Global anomalies in the Standard Model(s) and beyond

A bstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM /Γ n , with G SM = SU(3) × SU(...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2020; no. 7; pp. 1 - 51
Main Authors: Davighi, Joe, Gripaios, Ben, Lohitsiri, Nakarin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1029-8479, 1029-8479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM /Γ n , with G SM = SU(3) × SU(2) × U(1) and Γ n isomorphic to ℤ/ n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups Ω 5 Spin BG using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1) m for any integer m , which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU( N ) × Sp( M ) × U(1), which share the phase structure of the SM for certain ( N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spin c structure, for example by gauging B − L . Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies.
AbstractList A bstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM /Γ n , with G SM = SU(3) × SU(2) × U(1) and Γ n isomorphic to ℤ/ n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups Ω 5 Spin BG using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1) m for any integer m , which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU( N ) × Sp( M ) × U(1), which share the phase structure of the SM for certain ( N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spin c structure, for example by gauging B − L . Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies.
Abstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM/Γ n , with G SM = SU(3) × SU(2) × U(1) and Γ n isomorphic to ℤ/n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups Ω 5 Spin BG $$ {\Omega}_5^{\mathrm{Spin}}(BG) $$ using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1) m for any integer m, which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU(N ) × Sp(M ) × U(1), which share the phase structure of the SM for certain (N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spinc structure, for example by gauging B − L. Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies.
We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = G SM /Γ n , with G SM = SU(3) × SU(2) × U(1) and Γ n isomorphic to ℤ/ n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups $$ {\Omega}_5^{\mathrm{Spin}}(BG) $$ Ω 5 Spin BG using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1) m for any integer m , which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU( N ) × Sp( M ) × U(1), which share the phase structure of the SM for certain ( N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spin c structure, for example by gauging B − L . Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies.
We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering four distinct, but equally valid, versions of the SM, in which the gauge group is taken to be G = GSM/Γn, with GSM = SU(3) × SU(2) × U(1) and Γn isomorphic to ℤ/n where n ∈ {1, 2, 3, 6}. In addition to deriving constraints on the hypercharges of fields transforming in arbitrary representations of the SU(3) × SU(2) factor, we study the possibility of global anomalies in theories with these gauge groups by computing the bordism groups Ω5SpinBG using the Atiyah-Hirzebruch spectral sequence. In two cases we show that there are no global anomalies beyond the Witten anomaly, while in the other cases we show that there are no global anomalies at all, illustrating the subtle interplay between local and global anomalies. While freedom from global anomalies has been previously shown for the specific fermion content of the SM by embedding the SM in an anomaly-free SU(5) GUT, our results here remain true when the SM fermion content is extended arbitrarily. Going beyond the SM gauge groups, we show that there are no new global anomalies in extensions of the (usual) SM gauge group by U(1)m for any integer m, which correspond to phenomenologically well-motivated BSM theories featuring multiple Z′ bosons. Nor do we find any new global anomalies in various grand unified theories, including Pati-Salam and trinification models. We also consider global anomalies in a family of theories with gauge group SU(N ) × Sp(M ) × U(1), which share the phase structure of the SM for certain (N, M ). Lastly, we discuss a BSM theory in which the SM fermions are defined using a spinc structure, for example by gauging B − L. Such a theory may be extended to all orientable four-manifolds, and we find no global anomalies.
ArticleNumber 232
Author Lohitsiri, Nakarin
Davighi, Joe
Gripaios, Ben
Author_xml – sequence: 1
  givenname: Joe
  orcidid: 0000-0003-1002-0972
  surname: Davighi
  fullname: Davighi, Joe
  email: jed60@cam.ac.uk
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge
– sequence: 2
  givenname: Ben
  surname: Gripaios
  fullname: Gripaios, Ben
  organization: Cavendish Laboratory, University of Cambridge
– sequence: 3
  givenname: Nakarin
  orcidid: 0000-0002-9126-935X
  surname: Lohitsiri
  fullname: Lohitsiri, Nakarin
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge
BookMark eNp1kEtr3DAUhUVJoZO0624N2UwWk7l62JKXJaR5kJBCk7W4kq4nHhxpKjmL_Pt64pSWQla6iO87HM4hO4gpEmNfOZxyAL2-vjz_AXopQMCJkOIDW3AQ7coo3R78c39ih6VsAXjNW1gwdTEkh0OFMT3h0FOp-liNj1T9HDEGzKG6TYGGZTmZkFA5ekkxfGYfOxwKfXl7j9jD9_P7s8vVzd3F1dm3m5VXRo4r5TWCQde0oeFSae68803ntHCEreNScvCuU0GDUUF2svHkedMSegCJRh6xqzk3JNzaXe6fML_YhL19_Uh5YzGPvR_IOt5A15FS1HlVB3KtdGg0ucZR0HU9ZR3PWbucfj1TGe02Pec41bdCCaON4UJOVD1TPqdSMnXW9yOOfYpjxn6wHOx-bDuPbfdj22nsyVv_5_1p-74Bs1EmMm4o_-3znvIbl72Q0A
CitedBy_id crossref_primary_10_1007_JHEP09_2025_121
crossref_primary_10_1007_JHEP07_2024_199
crossref_primary_10_1007_JHEP09_2022_193
crossref_primary_10_1007_JHEP09_2022_159
crossref_primary_10_1007_JHEP04_2023_030
crossref_primary_10_1007_JHEP05_2024_325
crossref_primary_10_1007_JHEP07_2023_147
crossref_primary_10_1007_JHEP04_2025_180
crossref_primary_10_1112_jlms_12368
crossref_primary_10_1007_JHEP07_2024_227
crossref_primary_10_1007_JHEP10_2023_025
crossref_primary_10_1007_JHEP12_2021_096
crossref_primary_10_1007_JHEP03_2024_119
crossref_primary_10_1007_JHEP05_2021_267
crossref_primary_10_1007_JHEP02_2023_050
crossref_primary_10_1140_epjc_s10052_022_10693_3
crossref_primary_10_1007_JHEP12_2021_055
crossref_primary_10_1007_JHEP08_2021_101
crossref_primary_10_1002_andp_202300031
crossref_primary_10_1007_JHEP07_2023_019
crossref_primary_10_1007_JHEP09_2022_147
crossref_primary_10_3390_sym14071475
crossref_primary_10_1007_JHEP03_2023_090
crossref_primary_10_1007_JHEP06_2024_202
crossref_primary_10_1103_PhysRevX_14_031033
crossref_primary_10_1103_PhysRevX_11_011063
crossref_primary_10_1007_JHEP02_2022_144
crossref_primary_10_1103_PhysRevX_15_031011
crossref_primary_10_1007_JHEP07_2024_117
crossref_primary_10_1093_ptep_ptab061
crossref_primary_10_1007_JHEP10_2023_116
crossref_primary_10_1088_1751_8121_ad72bb
crossref_primary_10_1007_JHEP07_2024_112
crossref_primary_10_1007_JHEP02_2025_178
crossref_primary_10_1007_JHEP07_2022_001
crossref_primary_10_1007_JHEP07_2024_157
crossref_primary_10_1007_JHEP11_2023_100
Cites_doi 10.2140/pjm.1987.128.1
10.1007/JHEP07(2020)062
10.1007/s00220-005-1482-7
10.1007/BF01197630
10.1090/pspum/003/0139181
10.1103/PhysRev.177.2426
10.1007/BF01444915
10.1103/PhysRevD.98.030001
10.4310/AMSA.2019.v4.n2.a2
10.1007/JHEP08(2019)003
10.1017/S0305004100052105
10.1093/ptep/ptw083
10.1016/S0764-4442(97)88715-0
10.1016/0370-2693(82)90728-6
10.21468/SciPostPhys.7.5.059
10.1016/0370-2693(78)90167-3
10.1016/0370-2693(78)90616-0
10.1063/1.5082852
10.1007/BF01212448
10.2140/gt.2016.20.257
10.1007/JHEP07(2017)104
10.1007/JHEP08(2015)130
10.1017/S0305004100049410
10.1090/S0002-9904-1966-11486-6
10.1007/s00220-015-2369-x
10.1017/S0305004100051872
10.1103/RevModPhys.81.1199
10.1007/JHEP05(2020)098
10.1103/PhysRevLett.123.151601
10.1103/RevModPhys.88.035001
10.1063/1.530747
10.2307/2372495
10.1007/JHEP08(2019)064
10.1007/BF02823296
10.1007/s00220-013-1880-1
10.4310/jdg/1217361066
10.1016/S0393-0440(97)80160-X
10.1007/BF02564270
10.1007/JHEP09(2016)022
10.1103/PhysRevB.94.195150
10.1103/PhysRevResearch.2.023356
10.1140/epjc/s10052-018-5725-0
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP07(2020)232
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (no login required)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Open Access (no login required)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 51
ExternalDocumentID oai_doaj_org_article_b160ffe44efc45deb93ba87eb6bed755
10_1007_JHEP07_2020_232
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFFHD
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c483t-4c7a08ab69d613471bcbc6fb72bea9b13310cbf4d7084d3f36cec169eac003a83
IEDL.DBID DOA
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000559805700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:49:23 EDT 2025
Sat Oct 18 23:09:58 EDT 2025
Tue Nov 18 20:54:18 EST 2025
Sat Nov 29 06:04:42 EST 2025
Fri Feb 21 02:48:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Anomalies in Field and String Theories
Beyond Standard Model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-4c7a08ab69d613471bcbc6fb72bea9b13310cbf4d7084d3f36cec169eac003a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9126-935X
0000-0003-1002-0972
OpenAccessLink https://doaj.org/article/b160ffe44efc45deb93ba87eb6bed755
PQID 2428788123
PQPubID 2034718
PageCount 51
ParticipantIDs doaj_primary_oai_doaj_org_article_b160ffe44efc45deb93ba87eb6bed755
proquest_journals_2428788123
crossref_citationtrail_10_1007_JHEP07_2020_232
crossref_primary_10_1007_JHEP07_2020_232
springer_journals_10_1007_JHEP07_2020_232
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References D.S. Freed and G.W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys.263 (2006) 89 [hep-th/0409135] [INSPIRE].
A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2000). [55] C. Teleman, Representation theory, (2005).
M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Phil. Soc.78 (1975) 405.
S.L. Glashow, A. de Rujula and H. Georgi, Trinification of all elementary particle forces, in Fifth workshop on grand unification, Providence, RI, U.S.A., 12–14 April 1984, pg. 0088.
S. Monnier, Hamiltonian anomalies from extended field theories, Commun. Math. Phys.338 (2015) 1327 [arXiv:1410.7442] [INSPIRE].
A. Borel and J.-P. Serre, Groupes de Lie et puissances ŕeduites de Steenrod (in French), Amer. J. Math.75 (1953) 409.
X.-Z. Dai and D.S. Freed, η invariants and determinant lines, J. Math. Phys.35 (1994) 5155 [Erratum ibid.42 (2001) 2343] [hep-th/9405012] [INSPIRE].
E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE].
N. Lohitsiri and D. Tong, If the weak were strong and the strong were weak, SciPost Phys.7 (2019) 059 [arXiv:1907.08221] [INSPIRE].
S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE].
G.M. Pelaggi, A. Strumia and S. Vignali, Totally asymptotically free trinification, JHEP08 (2015) 130 [arXiv:1507.06848] [INSPIRE].
M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Phil. Soc.79 (1976) 71.
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D98 (2018) 030001 [INSPIRE].
J. McCleary, A user’s guide to spectral sequences, second edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, U.K. (2000).
B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP02 (2019) 082 [Erratum ibid.08 (2019) 064] [arXiv:1812.04602] [INSPIRE].
N. Pointet-Tischler, La suspension cohomologique des espaces d’Eilenberg-MacLane (in French), Comptes Rendus Acad. Sci.325 (1997) 1113.
K. Yonekura, Dai-Freed theorem and topological phases of matter, JHEP09 (2016) 022 [arXiv:1607.01873] [INSPIRE].
X. Gu, On the cohomology of the classifying spaces of projective unitary groups, arXiv:1612.00506.
J. Wang and X.-G. Wen, A non-perturbative definition of the Standard Models, Phys. Rev. Res.2 (2020) 023356 [arXiv:1809.11171] [INSPIRE].
A. Bahri and P. Gilkey, The eta invariant, pinc bordism, and equivariant spinc bordism for cyclic 2-groups, Pacific J. Math.128 (1987) 1.
M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc.77 (1975) 43.
Z. Wan and J. Wang, Beyond Standard Models and grand unifications: anomalies, topological terms, and dynamical constraints via cobordisms, JHEP07 (2020) 062 [arXiv:1910.14668] [INSPIRE].
A. Back, P.G.O. Freund and M. Forger, New gravitational instantons and universal spin structures, Phys. Lett. B77 (1978) 181 [INSPIRE].
E. Witten, An SU(2) anomaly, Phys. Lett. B117 (1982) 324 [INSPIRE].
P. Langacker, The physics of heavy Z′Igauge bosons, Rev. Mod. Phys.81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys.88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].
M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math.3 (1961) 7.
N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
D. Tong, Lectures on gauge theory, (2018).
H. Cartan, Sur l’it́eration des oṕerations de Steenrod (in French), Comm. Math. Helv.29 (1955) 40.
J. Wang, X.-G. Wen and E. Witten, A new SU(2) anomaly, J. Math. Phys.60 (2019) 052301 [arXiv:1810.00844] [INSPIRE].
A. Scorpan, The wild world of 4-manifolds, American Mathematical Society, U.S.A. (2005).
J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, Eur. Phys. J. C78 (2018) 238 [arXiv:1705.03447] [INSPIRE].
A. Hatcher, Spectral sequences, (2004).
J. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, U.S.A. (1999).
E. Witten, The “parity” anomaly on an unorientable manifold, Phys. Rev. B94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].
D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys.326 (2014) 459 [arXiv:1212.1692] [INSPIRE].
J. Davighi and N. Lohitsiri, Anomaly interplay in U(2) gauge theories, JHEP05 (2020) 098 [arXiv:2001.07731] [INSPIRE].
D.B. Costa, B.A. Dobrescu and P.J. Fox, General solution to the U(1) anomaly equations, Phys. Rev. Lett.123 (2019) 151601 [arXiv:1905.13729] [INSPIRE].
E. Witten, Global gravitational anomalies, Commun. Math. Phys.100 (1985) 197 [INSPIRE].
Z. Wan and J. Wang, Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl.4 (2019) 107 [arXiv:1812.11967] [INSPIRE].
S.W. Hawking and C.N. Pope, Generalized spin structures in quantum gravity, Phys. Lett. B73 (1978) 42 [INSPIRE].
P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Annalen295 (1993) 745.
E. Witten and K. Yonekura, Anomaly inflow and the η-invariant, in The Shoucheng Zhang memorial workshop, (2019) [arXiv:1909.08775] [INSPIRE].
D.S. Freed, Pions and generalized cohomology, J. Diff. Geom.80 (2008) 45 [hep-th/0607134] [INSPIRE].
P. Teichner, Topological four-manifolds with finite fundamental group, Ph.D. thesis, Johannes-Gutenberg Universit¨at, Mainz, Germany (1992)
J.S. Bell and R. Jackiw, A PCAC puzzle: π0→ γγ in the σ model, Nuovo Cim. A60 (1969) 47 [INSPIRE].
I. García-Etxebarria and M. Montero, Dai-Freed anomalies in particle physics, JHEP08 (2019) 003 [arXiv:1808.00009] [INSPIRE].
L. Breen, R. Mikhailov and A. Touzé, Derived functors of the divided power functors, Geom. Topol.20 (2016) 257.
D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE].
D. Tong, Line operators in the Standard Model, JHEP07 (2017) 104 [arXiv:1705.01853] [INSPIRE].
E. Witten, Global anomalies in string theory, in Symposium on anomalies, geometry, Topology, Argonne, IL, U.S.A., 28–30 March 1985.
D. Anderson, E. Brown Jr. and F.P. Peterson, Spin cobordism, Bull. Amer. Math. Soc.72 (1966) 256.
S.J. Avis and C.J. Isham, Generalized spin structures on four-dimensional space-times, Commun. Math. Phys.72 (1980) 103 [INSPIRE].
13517_CR11
13517_CR10
13517_CR54
13517_CR13
13517_CR12
13517_CR51
13517_CR50
13517_CR53
13517_CR52
13517_CR19
13517_CR18
13517_CR15
13517_CR14
13517_CR17
13517_CR16
13517_CR22
13517_CR21
13517_CR24
13517_CR23
13517_CR20
13517_CR29
13517_CR26
13517_CR25
13517_CR28
13517_CR27
13517_CR33
13517_CR32
13517_CR35
13517_CR34
13517_CR31
13517_CR30
13517_CR37
13517_CR36
13517_CR39
13517_CR38
13517_CR5
13517_CR6
13517_CR7
13517_CR8
13517_CR9
13517_CR44
13517_CR43
13517_CR46
13517_CR45
13517_CR40
13517_CR42
13517_CR41
13517_CR1
13517_CR48
13517_CR2
13517_CR47
13517_CR3
13517_CR4
13517_CR49
References_xml – reference: P. Langacker, The physics of heavy Z′Igauge bosons, Rev. Mod. Phys.81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
– reference: S.L. Glashow, A. de Rujula and H. Georgi, Trinification of all elementary particle forces, in Fifth workshop on grand unification, Providence, RI, U.S.A., 12–14 April 1984, pg. 0088.
– reference: J. Wang, X.-G. Wen and E. Witten, A new SU(2) anomaly, J. Math. Phys.60 (2019) 052301 [arXiv:1810.00844] [INSPIRE].
– reference: E. Witten, Global gravitational anomalies, Commun. Math. Phys.100 (1985) 197 [INSPIRE].
– reference: M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Phil. Soc.78 (1975) 405.
– reference: G.M. Pelaggi, A. Strumia and S. Vignali, Totally asymptotically free trinification, JHEP08 (2015) 130 [arXiv:1507.06848] [INSPIRE].
– reference: Particle Data Group collaboration, Review of particle physics, Phys. Rev. D98 (2018) 030001 [INSPIRE].
– reference: M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp. Pure Math.3 (1961) 7.
– reference: Z. Wan and J. Wang, Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl.4 (2019) 107 [arXiv:1812.11967] [INSPIRE].
– reference: X. Gu, On the cohomology of the classifying spaces of projective unitary groups, arXiv:1612.00506.
– reference: S. Monnier, Hamiltonian anomalies from extended field theories, Commun. Math. Phys.338 (2015) 1327 [arXiv:1410.7442] [INSPIRE].
– reference: S.J. Avis and C.J. Isham, Generalized spin structures on four-dimensional space-times, Commun. Math. Phys.72 (1980) 103 [INSPIRE].
– reference: E. Witten, The “parity” anomaly on an unorientable manifold, Phys. Rev. B94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].
– reference: M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Phil. Soc.79 (1976) 71.
– reference: I. García-Etxebarria and M. Montero, Dai-Freed anomalies in particle physics, JHEP08 (2019) 003 [arXiv:1808.00009] [INSPIRE].
– reference: J. Wang and X.-G. Wen, A non-perturbative definition of the Standard Models, Phys. Rev. Res.2 (2020) 023356 [arXiv:1809.11171] [INSPIRE].
– reference: A. Borel and J.-P. Serre, Groupes de Lie et puissances ŕeduites de Steenrod (in French), Amer. J. Math.75 (1953) 409.
– reference: D. Anderson, E. Brown Jr. and F.P. Peterson, Spin cobordism, Bull. Amer. Math. Soc.72 (1966) 256.
– reference: D.B. Costa, B.A. Dobrescu and P.J. Fox, General solution to the U(1) anomaly equations, Phys. Rev. Lett.123 (2019) 151601 [arXiv:1905.13729] [INSPIRE].
– reference: B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP02 (2019) 082 [Erratum ibid.08 (2019) 064] [arXiv:1812.04602] [INSPIRE].
– reference: M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc.77 (1975) 43.
– reference: D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE].
– reference: J. McCleary, A user’s guide to spectral sequences, second edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, U.K. (2000).
– reference: Z. Wan and J. Wang, Beyond Standard Models and grand unifications: anomalies, topological terms, and dynamical constraints via cobordisms, JHEP07 (2020) 062 [arXiv:1910.14668] [INSPIRE].
– reference: D. Tong, Line operators in the Standard Model, JHEP07 (2017) 104 [arXiv:1705.01853] [INSPIRE].
– reference: S.W. Hawking and C.N. Pope, Generalized spin structures in quantum gravity, Phys. Lett. B73 (1978) 42 [INSPIRE].
– reference: E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys.88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].
– reference: E. Witten, Global anomalies in string theory, in Symposium on anomalies, geometry, Topology, Argonne, IL, U.S.A., 28–30 March 1985.
– reference: A. Hatcher, Spectral sequences, (2004).
– reference: P. Teichner, Topological four-manifolds with finite fundamental group, Ph.D. thesis, Johannes-Gutenberg Universit¨at, Mainz, Germany (1992),
– reference: L. Breen, R. Mikhailov and A. Touzé, Derived functors of the divided power functors, Geom. Topol.20 (2016) 257.
– reference: J. Davighi and N. Lohitsiri, Anomaly interplay in U(2) gauge theories, JHEP05 (2020) 098 [arXiv:2001.07731] [INSPIRE].
– reference: J.S. Bell and R. Jackiw, A PCAC puzzle: π0→ γγ in the σ model, Nuovo Cim. A60 (1969) 47 [INSPIRE].
– reference: E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE].
– reference: A. Scorpan, The wild world of 4-manifolds, American Mathematical Society, U.S.A. (2005).
– reference: H. Cartan, Sur l’it́eration des oṕerations de Steenrod (in French), Comm. Math. Helv.29 (1955) 40.
– reference: D.S. Freed and G.W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys.263 (2006) 89 [hep-th/0409135] [INSPIRE].
– reference: D.S. Freed, Pions and generalized cohomology, J. Diff. Geom.80 (2008) 45 [hep-th/0607134] [INSPIRE].
– reference: S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE].
– reference: X.-Z. Dai and D.S. Freed, η invariants and determinant lines, J. Math. Phys.35 (1994) 5155 [Erratum ibid.42 (2001) 2343] [hep-th/9405012] [INSPIRE].
– reference: K. Yonekura, Dai-Freed theorem and topological phases of matter, JHEP09 (2016) 022 [arXiv:1607.01873] [INSPIRE].
– reference: J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, Eur. Phys. J. C78 (2018) 238 [arXiv:1705.03447] [INSPIRE].
– reference: N. Pointet-Tischler, La suspension cohomologique des espaces d’Eilenberg-MacLane (in French), Comptes Rendus Acad. Sci.325 (1997) 1113.
– reference: A. Back, P.G.O. Freund and M. Forger, New gravitational instantons and universal spin structures, Phys. Lett. B77 (1978) 181 [INSPIRE].
– reference: E. Witten and K. Yonekura, Anomaly inflow and the η-invariant, in The Shoucheng Zhang memorial workshop, (2019) [arXiv:1909.08775] [INSPIRE].
– reference: P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Annalen295 (1993) 745.
– reference: A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2000). [55] C. Teleman, Representation theory, (2005).
– reference: D. Tong, Lectures on gauge theory, (2018).
– reference: E. Witten, An SU(2) anomaly, Phys. Lett. B117 (1982) 324 [INSPIRE].
– reference: A. Bahri and P. Gilkey, The eta invariant, pinc bordism, and equivariant spinc bordism for cyclic 2-groups, Pacific J. Math.128 (1987) 1.
– reference: J. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, U.S.A. (1999).
– reference: N. Lohitsiri and D. Tong, If the weak were strong and the strong were weak, SciPost Phys.7 (2019) 059 [arXiv:1907.08221] [INSPIRE].
– reference: D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys.326 (2014) 459 [arXiv:1212.1692] [INSPIRE].
– reference: N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
– ident: 13517_CR50
  doi: 10.2140/pjm.1987.128.1
– ident: 13517_CR14
  doi: 10.1007/JHEP07(2020)062
– ident: 13517_CR27
  doi: 10.1007/s00220-005-1482-7
– ident: 13517_CR52
  doi: 10.1007/BF01197630
– ident: 13517_CR28
  doi: 10.1090/pspum/003/0139181
– ident: 13517_CR15
  doi: 10.1103/PhysRev.177.2426
– ident: 13517_CR35
  doi: 10.1007/BF01444915
– ident: 13517_CR41
– ident: 13517_CR1
  doi: 10.1103/PhysRevD.98.030001
– ident: 13517_CR13
  doi: 10.4310/AMSA.2019.v4.n2.a2
– ident: 13517_CR22
– ident: 13517_CR10
  doi: 10.1007/JHEP08(2019)003
– ident: 13517_CR20
  doi: 10.1017/S0305004100052105
– ident: 13517_CR37
  doi: 10.1093/ptep/ptw083
– ident: 13517_CR53
  doi: 10.1016/S0764-4442(97)88715-0
– ident: 13517_CR3
  doi: 10.1016/0370-2693(82)90728-6
– ident: 13517_CR42
  doi: 10.21468/SciPostPhys.7.5.059
– ident: 13517_CR49
  doi: 10.1016/0370-2693(78)90167-3
– ident: 13517_CR51
  doi: 10.1016/0370-2693(78)90616-0
– ident: 13517_CR29
– ident: 13517_CR18
  doi: 10.1063/1.5082852
– ident: 13517_CR5
  doi: 10.1007/BF01212448
– ident: 13517_CR25
– ident: 13517_CR21
– ident: 13517_CR39
  doi: 10.2140/gt.2016.20.257
– ident: 13517_CR2
  doi: 10.1007/JHEP07(2017)104
– ident: 13517_CR48
  doi: 10.1007/JHEP08(2015)130
– ident: 13517_CR4
  doi: 10.1017/S0305004100049410
– ident: 13517_CR34
– ident: 13517_CR32
  doi: 10.1090/S0002-9904-1966-11486-6
– ident: 13517_CR24
  doi: 10.1007/s00220-015-2369-x
– ident: 13517_CR19
  doi: 10.1017/S0305004100051872
– ident: 13517_CR38
– ident: 13517_CR43
  doi: 10.1103/RevModPhys.81.1199
– ident: 13517_CR30
– ident: 13517_CR40
  doi: 10.1007/JHEP05(2020)098
– ident: 13517_CR46
  doi: 10.1103/PhysRevLett.123.151601
– ident: 13517_CR47
– ident: 13517_CR7
  doi: 10.1103/RevModPhys.88.035001
– ident: 13517_CR6
  doi: 10.1063/1.530747
– ident: 13517_CR36
  doi: 10.2307/2372495
– ident: 13517_CR45
  doi: 10.1007/JHEP08(2019)064
– ident: 13517_CR16
  doi: 10.1007/BF02823296
– ident: 13517_CR54
– ident: 13517_CR23
  doi: 10.1007/s00220-013-1880-1
– ident: 13517_CR11
  doi: 10.4310/jdg/1217361066
– ident: 13517_CR33
– ident: 13517_CR26
  doi: 10.1016/S0393-0440(97)80160-X
– ident: 13517_CR9
– ident: 13517_CR31
  doi: 10.1007/BF02564270
– ident: 13517_CR17
  doi: 10.1007/JHEP09(2016)022
– ident: 13517_CR8
  doi: 10.1103/PhysRevB.94.195150
– ident: 13517_CR12
  doi: 10.1103/PhysRevResearch.2.023356
– ident: 13517_CR44
  doi: 10.1140/epjc/s10052-018-5725-0
SSID ssj0015190
Score 2.602357
Snippet A bstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by...
We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by considering...
Abstract We analyse global anomalies and related constraints in the Standard Model (SM) and various Beyond the Standard Model (BSM) theories. We begin by...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algebra
Anomalies
Anomalies in Field and String Theories
Beyond Standard Model
Bosons
Classical and Quantum Gravitation
Constraint modelling
Eigenvalues
Elementary Particles
Fermions
Gaging
Grand unified theory
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Solid phases
String Theory
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3BUiQuFFpQF2iVQw-7h3Sd2GsnJ0QRCJCKVgIkeooy_kAr0Sxstv39eBJnEZXgxDUZR1bGHj97xu8BfBeJzoVHxrHNVBqLJJEx5s7FqbLGldQGTSM2oS4vs9vbfBKuR9ehrLKLiU2gbtmeqW7bB-GRmWk6MR-lhPQzvzjxw4fHmDSkKNcaBDVWYY2It1gP1ibnvya_l1kFj1ZYR-_D1Oji7GTC1MBv_9kw5emLlakh8H-BOv9LlDbrz-nH9-35FmwGHBodtQNnG1Zs9QnWm3pQXX8G0WoBRGU1--ORuq2jaRV5rBhdhaOHiETU7gf10JuYCJt7MDtwc3pyfXwWB4GFWIuML2KhVcmyEmVuJF0pTVCjlg5VirbM0W9fE6apkk-xTBjuuNRWJzL3wdoHgzLju9CrZpX9AhHmEpXh2tEhM1osGXIrkWv0mC5NRB9-dD-30IF9nEQw7ouON7n1RkHeKLw3-jBYNnhoiTdeN_1J3lqaEWN282A2vyvCBCwwkcw5K4R1WoyNxZxjmZEiDFqjxuM-HHTeK8I0rotnZ_Vh2Pn_-fUr_dl7-1P7sEGWbc3vAfQW87_2K3zQ_xbTev4tjNknjuj6ug
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MqeDF3-J0Sg8etkOlabKkPerYGB7GQIXdSl-ayGB2sk7_fpO0nUzxoLeSvgfhJS_5krz3PYAbRmTMDDL2VSRCnxHCfYy19kOhMp1aHcxcsQkxHkfTaTxpAKlzYVy0e_0k6VbqOtntYTSYBKJjDutB18CALdi2XGI2iqtvExyqhwMDSIKaween0sbm4zj6N4Dlt7dQt8UMD_7RuUPYr_Ckd1dOgCNoqPwYdl1cpyxOgJWc_l6aL14N4laFN8s9g_m8x-oKwbPF0OadomtEMg9dPsspPA8HT_2RXxVK8CWL6MpnUqRBlCKPM25TQwlKlFyjCFGlMZpjKAmkjcgTQcQyqimXShIem0XXOHUa0TNo5otcnYOHMUeRUantZTEqTAOkiiOVaLBZSFgLbmsLJrJiEbfFLOZJzX9cmiKxpkiMKVrQWSu8lQQav4ve2yFZi1nma9ewWL4klSMlSHigtWJMacl6mcKYYhrZyi6oMtHrtaBdD2hSuWORhPZgGBksQ1vQrQfw6_cv_bn4g-wl7NnPMpC3Dc3V8l1dwY78WM2K5bWbo5997OFO
  priority: 102
  providerName: Springer Nature
Title Global anomalies in the Standard Model(s) and beyond
URI https://link.springer.com/article/10.1007/JHEP07(2020)232
https://www.proquest.com/docview/2428788123
https://doaj.org/article/b160ffe44efc45deb93ba87eb6bed755
Volume 2020
WOSCitedRecordID wos000559805700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (no login required)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Open Access (no login required)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50VfAiPnF1XXrwsHuopk02aY66rKjgUnzA6qV00gQErWJXf79JH6sriBcvPTSTMswkzTfJ5BuAQxYoySwy9nUkQp8FAfdRGuOHQmcmdX0wK4tNiPE4mkxk_K3Ul8sJq-iBK8MdY8CJMZoxbRQbZBolxTRylTxQZ2JQspcSIZtgqj4_sLiENEQ-RBxfno9iIno20Cf9kIZza1BJ1T-HL38ciZYrzdk6rNUQ0TupVNuABZ1vwkqZqqmKLWAVTb-X5i_PFkTrwnvMPQvjvJt6V8Bz9c2eekXfimQelldUtuHubHQ7PPfr2ge-YhGd-kyJlEQpcplxd9szQIWKGxQh6lSijSwDolySnSARy6ihXGkVcGn_o3aephHdgVb-kutd8FByFBlVxu3_osaUINUcqUILt8KAteGosUaiamJwV5_iKWkojSvzJc58iTVfG3qzDq8VJ8bvoqfOvDMxR2ZdvrAuTmoXJ3-5uA2dxjlJPcOKJHSxXmThCW1Dv3HYV_Mv-uz9hz77sOq-VyXtdqA1fXvXB7CsPqaPxVsXlk5H4_i6C4vDkHXLYWmf8eDBtsQXV_H9J3Is5tU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFFQuvBGBAj6AlByWem3H3j0gxKNVQtsoEkVqT2bHj6pS2ZRsAPGn-I3Y-0hVpHLrgev6IWvn8_izPZ4P4IVITS4CM05cplgi0lQmmHufMOWsL2IbtLXYhJpOs8PDfLYGv7u3MDGssvOJtaO2cxPPyLdY5PZZWI74m7NvSVSNirernYRGA4td9-tn2LJVrycfgn1fMrazffB-nLSqAokRGV8mwqiCZgXK3Mr4jjJFg0Z6VAxdkWPYs6XUxPA1RTNhuefSOJPKPHioMAOKjId-r8G6CGCnPVifTfZnR6t7i8CHaJdAiKqtj-PtGVUDFjjZkHF2Ye2rJQIu8Nq_rmLrFW7n9v_2b-7ArZZLk7cN-O_CmivvwY06ptVU90E0egakKOdfw27DVeSkJIHvkk_t8QmJQnCng2oYqliC9VueB_D5Sob8EHrlvHSPgGAuUVlufDwoR4cFRe4kcoOBl7JU9OFVZz5t2gzqUcjjVHe5nxt762hvHezdh8GqwVmTPOTyqu8iHlbVYtbv-sN8caxbJ6IxldR7J4TzRoysw5xjkUVVG3RWjUZ92OzwoVtXVOlzcPRh2CHsvPiS8Tz-d1fPYWN8sL-n9ybT3SdwM7ZqYpg3obdcfHdP4br5sTypFs_aGULgy1UD7w8c_U3v
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFBAXylMEWvABpOSwZNd27N1DVfWRqKUoinhIvbk7flSV2k3JBqr-NX4d9j5SFanceuC6a1urnc_jb-zxfADveaIz7plxZFNJI54kIsLMuYhKa1we-qCpxCbkZJIeHWXTFfjd3oUJaZWtT6wctZnpsEc-oIHbp345YgPXpEVM98ZbFz-ioCAVTlpbOY0aIof26tKHb-XmwZ639QdKx6Nvu_tRozAQaZ6yRcS1zOM0R5EZEe5UJqhRC4eSos0z9PFbEuuQyibjlBvmmNBWJyLz3srPhjxlftx7sCqZD3o6sLozmky_LM8wPDeK22JCsRx82h9NY9mjnp_1KaM31sFKLuAGx_3rWLZa7cZr__N_egKPG45NtutJ8RRWbPEMHlS5rrp8DrzWOSB5MTv3UYgtyWlBPA8mX5ttFRIE4s56Zd83MQSrOz4v4PudfPJL6BSzwr4CgplAaZh2YQMdLeYxMiuQafR8lSa8Cx9bUyrdVFYPAh9nqq0JXdteBdsrb_su9JYdLuqiIrc33QnYWDYL1cCrB7P5iWqci8JExM5Zzq3TfGgsZgzzNKjdoDVyOOzCeosV1bioUl0DpQv9Fm3Xr2_5ntf_HuodPPRoU58PJodv4FHoVKc2r0NnMf9pN-C-_rU4Ledvm8lC4PiucfcHi5JWiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+anomalies+in+the+Standard+Model%28s%29+and+beyond&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Joe+Davighi&rft.au=Ben+Gripaios&rft.au=Nakarin+Lohitsiri&rft.date=2020-07-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=7&rft.spage=1&rft.epage=51&rft_id=info:doi/10.1007%2FJHEP07%282020%29232&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b160ffe44efc45deb93ba87eb6bed755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon