Counting and construction of holomorphic primary fields in free CFT4 from rings of functions on Calabi-Yau orbifolds

A bstract Counting formulae for general primary fields in free four dimensional conformal field theories of scalars, vectors and matrices are derived. These are specialised to count primaries which obey extremality conditions defined in terms of the dimensions and left or right spins (i.e. in terms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2017; číslo 8; s. 1 - 48
Hlavní autoři: de Mello Koch, Robert, Rabambi, Phumudzo, Rabe, Randle, Ramgoolam, Sanjaye
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2017
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract Counting formulae for general primary fields in free four dimensional conformal field theories of scalars, vectors and matrices are derived. These are specialised to count primaries which obey extremality conditions defined in terms of the dimensions and left or right spins (i.e. in terms of relations between the charges under the Cartan subgroup of SO(4, 2)). The construction of primary fields for scalar field theory is mapped to a problem of determining multi-variable polynomials subject to a system of symmetry and differential constraints. For the extremal primaries, we give a construction in terms of holomorphic polynomial functions on permutation orbifolds, which are shown to be Calabi-Yau spaces.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP08(2017)077