_ref6
  article-title: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3035
– volume: 38
  start-page: 147
  year: 2020
  ident: 2021072112310100100_ref46
  article-title: Droplet scRNA-seq is not zero-inflated
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0379-5
– volume: 115
  start-page: 7723
  year: 2018
  ident: 2021072112310100100_ref23
  article-title: Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1805681115
– volume: 344
  start-page: 1396
  year: 2014
  ident: 2021072112310100100_ref1
  article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
  doi: 10.1126/science.1254257
– volume: 361
  start-page: 1380
  year: 2018
  ident: 2021072112310100100_ref9
  article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  publication-title: Science
  doi: 10.1126/science.aau0730
– volume: 10
  start-page: 4576
  year: 2019
  ident: 2021072112310100100_ref27
  article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12630-7
– volume: 177
  start-page: 1873
  year: 2019
  ident: 2021072112310100100_ref22
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 13
  start-page: 269
  year: 2016
  ident: 2021072112310100100_ref7
  article-title: Highly multiplexed simultaneous detection of RNAs and proteins in single cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3742
– volume: 29
  start-page: 569
  year: 2013
  ident: 2021072112310100100_ref37
  article-title: Human housekeeping genes, revisited
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2013.05.010
– volume-title: arXiv
  year: 2019
  ident: 2021072112310100100_ref45
  article-title: joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements
– volume: 65
  start-page: 631
  year: 2017
  ident: 2021072112310100100_ref4
  article-title: Comparative analysis of single-cell RNA sequencing methods
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.01.023
– volume: 10
  start-page: 470
  year: 2019
  ident: 2021072112310100100_ref10
  article-title: Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08205-7
– start-page: btaa293
  year: 2020
  ident: 2021072112310100100_ref32
  article-title: scVAE: variational auto-encoders for single-cell gene expression data
  publication-title: Bioinformatics
– volume: 46
  start-page: D380
  year: 2018
  ident: 2021072112310100100_ref40
  article-title: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1013
– volume: 2015
  start-page: bav095
  year: 2015
  ident: 2021072112310100100_ref42
  article-title: RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse
  publication-title: Database
  doi: 10.1093/database/bav095
– volume-title: Proceedings of the 28th International Conference on International Conference on Machine Learning
  year: 2011
  ident: 2021072112310100100_ref47
  article-title: Multimodal deep learning
– volume: 19
  start-page: 325
  year: 2018
  ident: 2021072112310100100_ref31
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Brief Bioinform
– volume: 15
  start-page: e8746
  year: 2019
  ident: 2021072112310100100_ref18
  article-title: Current best practices in single-cell RNA-seq analysis: a tutorial
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188746
– ident: 2021072112310100100_ref39
  article-title: Functions for Medical Statistics Book with Some Demographic Data
– volume: 177
  start-page: 1888
  year: 2019
  ident: 2021072112310100100_ref25
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 14
  start-page: 975
  year: 2017
  ident: 2021072112310100100_ref41
  article-title: chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4401
– volume: 540
  start-page: 153
  year: 2016
  ident: 2021072112310100100_ref8
  article-title: Metabolomics: small molecules, single cells
  publication-title: Nature
  doi: 10.1038/540153a
SSID ssj0020781
Score 2.578373
Snippet Abstract Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to...
Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accessibility
Chromatin
Datasets
Heterogeneity
Learning
Multilayers
Normal distribution
Probabilistic models
Problem Solving Protocol
Regulatory mechanisms (biology)
Transcription
Transcriptomes
Title Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
URI https://www.proquest.com/docview/2590044570
https://www.proquest.com/docview/2461398028
https://pubmed.ncbi.nlm.nih.gov/PMC8293818
Volume 22
WOSCitedRecordID wos000709466800058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL3ooODGtzg-xgiuhGLbpE26FB-4UhcKsyt5VUe0HWaq4N-b28bBiqjr3JJw8zpNTs4BODI8FlFokoDrkKGoNgtkgkwARbUwRRJxyRqzCX59LYbD7NYTZKc_XOFn9ESN1IlSUjps75baKBFoVHB3M5z9V6FeTfuIiAeo7u6f4X37trPxdB6zIabsMiK_bDGXK_9t3CosexBJTtteX4M5W67DYmsr-b4B9tzacfBUjco68K4QD0R69RHSeN-QqiB4SvBsCR7dkxq3rGYBqV6sizUEbbWIfpxUCGlLIhtjxZZK-06QV7oJ95cXd2dXgbdTCDQTtA64kkVqJMsoTdHpXCiFd6CGhSrmRsaaMTcb09S6tZjrzA2xyGQyLajQygE1S7egV1al3QaiMx2F1rA40ppZ5HaqMIulZFFBpTBJH44_c51rrzWOlhfPeXvnTXOXt9znrQ9Hs-BxK7Hxc9iB67TfI_Y-OzT3M3Gax2iLyljCwz4czordHMLsytJWry6GOVCTCQe1-sA7A2FWHapwd0vK0WOjxi0cYHKoZ-fP5u3CUoyEmIbruwe9evJq92FBv9Wj6WQA83woBs3A_gCBu_gK
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-joint-learning+analysis+model+of+single+cell+transcriptome+and+open+chromatin+accessibility+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zuo%2C+Chunman&rft.au=Chen%2C+Luonan&rft.date=2021-07-01&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa287&rft.externalDocID=10.1093%2Fbib%2Fbbaa287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon