HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin

Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term Memory (LSTM) networks are popular for rainfall–runoff modeling. A large majority of studies that use this type of model do not follow best practices, and there is one mistake in particul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Hydrology and earth system sciences Ročník 28; číslo 17; s. 4187 - 4201
Hlavní autoři: Kratzert, Frederik, Gauch, Martin, Klotz, Daniel, Nearing, Grey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 12.09.2024
Copernicus Publications
Témata:
ISSN:1607-7938, 1027-5606, 1607-7938
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term Memory (LSTM) networks are popular for rainfall–runoff modeling. A large majority of studies that use this type of model do not follow best practices, and there is one mistake in particular that is common: training deep learning models on small, homogeneous data sets, typically data from only a single hydrological basin. In this position paper, we show that LSTM rainfall–runoff models are best when trained with data from a large number of basins.
AbstractList Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term Memory (LSTM) networks are popular for rainfall–runoff modeling. A large majority of studies that use this type of model do not follow best practices, and there is one mistake in particular that is common: training deep learning models on small, homogeneous data sets, typically data from only a single hydrological basin. In this position paper, we show that LSTM rainfall–runoff models are best when trained with data from a large number of basins.
Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term Memory (LSTM) networks are popular for rainfall–runoff modeling. A large majority of studies that use this type of model do not follow best practices, and there is one mistake in particular that is common: training deep learning models on small, homogeneous data sets, typically data from only a single hydrological basin. In this position paper, we show that LSTM rainfall–runoff models are best when trained with data from a large number of basins.
Audience Academic
Author Nearing, Grey
Gauch, Martin
Kratzert, Frederik
Klotz, Daniel
Author_xml – sequence: 1
  givenname: Frederik
  orcidid: 0000-0002-8897-7689
  surname: Kratzert
  fullname: Kratzert, Frederik
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-4587-898X
  surname: Gauch
  fullname: Gauch, Martin
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0002-9843-6798
  surname: Klotz
  fullname: Klotz, Daniel
– sequence: 4
  givenname: Grey
  surname: Nearing
  fullname: Nearing, Grey
BookMark eNp1kk9v1DAQxSNUJNrCB-BmiQs9pPhfYodbVRW60pZKJHfLcSapl4292F6g3x6HBcEikA8ejX7vaTTzzooT5x0UxUuCLyvS8DcPEGNJZcmJFCXFlD8pTkmNRSkaJk_-qJ8VZzFuMKZS1vS06G5v2hbd76yz3sW36AN8gYBS0NYhjdbeTah98CGVHYQZ3cHswyN6vW67uwvkIH314RPyCxqtm7aAep2L58XTUW8jvPj5nxfdu5vu-rZc379fXV-tS8MlSyWnlBiph4ZhqAzlUmppRjZWlBk8SFyJoWcN5kybmtOmzjAhmuGe0b4ZCTsvVgfbweuN2gU76_CovLbqR8OHSemQrNmCItmH1tUguBC8GlgPfJBUjKMECtDQ7PXq4LUL_vMeYlIbvw8uT68YwQwLigX7TU06m1o3-rwpM9to1JXEssKSUJ6py39Q-Q0wW5PvNtrcPxJcHAkyk-BbmvQ-RrVqPx6z4sCa4GMMMCpjk075esvRtopgtQRCLYFQVKolEGoJRFaSv5S_VvZ_zXdvSrXF
CitedBy_id crossref_primary_10_3389_frwa_2025_1595898
crossref_primary_10_5194_hess_29_2811_2025
crossref_primary_10_1016_j_ejrh_2025_102748
crossref_primary_10_1016_j_envsoft_2025_106350
crossref_primary_10_1016_j_envsoft_2025_106691
crossref_primary_10_1016_j_ejrh_2025_102228
crossref_primary_10_1016_j_ecoinf_2025_102994
crossref_primary_10_1016_j_envsoft_2025_106696
crossref_primary_10_5194_hess_29_3145_2025
crossref_primary_10_5194_npg_31_535_2024
crossref_primary_10_1080_02626667_2025_2452357
crossref_primary_10_1016_j_jhydrol_2024_132269
crossref_primary_10_3390_app15020499
crossref_primary_10_1016_j_mlwa_2025_100706
crossref_primary_10_1016_j_jhydrol_2025_133594
crossref_primary_10_3390_polym16233368
crossref_primary_10_1016_j_ifacsc_2025_100298
crossref_primary_10_3390_earth6030069
crossref_primary_10_5194_hess_28_4407_2024
crossref_primary_10_1016_j_jhydrol_2025_133111
crossref_primary_10_3390_w17152341
crossref_primary_10_3390_w17182722
crossref_primary_10_1098_rsta_2024_0287
crossref_primary_10_3390_w17030339
crossref_primary_10_5194_hess_29_1061_2025
crossref_primary_10_1016_j_ejrh_2025_102719
crossref_primary_10_3390_app15126690
crossref_primary_10_5194_hess_29_2521_2025
crossref_primary_10_1016_j_jhydrol_2025_133689
crossref_primary_10_5194_hess_29_1749_2025
crossref_primary_10_1016_j_jhydrol_2025_133764
crossref_primary_10_1007_s11269_025_04231_5
crossref_primary_10_1007_s40808_025_02316_z
crossref_primary_10_1073_pnas_2503160122
crossref_primary_10_5194_hess_29_3405_2025
crossref_primary_10_5194_hess_28_4187_2024
crossref_primary_10_1038_s41598_025_99838_4
crossref_primary_10_1016_j_jhydrol_2024_132471
crossref_primary_10_5194_hess_29_4515_2025
crossref_primary_10_1016_j_jhydrol_2025_134270
crossref_primary_10_5194_hess_29_1277_2025
Cites_doi 10.1002/2015WR018247
10.5194/hess-21-3953-2017
10.5194/hess-19-209-2015
10.5194/hess-21-5293-2017
10.1002/2017WR020401
10.1029/2022WR033918
10.1016/0022-1694(70)90255-6
10.1038/s41586-024-07145-1
10.5194/hess-23-2601-2019
10.1098/rspl.1895.0041
10.1038/s41597-023-01975-w
10.1029/2019WR026065
10.1029/2019JD030767
10.1029/2008WR007327
10.5194/hess-22-6005-2018
10.5194/hess-25-2045-2021
10.21105/joss.04050
10.1029/2020WR028600
10.1111/1752-1688.12964
10.5194/hess-26-3377-2022
10.5194/hess-28-4187-2024
10.1016/j.jhydrol.2009.08.003
10.5194/hess-26-5493-2022
10.5194/hess-23-5089-2019
10.31223/X57090
10.1002/wat2.1487
10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1
10.1029/2020WR028091
10.1175/JHM-D-16-0284.1
10.1029/2011WR011044
10.5194/hess-26-1673-2022
10.5194/hess-25-2685-2021
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-28-4187-2024
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 4201
ExternalDocumentID oai_doaj_org_article_1390265d747745d3be4d827ff8e2ee92
A808508124
10_5194_hess_28_4187_2024
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
~KM
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c483t-4221c8ad930e5c2488a8cf3f523c0d8057db39043ac642961c811a30b32b9f13
IEDL.DBID RKB
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310057400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1607-7938
1027-5606
IngestDate Tue Oct 14 19:08:40 EDT 2025
Fri Jul 25 12:23:28 EDT 2025
Mon Nov 24 16:09:32 EST 2025
Mon Nov 24 15:42:31 EST 2025
Wed Nov 26 11:09:58 EST 2025
Tue Nov 18 21:57:54 EST 2025
Sat Nov 29 05:01:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-4221c8ad930e5c2488a8cf3f523c0d8057db39043ac642961c811a30b32b9f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9843-6798
0000-0002-8897-7689
0000-0002-4587-898X
OpenAccessLink https://doaj.org/article/1390265d747745d3be4d827ff8e2ee92
PQID 3103072073
PQPubID 105724
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_1390265d747745d3be4d827ff8e2ee92
proquest_journals_3103072073
gale_infotracmisc_A808508124
gale_infotracacademiconefile_A808508124
gale_incontextgauss_ISR_A808508124
crossref_citationtrail_10_5194_hess_28_4187_2024
crossref_primary_10_5194_hess_28_4187_2024
PublicationCentury 2000
PublicationDate 2024-09-12
PublicationDateYYYYMMDD 2024-09-12
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-12
  day: 12
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1002/2015WR018247
– ident: ref11
  doi: 10.5194/hess-21-3953-2017
– ident: ref30
  doi: 10.5194/hess-19-209-2015
– ident: ref1
  doi: 10.5194/hess-21-5293-2017
– ident: ref23
  doi: 10.1002/2017WR020401
– ident: ref7
  doi: 10.1029/2022WR033918
– ident: ref25
  doi: 10.1016/0022-1694(70)90255-6
– ident: ref26
  doi: 10.1038/s41586-024-07145-1
– ident: ref24
  doi: 10.5194/hess-23-2601-2019
– ident: ref32
  doi: 10.1098/rspl.1895.0041
– ident: ref21
  doi: 10.1038/s41597-023-01975-w
– ident: ref27
– ident: ref17
  doi: 10.1029/2019WR026065
– ident: ref33
  doi: 10.1029/2019JD030767
– ident: ref34
  doi: 10.1029/2008WR007327
– ident: ref16
  doi: 10.5194/hess-22-6005-2018
– ident: ref6
  doi: 10.5194/hess-25-2045-2021
– ident: ref20
  doi: 10.21105/joss.04050
– ident: ref22
  doi: 10.1029/2020WR028600
– ident: ref4
  doi: 10.1111/1752-1688.12964
– ident: ref2
– ident: ref5
  doi: 10.5194/hess-26-3377-2022
– ident: ref15
  doi: 10.5194/hess-28-4187-2024
– ident: ref9
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: ref29
  doi: 10.5194/hess-26-5493-2022
– ident: ref18
  doi: 10.5194/hess-23-5089-2019
– ident: ref14
  doi: 10.31223/X57090
– ident: ref8
  doi: 10.1002/wat2.1487
– ident: ref13
  doi: 10.4211/hs.474ecc37e7db45baa425cdb4fc1b61e1
– ident: ref28
  doi: 10.1029/2020WR028091
– ident: ref31
  doi: 10.1175/JHM-D-16-0284.1
– ident: ref10
  doi: 10.1029/2011WR011044
– ident: ref12
  doi: 10.5194/hess-26-1673-2022
– ident: ref19
  doi: 10.5194/hess-25-2685-2021
– ident: ref35
SSID ssj0028862
Score 2.6135397
Snippet Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term Memory (LSTM) networks are popular for...
Machine learning (ML) has played an increasing role in the hydrological sciences. In particular, Long Short-Term Memory (LSTM) networks are popular for...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4187
SubjectTerms Basins
Best practice
Best practices
Camelids
Datasets
Deep learning
Hydrologic models
Hydrology
Long short-term memory
Machine learning
Precipitation
Rainfall-runoff modeling
Rainfall-runoff relationships
Runoff models
Stream flow
Watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqhFQuqKVFLKXIQpVKK1nEj2wcboBAVNpdqm4O3CzHsdmVUHa1DyT-PTOJF3UPwIVrMnn4y9jzje18Q8gPLrMqtbxkqEXHVM4dsxBnGZBnDblbN6lisYlsMNC3t_nf_0p94Z6wVh64Be4EGAqkCWkFtDdTaSVLryotshC0F97nzeibZPkqmYqpltbddp1TZAxierddzwS2ok5GMIIwnFLi0L0g9VdrEakR7n9peG5iztUnsh3JIj1rX_Iz-eDrHfIx1i0fPX4hxTXgR2-m4xq955QOPHgmbco-UEt7k_qODkdAsFkBAzDt467aR3rcGxb9X7RuN4DTCZrijMG9pxDTxvVXUlxdFhfXLNZJYE5puWBKCO60rXKZ-NQJ6JJWuyAD5JguqTQwsqoEFJW0DrKNvAvGnFuZlFKUeeByl2zUk9rvESrholD6IFMPPEloi1UxlCq5D3DrLHRIsoLKuKghjm26N5BLILoG0TVCG0TXILod8vv5kmkroPGa8Tni_2yI2tfNAfAIEz3CvOURHXKEX8-gukWN22fu7BKe82f4z5xpVOhDTtMhP6NRmEALnI1_IwAOKIi1ZnmwZgndz62fXjmJid1_bpribRn4pdx_jxZ9I1uIDmsqVxyQjcVs6b-TTfewGM9nh43nPwGtA__J
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB5BQYJLyypSWjRCSCzSqJ7F8ZhLVRBVkdqAiA-9jcazJJEqOyQpUv8979mTVDnQC9f4Ocn47TPP30fIOy4Ln1teM8SiY6rkjlnIswyKZw292zDziWyiGI305WX5M224LdNY5TomdoHatw73yI86PqxCgEUez38zZI3C09VEoXGfPECUBN6N7o03DZfWw_60UxQMMvuwP9WEmkUdTSGOMNxY4uBkIhNqKy918P3_CtJd5jnd-9___ITsppqTnvRG8pTcC80z8ijRn09vnpPqDNRAf8xnDRrhZzoKYOC0Y4-glp63zYSOp1CnswriOL3A4dwb-uF8XF18pE0_R05bFMWNh6tAITXOmhekOv1WfT1jiW6BOaXliikhuNPWlzILuRPg2Va7KCO0qi7zGgo7X8syU9I6aFrKIQhzbmVWS1GXkcuXZKdpm_CKUAk3xTpEmQcot4S2SK6hVM1DhK8u4oBk62dtXIIixzVdGWhJUD0G1WOENqgeg-oZkE-bW-Y9Dsddwl9QgRtBhNDuPmgXE5M80kDpC_1n7qGfKlTuZR2U16KIUQcRQikG5C2q3yBIRoNTOBN7Db_zffzLnGgE-sPSaEDeJ6HYwgqcTS81wHNAXK0tyYMtSfBit315bUImRZGlubWf_bsvvyaPcd2so7Y4IDurxXU4JA_dn9VsuXjTOcVfo4AOOw
  priority: 102
  providerName: ProQuest
Title HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
URI https://www.proquest.com/docview/3103072073
https://doaj.org/article/1390265d747745d3be4d827ff8e2ee92
Volume 28
WOSCitedRecordID wos001310057400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: RKB
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: BFMQW
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PCBAR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: M7S
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PATMY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: BENPR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PIMPY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcQQ9pe2NiHKLDKmibBJlnEH2mcvRUEAol2VZsH9mQ5jk0roRRBQeK_311iEH0Ye4CnSMk5ie98X87ld4R85zKrUstLhlh0TOXcMQt-lkHwrCF36yVVbDaRDYf6_DwfPWn1hTVhLTxwy7h9iFAgTUgrCHszlVay9KrSIgtBe-F9jtYXliGq5Bh7uMVUS-te-51TZAx8eq_9ngnRitqfggVhuKXEQb0g9VdLHqkB7v-XeW58zvH7F7ztB7IeA03ab4dskBVffyRvY8_z6f0nUpwA7-nvq1mNK-8XHXpY1bRpGUEtPZvXF3QyheCcFWC86QArcu_p3tmkGPygdVs8TudIirsNl56CP5zVn0lxfFQcnrDYY4E5peWCKSG407bKZeJTJ0CdrXZBBshPXVJpiOaqEuakpHWQqeQ9IObcyqSUoswDl1_Iaj2v_SahEgaF0geZeoixhLbYUUOpkvsAt85ChyQPbDYu4o_jnC4N5CEoGYOSMUIblIxByXTIz8chVy34xnPEByiOR0LEzW5OgHxMlI_5n3w65BtK3iAyRo2lNxf2Fp5zOhmbvkZ0P4yHOmQ3EoU5zMDZ-CcD8AHBtJYod5YoQXXd8uWHBWai6bgxTeO3TIDp3XqNGW2Td8gd1nS92CGri-tb_5WsubvF7Oa6S94cHA1H426zFdHFwtcJnBv1i8EfPJ4ORnBEzfoLa64YqQ
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXaTlwhtRWMBCIB6StYntNg4SQstj1WrbUtEclpOVOE5baZWUtgvqj-I_MpNHUQ_sbQ9cm0kqO9_MfGM78wG88GWQdmI_4dSLjqvQtzzGPMuRPGus3bpeWotNBKORPjsLx3vwu_kWho5VNjGxDNRpYWmN_KjUwwoEIvLD4gcn1SjaXW0kNCpYnLrNLyzZVu_7n_H9vhTi5Ev0qcdrVQFulZZrroTwrY7TUHquYwUCONY2kxlWZNZLNfKXNJGhp2RskZuHXTT2_Vh6iRRJmPkSH3sN9hVhvQX74_5w_H1b4WndrbZXRcCRSnSrbVQkSepohoGL00qWj14tPKF2EmGpF_CvrFCmupNb_9kk3YabNadmx5UT3IE9l9-Fg1refba5B1EPYca-LuY5Odk7NnLowKxUx2AxGxT5lE1mWIfwCPMUG9Lh4w17PZhEwzcsr87Js4JMaWHl3DFM_fP8PkRXMaYH0MqL3D0EJvGmLHGZ7Dikk0LHJB6iVOK7DB8dZG3wmldrbN1qncZ0brDkIjQYQoMR2hAaDKGhDW-3tyyqPiOXGX8kvGwNqUV4-UOxnJo64hik9lhfd1KsFwPVSWXiVKpFkGXaCedC0YbnhDZDTUByOmU0jS_wf_qTb-ZYUyNDon5teFUbZQWOwMb1Rxs4D9Q3bMfycMcSo5Tdvdwg1tRRcmX-wvXR5ZefwUEvGg7MoD86fQw3aA54KeNxCK318sI9gev253q-Wj6tPZKBuWJ4_wG9YWk8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELZGh4AXfiMKAywE4odkNbHTxEFCaGNUq9aWsUZib1bi2G2lKSltB-qfxn_HXeIU9YG97YHX5pLKznd339nOfYS88kWUd1M_Y9iLjgWxr1kKeZYBeZZQu4Ve7sQmotFInp3FJzvkd_MtDB6rbGJiFajzUuMaeafSw4o4ILJj3bGIk8Pep_kPhgpSuNPayGnUEDk2619Qvi0_9g_hXb_mvPcl-XzEnMIA04EUKxZw7muZ5rHwTFdzAHMqtRUWqjPt5RK4TJ6J2AtEqoGnxyEY-34qvEzwLLa-gMdeI7syDKXXIrsHveG375tqT8qw3mrlEQNaEdZbqkCYgs4UghjDVS0fPJx7PNhKipV2wL8yRJX2enf-4wm7S247rk33a-e4R3ZMcZ_cdLLv0_UDkhwB_OjX-axA5_tARwYcm1aqGTSlg7KY0PEU6hOWQP6iQzyUvKZvB-Nk-I4W9fl5WqIpLricGwqUYFY8JMlVjOkRaRVlYR4TKuAmmxkrugZoJpcpiooEQeYbC4-ObJt4zWtW2rVgxzGdKyjFEBkKkaG4VIgMhchok_ebW-Z1_5HLjA8QOxtDbB1e_VAuJspFIgWUH-rubg51ZBR0c5GZIJc8slYabkzM2-QlIk9hc5ACUTNJL-B_-uNTtS-xwSFSwjZ544xsCSPQqfuYA-YB-4ltWe5tWUL00tuXG_QqFz2X6i90n1x--QW5AZhWg_7o-Cm5hVPAKnWPPdJaLS7MM3Jd_1zNlovnzjkpUVeM7j-ib3Hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HESS+Opinions%3A+Never+train+a+Long+Short-Term+Memory+%28LSTM%29+network+on+a+single+basin&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=F.+Kratzert&rft.au=M.+Gauch&rft.au=D.+Klotz&rft.au=G.+Nearing&rft.date=2024-09-12&rft.pub=Copernicus+Publications&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=28&rft.spage=4187&rft.epage=4201&rft_id=info:doi/10.5194%2Fhess-28-4187-2024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1390265d747745d3be4d827ff8e2ee92
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon