Global anomalies in the Standard Model(s) and beyond
A bstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM /Γ n , with G SM = SU(3) × SU(...
Saved in:
| Published in: | The journal of high energy physics Vol. 2020; no. 7; pp. 1 - 51 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2020
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1029-8479, 1029-8479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A
bstract
We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be
G
=
G
SM
/Γ
n
, with
G
SM
= SU(3)
×
SU(2)
×
U(1) and Γ
n
isomorphic to ℤ/
n
where
n
∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3)
×
SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups
Ω
5
Spin
BG
using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1)
m
for any integer
m
, which correspond to phenomenologically well-motivated BSM theories featuring multiple
Z′
bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU(
N
)
×
Sp(
M
)
×
U(1), which share the phase structure of the SM for certain (
N, M
). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spin
c
structure, for example by gauging
B − L
. Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies. |
|---|---|
| AbstractList | A
bstract
We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be
G
=
G
SM
/Γ
n
, with
G
SM
= SU(3)
×
SU(2)
×
U(1) and Γ
n
isomorphic to ℤ/
n
where
n
∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3)
×
SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups
Ω
5
Spin
BG
using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1)
m
for any integer
m
, which correspond to phenomenologically well-motivated BSM theories featuring multiple
Z′
bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU(
N
)
×
Sp(
M
)
×
U(1), which share the phase structure of the SM for certain (
N, M
). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spin
c
structure, for example by gauging
B − L
. Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies. Abstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM/Γ n , with G SM = SU(3) × SU(2) × U(1) and Γ n isomorphic to ℤ/n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups Ω 5 Spin BG $$ {\Omega}_5^{\mathrm{Spin}}(BG) $$ using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1) m for any integer m, which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU(N ) × Sp(M ) × U(1), which share the phase structure of the SM for certain (N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spinc structure, for example by gauging B − L. Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies. We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM /Γ n , with G SM = SU(3) × SU(2) × U(1) and Γ n isomorphic to ℤ/ n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups $$ {\Omega}_5^{\mathrm{Spin}}(BG) $$ Ω 5 Spin BG using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1) m for any integer m , which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU( N ) × Sp( M ) × U(1), which share the phase structure of the SM for certain ( N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spin c structure, for example by gauging B − L . Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies. We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = GSM/Γn, with GSM = SU(3) × SU(2) × U(1) and Γn isomorphic to ℤ/n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups Ω5SpinBG using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1)m for any integer m, which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU(N ) × Sp(M ) × U(1), which share the phase structure of the SM for certain (N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spinc structure, for example by gauging B − L. Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies. |
| ArticleNumber | 232 |
| Author | Lohitsiri, Nakarin Davighi, Joe Gripaios, Ben |
| Author_xml | – sequence: 1 givenname: Joe orcidid: 0000-0003-1002-0972 surname: Davighi fullname: Davighi, Joe email: jed60@cam.ac.uk organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge – sequence: 2 givenname: Ben surname: Gripaios fullname: Gripaios, Ben organization: Cavendish Laboratory, University of Cambridge – sequence: 3 givenname: Nakarin orcidid: 0000-0002-9126-935X surname: Lohitsiri fullname: Lohitsiri, Nakarin organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge |
| BookMark | eNp1kEtr3DAUhUVJoZO0624N2UwWk7l62JKXJaR5kJBCk7W4kq4nHhxpKjmL_Pt64pSWQla6iO87HM4hO4gpEmNfOZxyAL2-vjz_AXopQMCJkOIDW3AQ7coo3R78c39ih6VsAXjNW1gwdTEkh0OFMT3h0FOp-liNj1T9HDEGzKG6TYGGZTmZkFA5ekkxfGYfOxwKfXl7j9jD9_P7s8vVzd3F1dm3m5VXRo4r5TWCQde0oeFSae68803ntHCEreNScvCuU0GDUUF2svHkedMSegCJRh6xqzk3JNzaXe6fML_YhL19_Uh5YzGPvR_IOt5A15FS1HlVB3KtdGg0ucZR0HU9ZR3PWbucfj1TGe02Pec41bdCCaON4UJOVD1TPqdSMnXW9yOOfYpjxn6wHOx-bDuPbfdj22nsyVv_5_1p-74Bs1EmMm4o_-3znvIbl72Q0A |
| CitedBy_id | crossref_primary_10_1007_JHEP09_2025_121 crossref_primary_10_1007_JHEP07_2024_199 crossref_primary_10_1007_JHEP09_2022_193 crossref_primary_10_1007_JHEP09_2022_159 crossref_primary_10_1007_JHEP04_2023_030 crossref_primary_10_1007_JHEP05_2024_325 crossref_primary_10_1007_JHEP07_2023_147 crossref_primary_10_1007_JHEP04_2025_180 crossref_primary_10_1112_jlms_12368 crossref_primary_10_1007_JHEP07_2024_227 crossref_primary_10_1007_JHEP10_2023_025 crossref_primary_10_1007_JHEP12_2021_096 crossref_primary_10_1007_JHEP03_2024_119 crossref_primary_10_1007_JHEP05_2021_267 crossref_primary_10_1007_JHEP02_2023_050 crossref_primary_10_1140_epjc_s10052_022_10693_3 crossref_primary_10_1007_JHEP12_2021_055 crossref_primary_10_1007_JHEP08_2021_101 crossref_primary_10_1002_andp_202300031 crossref_primary_10_1007_JHEP07_2023_019 crossref_primary_10_1007_JHEP09_2022_147 crossref_primary_10_3390_sym14071475 crossref_primary_10_1007_JHEP03_2023_090 crossref_primary_10_1007_JHEP06_2024_202 crossref_primary_10_1103_PhysRevX_14_031033 crossref_primary_10_1103_PhysRevX_11_011063 crossref_primary_10_1007_JHEP02_2022_144 crossref_primary_10_1103_PhysRevX_15_031011 crossref_primary_10_1007_JHEP07_2024_117 crossref_primary_10_1093_ptep_ptab061 crossref_primary_10_1007_JHEP10_2023_116 crossref_primary_10_1088_1751_8121_ad72bb crossref_primary_10_1007_JHEP07_2024_112 crossref_primary_10_1007_JHEP02_2025_178 crossref_primary_10_1007_JHEP07_2022_001 crossref_primary_10_1007_JHEP07_2024_157 crossref_primary_10_1007_JHEP11_2023_100 |
| Cites_doi | 10.2140/pjm.1987.128.1 10.1007/JHEP07(2020)062 10.1007/s00220-005-1482-7 10.1007/BF01197630 10.1090/pspum/003/0139181 10.1103/PhysRev.177.2426 10.1007/BF01444915 10.1103/PhysRevD.98.030001 10.4310/AMSA.2019.v4.n2.a2 10.1007/JHEP08(2019)003 10.1017/S0305004100052105 10.1093/ptep/ptw083 10.1016/S0764-4442(97)88715-0 10.1016/0370-2693(82)90728-6 10.21468/SciPostPhys.7.5.059 10.1016/0370-2693(78)90167-3 10.1016/0370-2693(78)90616-0 10.1063/1.5082852 10.1007/BF01212448 10.2140/gt.2016.20.257 10.1007/JHEP07(2017)104 10.1007/JHEP08(2015)130 10.1017/S0305004100049410 10.1090/S0002-9904-1966-11486-6 10.1007/s00220-015-2369-x 10.1017/S0305004100051872 10.1103/RevModPhys.81.1199 10.1007/JHEP05(2020)098 10.1103/PhysRevLett.123.151601 10.1103/RevModPhys.88.035001 10.1063/1.530747 10.2307/2372495 10.1007/JHEP08(2019)064 10.1007/BF02823296 10.1007/s00220-013-1880-1 10.4310/jdg/1217361066 10.1016/S0393-0440(97)80160-X 10.1007/BF02564270 10.1007/JHEP09(2016)022 10.1103/PhysRevB.94.195150 10.1103/PhysRevResearch.2.023356 10.1140/epjc/s10052-018-5725-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/JHEP07(2020)232 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (no login required) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Open Access (no login required) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 51 |
| ExternalDocumentID | oai_doaj_org_article_b160ffe44efc45deb93ba87eb6bed755 10_1007_JHEP07_2020_232 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFFHD AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c483t-4c7a08ab69d613471bcbc6fb72bea9b13310cbf4d7084d3f36cec169eac003a83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000559805700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Fri Oct 03 12:49:23 EDT 2025 Sat Oct 18 23:09:58 EDT 2025 Tue Nov 18 20:54:18 EST 2025 Sat Nov 29 06:04:42 EST 2025 Fri Feb 21 02:48:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Anomalies in Field and String Theories Beyond Standard Model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-4c7a08ab69d613471bcbc6fb72bea9b13310cbf4d7084d3f36cec169eac003a83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9126-935X 0000-0003-1002-0972 |
| OpenAccessLink | https://doaj.org/article/b160ffe44efc45deb93ba87eb6bed755 |
| PQID | 2428788123 |
| PQPubID | 2034718 |
| PageCount | 51 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b160ffe44efc45deb93ba87eb6bed755 proquest_journals_2428788123 crossref_citationtrail_10_1007_JHEP07_2020_232 crossref_primary_10_1007_JHEP07_2020_232 springer_journals_10_1007_JHEP07_2020_232 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | D.S. Freed and G.W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys.263 (2006) 89 [hep-th/0409135] [INSPIRE]. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2000). [55] C. Teleman, Representation theory, (2005). M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Phil. Soc.78 (1975) 405. S.L. Glashow, A. de Rujula and H. Georgi, Trinification of all elementary particle forces, in Fifth workshop on grand unification, Providence, RI, U.S.A., 12–14 April 1984, pg. 0088. S. Monnier, Hamiltonian anomalies from extended field theories, Commun. Math. Phys.338 (2015) 1327 [arXiv:1410.7442] [INSPIRE]. A. Borel and J.-P. Serre, Groupes de Lie et puissances ŕeduites de Steenrod (in French), Amer. J. Math.75 (1953) 409. X.-Z. Dai and D.S. Freed, η invariants and determinant lines, J. Math. Phys.35 (1994) 5155 [Erratum ibid.42 (2001) 2343] [hep-th/9405012] [INSPIRE]. E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE]. N. Lohitsiri and D. Tong, If the weak were strong and the strong were weak, SciPost Phys.7 (2019) 059 [arXiv:1907.08221] [INSPIRE]. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE]. G.M. Pelaggi, A. Strumia and S. Vignali, Totally asymptotically free trinification, JHEP08 (2015) 130 [arXiv:1507.06848] [INSPIRE]. M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Phil. Soc.79 (1976) 71. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D98 (2018) 030001 [INSPIRE]. J. McCleary, A user’s guide to spectral sequences, second edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, U.K. (2000). B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP02 (2019) 082 [Erratum ibid.08 (2019) 064] [arXiv:1812.04602] [INSPIRE]. N. Pointet-Tischler, La suspension cohomologique des espaces d’Eilenberg-MacLane (in French), Comptes Rendus Acad. Sci.325 (1997) 1113. K. Yonekura, Dai-Freed theorem and topological phases of matter, JHEP09 (2016) 022 [arXiv:1607.01873] [INSPIRE]. X. Gu, On the cohomology of the classifying spaces of projective unitary groups, arXiv:1612.00506. J. Wang and X.-G. Wen, A non-perturbative definition of the Standard Models, Phys. Rev. Res.2 (2020) 023356 [arXiv:1809.11171] [INSPIRE]. A. Bahri and P. Gilkey, The eta invariant, pinc bordism, and equivariant spinc bordism for cyclic 2-groups, Pacific J. Math.128 (1987) 1. M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc.77 (1975) 43. Z. Wan and J. Wang, Beyond Standard Models and grand unifications: anomalies, topological terms, and dynamical constraints via cobordisms, JHEP07 (2020) 062 [arXiv:1910.14668] [INSPIRE]. A. Back, P.G.O. Freund and M. Forger, New gravitational instantons and universal spin structures, Phys. Lett. B77 (1978) 181 [INSPIRE]. E. Witten, An SU(2) anomaly, Phys. Lett. B117 (1982) 324 [INSPIRE]. P. Langacker, The physics of heavy Z′Igauge bosons, Rev. Mod. Phys.81 (2009) 1199 [arXiv:0801.1345] [INSPIRE]. E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys.88 (2016) 035001 [arXiv:1508.04715] [INSPIRE]. M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math.3 (1961) 7. N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE]. D. Tong, Lectures on gauge theory, (2018). H. Cartan, Sur l’it́eration des oṕerations de Steenrod (in French), Comm. Math. Helv.29 (1955) 40. J. Wang, X.-G. Wen and E. Witten, A new SU(2) anomaly, J. Math. Phys.60 (2019) 052301 [arXiv:1810.00844] [INSPIRE]. A. Scorpan, The wild world of 4-manifolds, American Mathematical Society, U.S.A. (2005). J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, Eur. Phys. J. C78 (2018) 238 [arXiv:1705.03447] [INSPIRE]. A. Hatcher, Spectral sequences, (2004). J. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, U.S.A. (1999). E. Witten, The “parity” anomaly on an unorientable manifold, Phys. Rev. B94 (2016) 195150 [arXiv:1605.02391] [INSPIRE]. D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys.326 (2014) 459 [arXiv:1212.1692] [INSPIRE]. J. Davighi and N. Lohitsiri, Anomaly interplay in U(2) gauge theories, JHEP05 (2020) 098 [arXiv:2001.07731] [INSPIRE]. D.B. Costa, B.A. Dobrescu and P.J. Fox, General solution to the U(1) anomaly equations, Phys. Rev. Lett.123 (2019) 151601 [arXiv:1905.13729] [INSPIRE]. E. Witten, Global gravitational anomalies, Commun. Math. Phys.100 (1985) 197 [INSPIRE]. Z. Wan and J. Wang, Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl.4 (2019) 107 [arXiv:1812.11967] [INSPIRE]. S.W. Hawking and C.N. Pope, Generalized spin structures in quantum gravity, Phys. Lett. B73 (1978) 42 [INSPIRE]. P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Annalen295 (1993) 745. E. Witten and K. Yonekura, Anomaly inflow and the η-invariant, in The Shoucheng Zhang memorial workshop, (2019) [arXiv:1909.08775] [INSPIRE]. D.S. Freed, Pions and generalized cohomology, J. Diff. Geom.80 (2008) 45 [hep-th/0607134] [INSPIRE]. P. Teichner, Topological four-manifolds with finite fundamental group, Ph.D. thesis, Johannes-Gutenberg Universit¨at, Mainz, Germany (1992) J.S. Bell and R. Jackiw, A PCAC puzzle: π0→ γγ in the σ model, Nuovo Cim. A60 (1969) 47 [INSPIRE]. I. García-Etxebarria and M. Montero, Dai-Freed anomalies in particle physics, JHEP08 (2019) 003 [arXiv:1808.00009] [INSPIRE]. L. Breen, R. Mikhailov and A. Touzé, Derived functors of the divided power functors, Geom. Topol.20 (2016) 257. D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE]. D. Tong, Line operators in the Standard Model, JHEP07 (2017) 104 [arXiv:1705.01853] [INSPIRE]. E. Witten, Global anomalies in string theory, in Symposium on anomalies, geometry, Topology, Argonne, IL, U.S.A., 28–30 March 1985. D. Anderson, E. Brown Jr. and F.P. Peterson, Spin cobordism, Bull. Amer. Math. Soc.72 (1966) 256. S.J. Avis and C.J. Isham, Generalized spin structures on four-dimensional space-times, Commun. Math. Phys.72 (1980) 103 [INSPIRE]. 13517_CR11 13517_CR10 13517_CR54 13517_CR13 13517_CR12 13517_CR51 13517_CR50 13517_CR53 13517_CR52 13517_CR19 13517_CR18 13517_CR15 13517_CR14 13517_CR17 13517_CR16 13517_CR22 13517_CR21 13517_CR24 13517_CR23 13517_CR20 13517_CR29 13517_CR26 13517_CR25 13517_CR28 13517_CR27 13517_CR33 13517_CR32 13517_CR35 13517_CR34 13517_CR31 13517_CR30 13517_CR37 13517_CR36 13517_CR39 13517_CR38 13517_CR5 13517_CR6 13517_CR7 13517_CR8 13517_CR9 13517_CR44 13517_CR43 13517_CR46 13517_CR45 13517_CR40 13517_CR42 13517_CR41 13517_CR1 13517_CR48 13517_CR2 13517_CR47 13517_CR3 13517_CR4 13517_CR49 |
| References_xml | – reference: P. Langacker, The physics of heavy Z′Igauge bosons, Rev. Mod. Phys.81 (2009) 1199 [arXiv:0801.1345] [INSPIRE]. – reference: S.L. Glashow, A. de Rujula and H. Georgi, Trinification of all elementary particle forces, in Fifth workshop on grand unification, Providence, RI, U.S.A., 12–14 April 1984, pg. 0088. – reference: J. Wang, X.-G. Wen and E. Witten, A new SU(2) anomaly, J. Math. Phys.60 (2019) 052301 [arXiv:1810.00844] [INSPIRE]. – reference: E. Witten, Global gravitational anomalies, Commun. Math. Phys.100 (1985) 197 [INSPIRE]. – reference: M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Phil. Soc.78 (1975) 405. – reference: G.M. Pelaggi, A. Strumia and S. Vignali, Totally asymptotically free trinification, JHEP08 (2015) 130 [arXiv:1507.06848] [INSPIRE]. – reference: Particle Data Group collaboration, Review of particle physics, Phys. Rev. D98 (2018) 030001 [INSPIRE]. – reference: M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math.3 (1961) 7. – reference: Z. Wan and J. Wang, Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl.4 (2019) 107 [arXiv:1812.11967] [INSPIRE]. – reference: X. Gu, On the cohomology of the classifying spaces of projective unitary groups, arXiv:1612.00506. – reference: S. Monnier, Hamiltonian anomalies from extended field theories, Commun. Math. Phys.338 (2015) 1327 [arXiv:1410.7442] [INSPIRE]. – reference: S.J. Avis and C.J. Isham, Generalized spin structures on four-dimensional space-times, Commun. Math. Phys.72 (1980) 103 [INSPIRE]. – reference: E. Witten, The “parity” anomaly on an unorientable manifold, Phys. Rev. B94 (2016) 195150 [arXiv:1605.02391] [INSPIRE]. – reference: M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Phil. Soc.79 (1976) 71. – reference: I. García-Etxebarria and M. Montero, Dai-Freed anomalies in particle physics, JHEP08 (2019) 003 [arXiv:1808.00009] [INSPIRE]. – reference: J. Wang and X.-G. Wen, A non-perturbative definition of the Standard Models, Phys. Rev. Res.2 (2020) 023356 [arXiv:1809.11171] [INSPIRE]. – reference: A. Borel and J.-P. Serre, Groupes de Lie et puissances ŕeduites de Steenrod (in French), Amer. J. Math.75 (1953) 409. – reference: D. Anderson, E. Brown Jr. and F.P. Peterson, Spin cobordism, Bull. Amer. Math. Soc.72 (1966) 256. – reference: D.B. Costa, B.A. Dobrescu and P.J. Fox, General solution to the U(1) anomaly equations, Phys. Rev. Lett.123 (2019) 151601 [arXiv:1905.13729] [INSPIRE]. – reference: B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP02 (2019) 082 [Erratum ibid.08 (2019) 064] [arXiv:1812.04602] [INSPIRE]. – reference: M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc.77 (1975) 43. – reference: D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE]. – reference: J. McCleary, A user’s guide to spectral sequences, second edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, U.K. (2000). – reference: Z. Wan and J. Wang, Beyond Standard Models and grand unifications: anomalies, topological terms, and dynamical constraints via cobordisms, JHEP07 (2020) 062 [arXiv:1910.14668] [INSPIRE]. – reference: D. Tong, Line operators in the Standard Model, JHEP07 (2017) 104 [arXiv:1705.01853] [INSPIRE]. – reference: S.W. Hawking and C.N. Pope, Generalized spin structures in quantum gravity, Phys. Lett. B73 (1978) 42 [INSPIRE]. – reference: E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys.88 (2016) 035001 [arXiv:1508.04715] [INSPIRE]. – reference: E. Witten, Global anomalies in string theory, in Symposium on anomalies, geometry, Topology, Argonne, IL, U.S.A., 28–30 March 1985. – reference: A. Hatcher, Spectral sequences, (2004). – reference: P. Teichner, Topological four-manifolds with finite fundamental group, Ph.D. thesis, Johannes-Gutenberg Universit¨at, Mainz, Germany (1992), – reference: L. Breen, R. Mikhailov and A. Touzé, Derived functors of the divided power functors, Geom. Topol.20 (2016) 257. – reference: J. Davighi and N. Lohitsiri, Anomaly interplay in U(2) gauge theories, JHEP05 (2020) 098 [arXiv:2001.07731] [INSPIRE]. – reference: J.S. Bell and R. Jackiw, A PCAC puzzle: π0→ γγ in the σ model, Nuovo Cim. A60 (1969) 47 [INSPIRE]. – reference: E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE]. – reference: A. Scorpan, The wild world of 4-manifolds, American Mathematical Society, U.S.A. (2005). – reference: H. Cartan, Sur l’it́eration des oṕerations de Steenrod (in French), Comm. Math. Helv.29 (1955) 40. – reference: D.S. Freed and G.W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys.263 (2006) 89 [hep-th/0409135] [INSPIRE]. – reference: D.S. Freed, Pions and generalized cohomology, J. Diff. Geom.80 (2008) 45 [hep-th/0607134] [INSPIRE]. – reference: S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE]. – reference: X.-Z. Dai and D.S. Freed, η invariants and determinant lines, J. Math. Phys.35 (1994) 5155 [Erratum ibid.42 (2001) 2343] [hep-th/9405012] [INSPIRE]. – reference: K. Yonekura, Dai-Freed theorem and topological phases of matter, JHEP09 (2016) 022 [arXiv:1607.01873] [INSPIRE]. – reference: J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, Eur. Phys. J. C78 (2018) 238 [arXiv:1705.03447] [INSPIRE]. – reference: N. Pointet-Tischler, La suspension cohomologique des espaces d’Eilenberg-MacLane (in French), Comptes Rendus Acad. Sci.325 (1997) 1113. – reference: A. Back, P.G.O. Freund and M. Forger, New gravitational instantons and universal spin structures, Phys. Lett. B77 (1978) 181 [INSPIRE]. – reference: E. Witten and K. Yonekura, Anomaly inflow and the η-invariant, in The Shoucheng Zhang memorial workshop, (2019) [arXiv:1909.08775] [INSPIRE]. – reference: P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Annalen295 (1993) 745. – reference: A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2000). [55] C. Teleman, Representation theory, (2005). – reference: D. Tong, Lectures on gauge theory, (2018). – reference: E. Witten, An SU(2) anomaly, Phys. Lett. B117 (1982) 324 [INSPIRE]. – reference: A. Bahri and P. Gilkey, The eta invariant, pinc bordism, and equivariant spinc bordism for cyclic 2-groups, Pacific J. Math.128 (1987) 1. – reference: J. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, U.S.A. (1999). – reference: N. Lohitsiri and D. Tong, If the weak were strong and the strong were weak, SciPost Phys.7 (2019) 059 [arXiv:1907.08221] [INSPIRE]. – reference: D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys.326 (2014) 459 [arXiv:1212.1692] [INSPIRE]. – reference: N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE]. – ident: 13517_CR50 doi: 10.2140/pjm.1987.128.1 – ident: 13517_CR14 doi: 10.1007/JHEP07(2020)062 – ident: 13517_CR27 doi: 10.1007/s00220-005-1482-7 – ident: 13517_CR52 doi: 10.1007/BF01197630 – ident: 13517_CR28 doi: 10.1090/pspum/003/0139181 – ident: 13517_CR15 doi: 10.1103/PhysRev.177.2426 – ident: 13517_CR35 doi: 10.1007/BF01444915 – ident: 13517_CR41 – ident: 13517_CR1 doi: 10.1103/PhysRevD.98.030001 – ident: 13517_CR13 doi: 10.4310/AMSA.2019.v4.n2.a2 – ident: 13517_CR22 – ident: 13517_CR10 doi: 10.1007/JHEP08(2019)003 – ident: 13517_CR20 doi: 10.1017/S0305004100052105 – ident: 13517_CR37 doi: 10.1093/ptep/ptw083 – ident: 13517_CR53 doi: 10.1016/S0764-4442(97)88715-0 – ident: 13517_CR3 doi: 10.1016/0370-2693(82)90728-6 – ident: 13517_CR42 doi: 10.21468/SciPostPhys.7.5.059 – ident: 13517_CR49 doi: 10.1016/0370-2693(78)90167-3 – ident: 13517_CR51 doi: 10.1016/0370-2693(78)90616-0 – ident: 13517_CR29 – ident: 13517_CR18 doi: 10.1063/1.5082852 – ident: 13517_CR5 doi: 10.1007/BF01212448 – ident: 13517_CR25 – ident: 13517_CR21 – ident: 13517_CR39 doi: 10.2140/gt.2016.20.257 – ident: 13517_CR2 doi: 10.1007/JHEP07(2017)104 – ident: 13517_CR48 doi: 10.1007/JHEP08(2015)130 – ident: 13517_CR4 doi: 10.1017/S0305004100049410 – ident: 13517_CR34 – ident: 13517_CR32 doi: 10.1090/S0002-9904-1966-11486-6 – ident: 13517_CR24 doi: 10.1007/s00220-015-2369-x – ident: 13517_CR19 doi: 10.1017/S0305004100051872 – ident: 13517_CR38 – ident: 13517_CR43 doi: 10.1103/RevModPhys.81.1199 – ident: 13517_CR30 – ident: 13517_CR40 doi: 10.1007/JHEP05(2020)098 – ident: 13517_CR46 doi: 10.1103/PhysRevLett.123.151601 – ident: 13517_CR47 – ident: 13517_CR7 doi: 10.1103/RevModPhys.88.035001 – ident: 13517_CR6 doi: 10.1063/1.530747 – ident: 13517_CR36 doi: 10.2307/2372495 – ident: 13517_CR45 doi: 10.1007/JHEP08(2019)064 – ident: 13517_CR16 doi: 10.1007/BF02823296 – ident: 13517_CR54 – ident: 13517_CR23 doi: 10.1007/s00220-013-1880-1 – ident: 13517_CR11 doi: 10.4310/jdg/1217361066 – ident: 13517_CR33 – ident: 13517_CR26 doi: 10.1016/S0393-0440(97)80160-X – ident: 13517_CR9 – ident: 13517_CR31 doi: 10.1007/BF02564270 – ident: 13517_CR17 doi: 10.1007/JHEP09(2016)022 – ident: 13517_CR8 doi: 10.1103/PhysRevB.94.195150 – ident: 13517_CR12 doi: 10.1103/PhysRevResearch.2.023356 – ident: 13517_CR44 doi: 10.1140/epjc/s10052-018-5725-0 |
| SSID | ssj0015190 |
| Score | 2.602357 |
| Snippet | A
bstract
We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by... We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering... Abstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algebra Anomalies Anomalies in Field and String Theories Beyond Standard Model Bosons Classical and Quantum Gravitation Constraint modelling Eigenvalues Elementary Particles Fermions Gaging Grand unified theory High energy physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Solid phases String Theory |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3BUiQuFFpQF2iVQw-7h3Sd2GsnJ0QRCJCKVgIkeooy_kAr0Sxstv39eBJnEZXgxDUZR1bGHj97xu8BfBeJzoVHxrHNVBqLJJEx5s7FqbLGldQGTSM2oS4vs9vbfBKuR9ehrLKLiU2gbtmeqW7bB-GRmWk6MR-lhPQzvzjxw4fHmDSkKNcaBDVWYY2It1gP1ibnvya_l1kFj1ZYR-_D1Oji7GTC1MBv_9kw5emLlakh8H-BOv9LlDbrz-nH9-35FmwGHBodtQNnG1Zs9QnWm3pQXX8G0WoBRGU1--ORuq2jaRV5rBhdhaOHiETU7gf10JuYCJt7MDtwc3pyfXwWB4GFWIuML2KhVcmyEmVuJF0pTVCjlg5VirbM0W9fE6apkk-xTBjuuNRWJzL3wdoHgzLju9CrZpX9AhHmEpXh2tEhM1osGXIrkWv0mC5NRB9-dD-30IF9nEQw7ouON7n1RkHeKLw3-jBYNnhoiTdeN_1J3lqaEWN282A2vyvCBCwwkcw5K4R1WoyNxZxjmZEiDFqjxuM-HHTeK8I0rotnZ_Vh2Pn_-fUr_dl7-1P7sEGWbc3vAfQW87_2K3zQ_xbTev4tjNknjuj6ug priority: 102 providerName: ProQuest – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MqeDF3-J0Sg8etkOlabKkPerYGB7GQIXdSl-ayGB2sk7_fpO0nUzxoLeSvgfhJS_5krz3PYAbRmTMDDL2VSRCnxHCfYy19kOhMp1aHcxcsQkxHkfTaTxpAKlzYVy0e_0k6VbqOtntYTSYBKJjDutB18CALdi2XGI2iqtvExyqhwMDSIKaween0sbm4zj6N4Dlt7dQt8UMD_7RuUPYr_Ckd1dOgCNoqPwYdl1cpyxOgJWc_l6aL14N4laFN8s9g_m8x-oKwbPF0OadomtEMg9dPsspPA8HT_2RXxVK8CWL6MpnUqRBlCKPM25TQwlKlFyjCFGlMZpjKAmkjcgTQcQyqimXShIem0XXOHUa0TNo5otcnYOHMUeRUantZTEqTAOkiiOVaLBZSFgLbmsLJrJiEbfFLOZJzX9cmiKxpkiMKVrQWSu8lQQav4ve2yFZi1nma9ewWL4klSMlSHigtWJMacl6mcKYYhrZyi6oMtHrtaBdD2hSuWORhPZgGBksQ1vQrQfw6_cv_bn4g-wl7NnPMpC3Dc3V8l1dwY78WM2K5bWbo5997OFO priority: 102 providerName: Springer Nature |
| Title | Global anomalies in the Standard Model(s) and beyond |
| URI | https://link.springer.com/article/10.1007/JHEP07(2020)232 https://www.proquest.com/docview/2428788123 https://doaj.org/article/b160ffe44efc45deb93ba87eb6bed755 |
| Volume | 2020 |
| WOSCitedRecordID | wos000559805700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (no login required) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Open Access (no login required) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50VfAiPnF1XXrwsHuopk02aY66rKjgUnzA6qV00gQErWJXf79JH6sriBcvPTSTMswkzTfJ5BuAQxYoySwy9nUkQp8FAfdRGuOHQmcmdX0wK4tNiPE4mkxk_K3Ul8sJq-iBK8MdY8CJMZoxbRQbZBolxTRylTxQZ2JQspcSIZtgqj4_sLiENEQ-RBxfno9iIno20Cf9kIZza1BJ1T-HL38ciZYrzdk6rNUQ0TupVNuABZ1vwkqZqqmKLWAVTb-X5i_PFkTrwnvMPQvjvJt6V8Bz9c2eekXfimQelldUtuHubHQ7PPfr2ge-YhGd-kyJlEQpcplxd9szQIWKGxQh6lSijSwDolySnSARy6ihXGkVcGn_o3aephHdgVb-kutd8FByFBlVxu3_osaUINUcqUILt8KAteGosUaiamJwV5_iKWkojSvzJc58iTVfG3qzDq8VJ8bvoqfOvDMxR2ZdvrAuTmoXJ3-5uA2dxjlJPcOKJHSxXmThCW1Dv3HYV_Mv-uz9hz77sOq-VyXtdqA1fXvXB7CsPqaPxVsXlk5H4_i6C4vDkHXLYWmf8eDBtsQXV_H9J3Is5tU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFFQuvBGBAj6AlByWem3H3j0gxKNVQtsoEkVqT2bHj6pS2ZRsAPGn-I3Y-0hVpHLrgev6IWvn8_izPZ4P4IVITS4CM05cplgi0lQmmHufMOWsL2IbtLXYhJpOs8PDfLYGv7u3MDGssvOJtaO2cxPPyLdY5PZZWI74m7NvSVSNirernYRGA4td9-tn2LJVrycfgn1fMrazffB-nLSqAokRGV8mwqiCZgXK3Mr4jjJFg0Z6VAxdkWPYs6XUxPA1RTNhuefSOJPKPHioMAOKjId-r8G6CGCnPVifTfZnR6t7i8CHaJdAiKqtj-PtGVUDFjjZkHF2Ye2rJQIu8Nq_rmLrFW7n9v_2b-7ArZZLk7cN-O_CmivvwY06ptVU90E0egakKOdfw27DVeSkJIHvkk_t8QmJQnCng2oYqliC9VueB_D5Sob8EHrlvHSPgGAuUVlufDwoR4cFRe4kcoOBl7JU9OFVZz5t2gzqUcjjVHe5nxt762hvHezdh8GqwVmTPOTyqu8iHlbVYtbv-sN8caxbJ6IxldR7J4TzRoysw5xjkUVVG3RWjUZ92OzwoVtXVOlzcPRh2CHsvPiS8Tz-d1fPYWN8sL-n9ybT3SdwM7ZqYpg3obdcfHdP4br5sTypFs_aGULgy1UD7w8c_U3v |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFBAXylMEWvABpOSwZNd27N1DVfWRqKUoinhIvbk7flSV2k3JBqr-NX4d9j5SFanceuC6a1urnc_jb-zxfADveaIz7plxZFNJI54kIsLMuYhKa1we-qCpxCbkZJIeHWXTFfjd3oUJaZWtT6wctZnpsEc-oIHbp345YgPXpEVM98ZbFz-ioCAVTlpbOY0aIof26tKHb-XmwZ639QdKx6Nvu_tRozAQaZ6yRcS1zOM0R5EZEe5UJqhRC4eSos0z9PFbEuuQyibjlBvmmNBWJyLz3srPhjxlftx7sCqZD3o6sLozmky_LM8wPDeK22JCsRx82h9NY9mjnp_1KaM31sFKLuAGx_3rWLZa7cZr__N_egKPG45NtutJ8RRWbPEMHlS5rrp8DrzWOSB5MTv3UYgtyWlBPA8mX5ttFRIE4s56Zd83MQSrOz4v4PudfPJL6BSzwr4CgplAaZh2YQMdLeYxMiuQafR8lSa8Cx9bUyrdVFYPAh9nqq0JXdteBdsrb_su9JYdLuqiIrc33QnYWDYL1cCrB7P5iWqci8JExM5Zzq3TfGgsZgzzNKjdoDVyOOzCeosV1bioUl0DpQv9Fm3Xr2_5ntf_HuodPPRoU58PJodv4FHoVKc2r0NnMf9pN-C-_rU4Ledvm8lC4PiucfcHi5JWiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+anomalies+in+the+Standard+Model%28s%29+and+beyond&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Joe+Davighi&rft.au=Ben+Gripaios&rft.au=Nakarin+Lohitsiri&rft.date=2020-07-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=7&rft.spage=1&rft.epage=51&rft_id=info:doi/10.1007%2FJHEP07%282020%29232&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b160ffe44efc45deb93ba87eb6bed755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |