Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography

Purpose: Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. Methods: A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 43; H. 12; S. 6654 - 6666
Hauptverfasser: Samala, Ravi K., Chan, Heang-Ping, Hadjiiski, Lubomir, Helvie, Mark A., Wei, Jun, Cha, Kenny
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Association of Physicists in Medicine 01.12.2016
Schlagworte:
ISSN:0094-2405, 2473-4209
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose: Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. Methods: A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a linear discriminant classifier to score the detected masses. For the DCNN-based CAD system, ROIs from five consecutive slices centered at each candidate were passed through the trained DCNN and a mass likelihood score was generated. The performances of the CAD systems were evaluated using free-response ROC curves and the performance difference was analyzed using a non-parametric method. Results: Before transfer learning, the DCNN trained only on mammograms with an AUC of 0.99 classified DBT masses with an AUC of 0.81 in the DBT training set. After transfer learning with DBT, the AUC improved to 0.90. For breast-based CAD detection in the test set, the sensitivity for the feature-based and the DCNN-based CAD systems was 83% and 91%, respectively, at 1 FP/DBT volume. The difference between the performances for the two systems was statistically significant (p-value < 0.05). Conclusions: The image patterns learned from the mammograms were transferred to the mass detection on DBT slices through the DCNN. This study demonstrated that large data sets collected from mammography are useful for developing new CAD systems for DBT, alleviating the problem and effort of collecting entirely new large data sets for the new modality.
AbstractList Purpose: Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. Methods: A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a linear discriminant classifier to score the detected masses. For the DCNN-based CAD system, ROIs from five consecutive slices centered at each candidate were passed through the trained DCNN and a mass likelihood score was generated. The performances of the CAD systems were evaluated using free-response ROC curves and the performance difference was analyzed using a non-parametric method. Results: Before transfer learning, the DCNN trained only on mammograms with an AUC of 0.99 classified DBT masses with an AUC of 0.81 in the DBT training set. After transfer learning with DBT, the AUC improved to 0.90. For breast-based CAD detection in the test set, the sensitivity for the feature-based and the DCNN-based CAD systems was 83% and 91%, respectively, at 1 FP/DBT volume. The difference between the performances for the two systems was statistically significant (p-value < 0.05). Conclusions: The image patterns learned from the mammograms were transferred to the mass detection on DBT slices through the DCNN. This study demonstrated that large data sets collected from mammography are useful for developing new CAD systems for DBT, alleviating the problem and effort of collecting entirely new large data sets for the new modality.
Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a linear discriminant classifier to score the detected masses. For the DCNN-based CAD system, ROIs from five consecutive slices centered at each candidate were passed through the trained DCNN and a mass likelihood score was generated. The performances of the CAD systems were evaluated using free-response ROC curves and the performance difference was analyzed using a non-parametric method. Before transfer learning, the DCNN trained only on mammograms with an AUC of 0.99 classified DBT masses with an AUC of 0.81 in the DBT training set. After transfer learning with DBT, the AUC improved to 0.90. For breast-based CAD detection in the test set, the sensitivity for the feature-based and the DCNN-based CAD systems was 83% and 91%, respectively, at 1 FP/DBT volume. The difference between the performances for the two systems was statistically significant (p-value < 0.05). The image patterns learned from the mammograms were transferred to the mass detection on DBT slices through the DCNN. This study demonstrated that large data sets collected from mammography are useful for developing new CAD systems for DBT, alleviating the problem and effort of collecting entirely new large data sets for the new modality.
PURPOSEDevelop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms.METHODSA data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a linear discriminant classifier to score the detected masses. For the DCNN-based CAD system, ROIs from five consecutive slices centered at each candidate were passed through the trained DCNN and a mass likelihood score was generated. The performances of the CAD systems were evaluated using free-response ROC curves and the performance difference was analyzed using a non-parametric method.RESULTSBefore transfer learning, the DCNN trained only on mammograms with an AUC of 0.99 classified DBT masses with an AUC of 0.81 in the DBT training set. After transfer learning with DBT, the AUC improved to 0.90. For breast-based CAD detection in the test set, the sensitivity for the feature-based and the DCNN-based CAD systems was 83% and 91%, respectively, at 1 FP/DBT volume. The difference between the performances for the two systems was statistically significant (p-value < 0.05).CONCLUSIONSThe image patterns learned from the mammograms were transferred to the mass detection on DBT slices through the DCNN. This study demonstrated that large data sets collected from mammography are useful for developing new CAD systems for DBT, alleviating the problem and effort of collecting entirely new large data sets for the new modality.
Author Wei, Jun
Cha, Kenny
Samala, Ravi K.
Helvie, Mark A.
Hadjiiski, Lubomir
Chan, Heang-Ping
Author_xml – sequence: 1
  givenname: Ravi K.
  surname: Samala
  fullname: Samala, Ravi K.
  email: rsamala@umich.edu
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 2
  givenname: Heang-Ping
  surname: Chan
  fullname: Chan, Heang-Ping
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 3
  givenname: Lubomir
  surname: Hadjiiski
  fullname: Hadjiiski, Lubomir
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 4
  givenname: Mark A.
  surname: Helvie
  fullname: Helvie, Mark A.
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 5
  givenname: Jun
  surname: Wei
  fullname: Wei, Jun
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 6
  givenname: Kenny
  surname: Cha
  fullname: Cha, Kenny
  organization: Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27908154$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-AvASktLZjxzYLJFTKj9QKFrC2PI49Y0jsYDszyts3w0yrgiiru7jfOffo3BNwFGKwADzH6AxjLM7xGZUNryl7BBaE8rqiBMkjsEBI0opQxI7BSc4_EEJNzdATcEy4RAIzugDTtc4ZtrZYU3wM0AfY-pUvuoPLZHUusMQ-5imUtc0-v4HvrR2giWETu3GnmMFgx_R7lG1MP-HWlzUsSYfsbIKd1Sn4sIIuxR72uu_jKulhPT0Fj53usn12mKfg-4fLbxefqqsvHz9fvLuqDBU1q9pWykZyLK3jRhhnMCHYkCVvNOcNMtIxJAyrlw3j2gna0Na0rhaNFVI4TOpT8HbvO4zL3rbGhjlbp4bke50mFbVXf26CX6tV3CiGa8Yxnw1eHgxS_DXaXFTvs7Fdp4ONY1ZYUCYIkWKHvrh_6-7Ibd8z8GoPmBRzTtbdIRip3S8VVodfzuz5X6yZ_7LrfI7pu38qqr1i6zs7PWytrr8e-Nd7Pt86_zfOg_Ampnvmw1z_DaNgzXM
CODEN MPHYA6
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110581
crossref_primary_10_1038_s41597_023_02025_1
crossref_primary_10_1016_j_imu_2021_100568
crossref_primary_10_1016_j_clinimag_2019_10_014
crossref_primary_10_32604_cmc_2021_018461
crossref_primary_10_1007_s00138_019_01042_8
crossref_primary_10_1109_ACCESS_2020_2972610
crossref_primary_10_1007_s10278_021_00530_6
crossref_primary_10_3389_fmolb_2020_599333
crossref_primary_10_1007_s13735_021_00218_1
crossref_primary_10_3390_jimaging8090231
crossref_primary_10_1016_j_media_2017_07_005
crossref_primary_10_1007_s12553_022_00693_4
crossref_primary_10_1016_j_ejmp_2019_07_017
crossref_primary_10_1016_j_compmedimag_2018_09_004
crossref_primary_10_1016_j_media_2018_03_006
crossref_primary_10_1038_s41598_017_15720_y
crossref_primary_10_1088_1361_6528_adddc5
crossref_primary_10_1002_jmri_26534
crossref_primary_10_1007_s12194_019_00552_4
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_1007_s11277_022_09864_y
crossref_primary_10_1016_j_crad_2018_01_001
crossref_primary_10_1109_ACCESS_2021_3056150
crossref_primary_10_1007_s00521_025_11215_4
crossref_primary_10_1002_mp_13550
crossref_primary_10_1088_1361_6560_aa93d4
crossref_primary_10_1007_s13246_020_00933_9
crossref_primary_10_1016_j_artmed_2018_04_005
crossref_primary_10_1016_j_ejmp_2021_03_021
crossref_primary_10_3390_app10228298
crossref_primary_10_1053_j_semnuclmed_2022_02_003
crossref_primary_10_3390_electronics12071583
crossref_primary_10_7717_peerj_cs_2076
crossref_primary_10_1109_TCBB_2020_2986544
crossref_primary_10_1155_2020_8860011
crossref_primary_10_1097_IJG_0000000000000988
crossref_primary_10_1109_ACCESS_2019_2891948
crossref_primary_10_1038_s41746_019_0172_3
crossref_primary_10_1002_mp_15883
crossref_primary_10_1016_j_acra_2017_12_025
crossref_primary_10_1016_j_cmpb_2023_107643
crossref_primary_10_1007_s12194_017_0406_5
crossref_primary_10_1007_s00330_019_06457_5
crossref_primary_10_1016_j_diii_2019_08_005
crossref_primary_10_1002_mp_14678
crossref_primary_10_1016_j_cmpb_2018_05_027
crossref_primary_10_1016_j_ibmed_2025_100281
crossref_primary_10_1186_s12859_019_2823_4
crossref_primary_10_1038_s41551_018_0305_z
crossref_primary_10_1088_1361_6560_ab98d0
crossref_primary_10_1097_RCT_0000000000000928
crossref_primary_10_1016_j_ahj_2020_07_009
crossref_primary_10_1007_s11042_021_11775_2
crossref_primary_10_1088_1361_6560_ab5745
crossref_primary_10_1109_TMI_2018_2870343
crossref_primary_10_1145_3453166
crossref_primary_10_1016_j_ejmp_2018_12_012
crossref_primary_10_1016_j_media_2019_03_009
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1016_j_neucom_2021_08_159
crossref_primary_10_3322_caac_21552
crossref_primary_10_1002_mp_13451
crossref_primary_10_1109_TMI_2023_3302799
crossref_primary_10_1002_mp_15631
crossref_primary_10_1155_2022_1367366
crossref_primary_10_1515_revneuro_2025_0062
crossref_primary_10_1016_j_compbiomed_2020_103698
crossref_primary_10_1088_1361_6560_aabb5b
crossref_primary_10_1088_1361_6560_acaba7
crossref_primary_10_1088_2057_1976_ac7ada
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1148_rg_2019180124
crossref_primary_10_1002_cam4_70069
crossref_primary_10_1038_s41598_017_09315_w
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_1053_j_jvca_2024_12_016
crossref_primary_10_1148_ryai_220159
crossref_primary_10_3390_app11104573
crossref_primary_10_3390_computers12110220
crossref_primary_10_1002_jbio_201800255
crossref_primary_10_1117_1_JMI_11_2_024005
crossref_primary_10_1097_HCO_0000000000000833
crossref_primary_10_1109_ACCESS_2019_2892795
crossref_primary_10_1259_bjr_20170545
crossref_primary_10_1053_j_semnuclmed_2025_01_008
crossref_primary_10_1088_1361_6560_ab82e8
crossref_primary_10_1038_s41598_020_71914_x
crossref_primary_10_1016_j_compbiomed_2022_105221
crossref_primary_10_1016_j_ins_2020_12_086
crossref_primary_10_1016_j_radi_2021_05_002
crossref_primary_10_1002_ett_4017
crossref_primary_10_3390_diagnostics13010045
crossref_primary_10_3389_fphar_2024_1437167
crossref_primary_10_1016_j_cmpb_2018_01_017
crossref_primary_10_1016_j_hlpt_2022_100702
crossref_primary_10_3233_THC_228017
crossref_primary_10_1002_mp_16188
crossref_primary_10_1080_21681163_2024_2302387
crossref_primary_10_1109_ACCESS_2020_3004056
crossref_primary_10_1001_jamanetworkopen_2021_19100
crossref_primary_10_1016_j_acra_2020_12_001
crossref_primary_10_1155_2022_9082694
crossref_primary_10_1007_s12530_019_09297_2
crossref_primary_10_1186_s12938_020_00831_x
crossref_primary_10_1007_s13246_019_00822_w
crossref_primary_10_1109_ACCESS_2021_3071297
crossref_primary_10_1016_j_compbiomed_2017_04_006
crossref_primary_10_1016_j_semcancer_2023_02_005
crossref_primary_10_3390_jcm12010385
crossref_primary_10_1007_s12559_020_09813_6
crossref_primary_10_1016_j_semcancer_2020_06_002
crossref_primary_10_1109_RBME_2024_3357877
crossref_primary_10_3390_diagnostics11040688
crossref_primary_10_1007_s11547_022_01512_6
crossref_primary_10_32604_cmes_2023_025484
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_3389_fnins_2020_00858
crossref_primary_10_1016_j_neucom_2018_06_080
crossref_primary_10_1007_s41870_023_01308_5
crossref_primary_10_1002_mp_13264
crossref_primary_10_1016_j_bspc_2019_01_001
crossref_primary_10_1016_j_neucom_2018_06_084
crossref_primary_10_1016_j_acra_2022_12_038
crossref_primary_10_1016_j_bspc_2019_101566
crossref_primary_10_1259_bjr_20190580
crossref_primary_10_1088_2516_1091_acc4fc
crossref_primary_10_1007_s11042_022_12599_4
crossref_primary_10_1016_j_compbiomed_2021_104873
crossref_primary_10_1088_1361_6560_ab553d
crossref_primary_10_1148_radiol_2018171820
crossref_primary_10_1007_s00330_018_5978_x
crossref_primary_10_1016_j_ejrad_2024_111457
crossref_primary_10_1002_aisy_202000063
crossref_primary_10_1016_j_jacr_2017_12_029
crossref_primary_10_1155_2020_7156165
crossref_primary_10_1016_j_jacr_2017_12_028
crossref_primary_10_3348_jksr_2020_0152
crossref_primary_10_1088_1555_6611_abb596
crossref_primary_10_1002_int_22622
crossref_primary_10_1109_ACCESS_2019_2939167
crossref_primary_10_1016_j_ymeth_2019_02_010
crossref_primary_10_1080_21681163_2023_2172615
crossref_primary_10_1002_ima_22423
crossref_primary_10_1109_ACCESS_2020_2984214
crossref_primary_10_1002_cac2_12215
crossref_primary_10_1088_1361_6560_aaef0a
crossref_primary_10_1007_s11277_024_11428_1
crossref_primary_10_1111_all_15849
crossref_primary_10_1016_j_acra_2018_06_019
crossref_primary_10_1109_ACCESS_2020_3038909
crossref_primary_10_1016_j_bspc_2021_102976
crossref_primary_10_1371_journal_pone_0233166
crossref_primary_10_1016_j_compbiomed_2018_04_004
crossref_primary_10_1007_s11036_020_01672_7
crossref_primary_10_1007_s11042_023_16938_x
crossref_primary_10_1016_j_compmedimag_2018_10_008
Cites_doi 10.1007/978-3-319-41546-8_7
10.1117/12.2217045
10.1118/1.1543934
10.1109/42.476112
10.1109/42.538937
10.1118/1.2968098
10.1117/12.2216289
10.1109/TMI.2016.2535302
10.1117/12.2208825
10.1148/radiol.2015141959
10.1148/radiol.2373041657
10.1117/12.710198
10.1007/978-3-540-70538-3_39
10.1109/ISBI.2007.356896
10.1118/1.597428
10.1109/34.31448
10.1118/1.2211710
10.1007/s11263‐015‐0816‐y
10.1117/12.2217260
10.1117/12.2217092
10.1016/j.acra.2007.02.017
10.1118/1.598805
10.1117/12.2043513
10.1016/j.acra.2009.11.011
10.1148/radiology.205.2.9356620
10.1109/CVPR.2009.5206848
10.1259/bjr/19385909
10.1016/0893‐6080(95)00061‐5
10.1056/NEJMsr1504363
10.1038/s41598-017-09315-w
10.1118/1.598228
10.1117/12.2006039
10.1148/radiol.11103514
10.1118/1.3432570
10.1088/0031‐9155/60/21/8457
10.1118/1.4791643
10.1258/jms.2012.012078
10.1109/TMI.2016.2528162
10.1117/12.2216852
10.1109/CVPR.2007.383157
10.1109/ISBI.2006.1625167
10.1088/0031‐9155/40/5/010
10.1088/0031‐9155/61/19/7092
10.1016/j.media.2015.08.001
10.1118/1.1800713
10.1117/12.2216327
10.1118/1.2237543
10.1118/1.4770279
10.1118/1.4944498
10.1080/21681163.2015.1124249
10.1118/1.1758791
10.1088/0031‐9155/59/23/7457
10.1118/1.3284974
10.1118/1.598389
10.1117/12.878214
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine. 2016 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine. 2016 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4967345
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate DBT mass detection using deep convolutional neural network
EISSN 2473-4209
EndPage 6666
ExternalDocumentID PMC5135717
27908154
10_1118_1_4967345
MP7345
Genre article
Journal Article
GrantInformation_xml – fundername: U.S. Public Health Service (USPHS)
  grantid: RO1 CA151443
  funderid: http://dx.doi.org/10.13039/100007197
– fundername: U.S. Public Health Service (USPHS)
  funderid: RO1 CA151443
– fundername: NCI NIH HHS
  grantid: R01 CA151443
– fundername: ; ;
  grantid: RO1 CA151443
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4835-dd9969719ef7c8cfc1221c2b76a7760c9f508c53b657af8464dcdf386e898f123
IEDL.DBID DRFUL
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390237200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Tue Nov 04 01:54:43 EST 2025
Thu Oct 02 11:46:28 EDT 2025
Mon Jul 21 06:06:04 EDT 2025
Tue Nov 18 20:59:43 EST 2025
Sat Nov 29 07:53:35 EST 2025
Wed Jan 22 16:30:48 EST 2025
Fri Jun 21 00:14:38 EDT 2024
Sun Jul 14 10:28:25 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords digital breast tomosynthesis
transfer learning
deep-learning
computer-aided detection
convolutional neural network
mass
Language English
License 0094-2405/2016/43(12)/6654/13/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4835-dd9969719ef7c8cfc1221c2b76a7760c9f508c53b657af8464dcdf386e898f123
Notes Telephone: (734) 647‐8556; Fax: (734) 615‐5513.
Author to whom correspondence should be addressed. Electronic mail
rsamala@umich.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: rsamala@umich.edu; Telephone: (734) 647-8556; Fax: (734) 615-5513.
ORCID 0000-0002-6661-4801
OpenAccessLink http://doi.org/10.1118/1.4967345
PMID 27908154
PQID 1845822987
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_27908154
scitation_primary_10_1118_1_4967345
wiley_primary_10_1118_1_4967345_MP7345
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5135717
crossref_primary_10_1118_1_4967345
crossref_citationtrail_10_1118_1_4967345
proquest_miscellaneous_1845822987
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2016
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Ciompi, de Hoop, van Riel, Chung, Scholten, Oudkerk, de Jong, Prokop, van Ginneken (c26) 2015
Wu, Zhou, Hadjiiski, Shi, Wei, Paramagul, Sahiner, Chan (c39) 2007
Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c19) 2015
Ge, Sahiner, Hadjiiski, Chan, Wei, Helvie, Zhou (c17) 2006
Niklason (c6) 1997
Fukunaga, Hayes (c9) 1989
Burgess (c54) 2004
Bernardi, Ciatto, Pellegrini, Anesi, Burlon, Cauli, Depaoli, Larentis, Malesani, Targa (c29) 2014
Zuley, Bandos, Abrams, Cohen, Hakim, Sumkin, Drescher, Rockette, Gur (c27) 2010
Gao, Bagci, Lu, Wu, Buty, Shin, Roth, Papadakis, Depeursinge, Summers (c25) 2016
Lauby-Secretan, Scoccianti, Loomis, Benbrahim-Tallaa, Bouvard, Bianchini, Straif (c5) 2015
Way, Sahiner, Hadjiiski, Chan (c42) 2010
Chan, Sahiner, Lam, Petrick, Helvie, Goodsitt, Adler (c43) 1998
Wei (c37) 2007
Broeders, Moss, Nyström, Njor, Jonsson, Paap, Massat, Duffy, Lynge, Paci (c4) 2012
Chan, Lo, Sahiner, Lam, Helvie (c15) 1995
Chan, Wei, Zhang, Helvie, Moore, Sahiner, Hadjiiski, Kopans (c32) 2008
Sechopoulos (c8) 2013
Wallis, Moa, Zanca, Leifland, Danielsson (c30) 2012
Cha, Hadjiiski, Samala, Chan, Cohan, Caoili (c48) 2016
van Schie, Wallis, Leifland, Danielsson, Karssemeijer (c62) 2013
Chan, Wei, Sahiner, Rafferty, Wu, Roubidoux, Moore, Kopans, Hadjiiski, Helvie (c31) 2005
Astley (c28) 2013
Wu (c7) 2003
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (c11) 2016
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (c1) 2015
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (c14) 2016
Lo, Lou, Lin, Freedman, Mun (c20) 1995
Chan, Wu, Sahiner, Wei, Helvie, Zhang, Moore, Kopans, Hadjiiski, Way (c35) 2010
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (c53) 2014
Zhou, Chan, Paramagul, Roubidoux, Sahiner, Hadjiiski, Petrick (c38) 2004
Näppi, Hironaka, Regge, Yoshida (c12) 2016
Sahiner, Chan, Petrick, Wei, Helvie, Adler, Goodsitt (c16) 1996
Lo, Chan, Lin, Li, Freedman, Mun (c21) 1995
Samala, Wei, Chan, Hadjiiski, Cha, Helvie (c40) 2016
Sahiner, Chan, Petrick, Helvie, Goodsitt (c41) 1998
Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c18) 2014
Cha, Hadjiiski, Samala, Chan, Caoili, Cohan (c24) 2016
Cha, Hadjiiski, Samala, Chan, Cohan, Caoili, Paramagul, Alva, Weizer (c50) 2016
Fotin, Yin, Haldankar, Hoffmeister, Periaswamy (c60) 2016
Cruz-Roa, Arévalo, Judkins, Madabhushi, González (c13) 2015
Zhang, Chan, Sahiner, Wei, Goodsitt, Hadjiiski, Ge, Zhou (c36) 2006
Samala, Chan, Hadjiiski, Helvie (c22) 2016
Samala, Chan, Hadjiiski, Cha, Helvie (c52) 2016
Chan, Sahiner, Wagner, Petrick (c10) 1999
Morra, Sacchetto, Durando, Agliozzo, Carbonaro, Delsanto, Pesce, Persano, Mariscotti, Marra (c61) 2015
Cha, Hadjiiski, Chan, Caoili, Cohan, Weizer, Zhou (c51) 2016
Krizhevsky, Sutskever, Hinton (c45) 2012
Wei, Chan, Sahiner, Hadjiiski, Helvie, Zhou, Lu (c33) 2011
Chan, Wei, Helvie, Sahiner, Adler, Goodsitt, Petrick (c55) 1995
Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c64) 2014
2015; 9681
2012; 262
2010; 37
2012
2014; 9035
2006; 33
1995; 14
2010; 17
2013; 40
2007; 6512
1999; 26
2005; 237
2013; 8673
2009
2008
2007
2012; 19
2008; 35
2006
2014; 85
2003; 30
1996; 15
2016; 35
1995; 8
1998; 25
2015; 372
2011; 7963
2016; 9785
2015; 26
1995; 40
2004; 31
1997; 205
1989; 11
2015; 115
2015; 60
2001
2015; 277
1995; 22
2016; 43
2014; 59
2014; 15
2007; 6
2016; 61
2016
2015
2014
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Krizhevsky A. (e_1_2_8_46_1) 2012
Srivastava N. (e_1_2_8_54_1) 2014; 15
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Chan H.‐P. (e_1_2_8_64_1) 2008
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
Heath M. (e_1_2_8_35_1) 2001
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Yosinski J. (e_1_2_8_3_1) 2014
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Cha K. H. (e_1_2_8_51_1) 2016
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 1285
  year: 2016
  ident: c11
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2871
  year: 2004
  ident: c38
  article-title: Computerized nipple identification for multiple image analysis in computer-aided diagnosis
  publication-title: Med. Phys.
– start-page: 1987
  year: 2004
  ident: c54
  article-title: On the noise variance of a digital mammography system
  publication-title: Med. Phys.
– start-page: 1201
  year: 1995
  ident: c21
  article-title: Artificial convolution neural network for medical image pattern recognition
  publication-title: Neural Networks
– start-page: 97850X
  year: 2016
  ident: c60
  article-title: Detection of soft tissue densities from digital breast tomosynthesis: Comparison of conventional and deep learning approaches
  publication-title: Proc. SPIE
– start-page: 56
  year: 2015
  ident: c61
  article-title: Breast cancer: Computer-aided detection with digital breast tomosynthesis
  publication-title: Radiology
– start-page: 788
  year: 2012
  ident: c30
  article-title: Two-view and single-view tomosynthesis versus full-field digital mammography: High-resolution x-ray imaging observer study
  publication-title: Radiology
– start-page: 796311-1
  year: 2011
  ident: c33
  article-title: Computer-aided detection of breast masses in digital breast tomosynthesis (DBT): Improvement of false positive reduction by optimization of object segmentation
  publication-title: Proc. SPIE
– start-page: 1097
  year: 2012
  ident: c45
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proc. Syst.
– start-page: 1555
  year: 1995
  ident: c15
  article-title: Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
  publication-title: Med. Phys.
– start-page: 873
  year: 1989
  ident: c9
  article-title: Effects of sample size on classifier design
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 65122U1
  year: 2007
  ident: c39
  article-title: A dynamic multiple thresholding method for automated breast boundary detection in digitized mammograms
  publication-title: Proc. SPIE
– start-page: 14
  year: 2012
  ident: c4
  article-title: The impact of mammographic screening on breast cancer mortality in Europe: A review of observational studies
  publication-title: J. Med. Screening
– start-page: e1174
  year: 2014
  ident: c29
  article-title: Application of breast tomosynthesis in screening: Incremental effect on mammography acquisition and reading time
  publication-title: Br. J. Radiol.
– start-page: 7457
  year: 2014
  ident: c18
  article-title: Digital breast tomosynthesis: Computer-aided detection of clustered microcalcifications on planar projection images
  publication-title: Phys. Med. Biol.
– start-page: 2975
  year: 2006
  ident: c17
  article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms
  publication-title: Med. Phys.
– start-page: 97850Y-1
  year: 2016
  ident: c52
  article-title: Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis
  publication-title: Proc. SPIE
– start-page: 399
  year: 1997
  ident: c6
  article-title: Digital tomosynthesis in breast imaging
  publication-title: Radiology
– start-page: 3781
  year: 2006
  ident: c36
  article-title: A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis
  publication-title: Med. Phys.
– start-page: 978512-1
  year: 2016
  ident: c48
  article-title: Comparison of bladder segmentation using deep-learning convolutional neural network with and without level sets
  publication-title: Proc. SPIE
– start-page: 907
  year: 2010
  ident: c42
  article-title: Effect of finite sample size on feature selection and classification: A simulation study
  publication-title: Med. Phys.
– year: 2016
  ident: c50
  article-title: Bladder cancer segmentation in CT for treatment response assessment: Application of deep-learning convolution neural network—A pilot study
  publication-title: Tomography
– start-page: 014301
  year: 2013
  ident: c8
  article-title: A review of breast tomosynthesis. Part I. The image acquisition process
  publication-title: Med. Phys.
– start-page: 211
  year: 2015
  ident: c1
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
– start-page: 659
  year: 2007
  ident: c37
  article-title: Computer aided detection systems for breast masses: Comparison of performances on full-field digital mammograms and digitized screen-film mammograms
  publication-title: Acad. Radiol.
– start-page: 8457
  year: 2015
  ident: c19
  article-title: Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images
  publication-title: Phys. Med. Biol.
– start-page: 3576
  year: 2010
  ident: c35
  article-title: Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices
  publication-title: Med. Phys.
– start-page: 2007
  year: 1998
  ident: c43
  article-title: Computerized analysis of mammographic microcalcifications in morphological and texture feature space
  publication-title: Med. Phys.
– start-page: 2353
  year: 2015
  ident: c5
  article-title: Breast-cancer screening—Viewpoint of the IARC Working Group
  publication-title: N. Engl. J. Med.
– start-page: 4087
  year: 2008
  ident: c32
  article-title: Computer-aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches
  publication-title: Med. Phys.
– start-page: 365
  year: 2003
  ident: c7
  article-title: Tomographic mammography using a limited number of low-dose cone-beam projection images
  publication-title: Med. Phys.
– start-page: 978523-1
  year: 2016
  ident: c40
  article-title: First and second-order features for detection of masses in digital breast tomosynthesis
  publication-title: Proc. SPIE
– start-page: 1929
  year: 2014
  ident: c53
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 711
  year: 1995
  ident: c20
  article-title: Artificial convolution neural network techniques and applications to lung nodule detection
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2016
  ident: c25
  article-title: Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
  publication-title: Comput. Methods Biomech. Biomed. Eng.: Imaging Visualization
– start-page: 1299
  year: 2016
  ident: c14
  article-title: Convolutional neural networks for medical image Analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
– start-page: 598
  year: 1996
  ident: c16
  article-title: Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 516
  year: 1998
  ident: c41
  article-title: Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis
  publication-title: Med. Phys.
– start-page: 195
  year: 2015
  ident: c26
  article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
  publication-title: Med. Image Anal.
– start-page: 97853W-1
  year: 2016
  ident: c51
  article-title: Computer-aided detection of bladder mass within non-contrast-enhanced region of CT Urography (CTU)
  publication-title: Proc. SPIE
– start-page: 7092
  year: 2016
  ident: c22
  article-title: Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis
  publication-title: Phys. Med. Biol.
– start-page: 1075
  year: 2005
  ident: c31
  article-title: Computer-aided detection system for breast masses on digital tomosynthesis mammograms–preliminary experience
  publication-title: Radiology
– start-page: 2654
  year: 1999
  ident: c10
  article-title: Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers
  publication-title: Med. Phys.
– start-page: 857
  year: 1995
  ident: c55
  article-title: Computer-aided classification of mammographic masses and normal tissue: Linear discriminant analysis in texture feature space
  publication-title: Phys. Med. Biol.
– start-page: 97852B-1
  year: 2016
  ident: c12
  article-title: Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography
  publication-title: Proc. SPIE
– start-page: 041902
  year: 2013
  ident: c62
  article-title: Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms
  publication-title: Med. Phys.
– start-page: 1882
  year: 2016
  ident: c24
  article-title: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets
  publication-title: Med. Phys.
– start-page: 450
  year: 2010
  ident: c27
  article-title: Time to diagnosis and performance levels during repeat interpretations of digital breast tomosynthesis: Preliminary observations
  publication-title: Acad. Radiol.
– start-page: 968103-1
  year: 2015
  ident: c13
  article-title: A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning
  publication-title: Proc. SPIE
– start-page: 86730S-1
  year: 2013
  ident: c28
  article-title: A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis
  publication-title: Proc. SPIE
– start-page: 90350Y
  year: 2014
  ident: c64
  article-title: Digital breast tomosynthesis: Effects of projection-view distribution on computer-aided detection of microcalcification clusters
  publication-title: Proc. SPIE
– volume: 35
  start-page: 4087
  year: 2008
  end-page: 4095
  article-title: Computer‐aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches
  publication-title: Med. Phys.
– volume: 37
  start-page: 3576
  year: 2010
  end-page: 3586
  article-title: Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices
  publication-title: Med. Phys.
– start-page: 1097
  year: 2012
  end-page: 1105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proc. Syst.
– start-page: 248
  year: 2009
  end-page: 255
  article-title: Imagenet: A large‐scale hierarchical image database
– volume: 237
  start-page: 1075
  year: 2005
  end-page: 1080
  article-title: Computer‐aided detection system for breast masses on digital tomosynthesis mammograms–preliminary experience
  publication-title: Radiology
– volume: 30
  start-page: 365
  year: 2003
  end-page: 380
  article-title: Tomographic mammography using a limited number of low‐dose cone‐beam projection images
  publication-title: Med. Phys.
– volume: 31
  start-page: 2871
  year: 2004
  end-page: 2882
  article-title: Computerized nipple identification for multiple image analysis in computer‐aided diagnosis
  publication-title: Med. Phys.
– volume: 40
  start-page: 857
  year: 1995
  end-page: 876
  article-title: Computer‐aided classification of mammographic masses and normal tissue: Linear discriminant analysis in texture feature space
  publication-title: Phys. Med. Biol.
– volume: 9785
  start-page: 97853W‐1
  year: 2016
  end-page: 97853W‐6
  article-title: Computer‐aided detection of bladder mass within non‐contrast‐enhanced region of CT Urography (CTU)
  publication-title: Proc. SPIE
– volume: 25
  start-page: 516
  year: 1998
  end-page: 526
  article-title: Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis
  publication-title: Med. Phys.
– year: 2016
  article-title: Bladder cancer segmentation in CT for treatment response assessment: Application of deep‐learning convolution neural network—A pilot study
  publication-title: Tomography
– volume: 43
  start-page: 1882
  year: 2016
  end-page: 1896
  article-title: Urinary bladder segmentation in CT urography using deep‐learning convolutional neural network and level sets
  publication-title: Med. Phys.
– start-page: 51
  year: 2016
  end-page: 56
  article-title: A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography
– volume: 9785
  start-page: 978512‐1
  year: 2016
  end-page: 978512‐7
  article-title: Comparison of bladder segmentation using deep‐learning convolutional neural network with and without level sets
  publication-title: Proc. SPIE
– volume: 60
  start-page: 8457
  year: 2015
  end-page: 8479
  article-title: Computer‐aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images
  publication-title: Phys. Med. Biol.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision
– start-page: 492
  year: 2007
  end-page: 495
  article-title: Advantages and examples of resampling for CAD evaluation
– volume: 17
  start-page: 450
  year: 2010
  end-page: 455
  article-title: Time to diagnosis and performance levels during repeat interpretations of digital breast tomosynthesis: Preliminary observations
  publication-title: Acad. Radiol.
– volume: 22
  start-page: 1555
  year: 1995
  end-page: 1567
  article-title: Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
  publication-title: Med. Phys.
– volume: 37
  start-page: 907
  year: 2010
  end-page: 920
  article-title: Effect of finite sample size on feature selection and classification: A simulation study
  publication-title: Med. Phys.
– volume: 59
  start-page: 7457
  year: 2014
  end-page: 7477
  article-title: Digital breast tomosynthesis: Computer‐aided detection of clustered microcalcifications on planar projection images
  publication-title: Phys. Med. Biol.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 873
  year: 1989
  end-page: 885
  article-title: Effects of sample size on classifier design
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9785
  start-page: 97850Y‐1
  year: 2016
  end-page: 97850Y‐7
  article-title: Deep‐learning convolution neural network for computer‐aided detection of microcalcifications in digital breast tomosynthesis
  publication-title: Proc. SPIE
– volume: 372
  start-page: 2353
  year: 2015
  end-page: 2358
  article-title: Breast‐cancer screening—Viewpoint of the IARC Working Group
  publication-title: N. Engl. J. Med.
– volume: 40
  start-page: 041902
  year: 2013
  article-title: Mass detection in reconstructed digital breast tomosynthesis volumes with a computer‐aided detection system trained on 2D mammograms
  publication-title: Med. Phys.
– volume: 26
  start-page: 195
  year: 2015
  end-page: 202
  article-title: Automatic classification of pulmonary peri‐fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out‐of‐the‐box
  publication-title: Med. Image Anal.
– volume: 85
  start-page: e1174
  year: 2014
  end-page: e1178
  article-title: Application of breast tomosynthesis in screening: Incremental effect on mammography acquisition and reading time
  publication-title: Br. J. Radiol.
– start-page: 279
  year: 2008
  end-page: 285
  article-title: Detection of masses in digital breast tomosynthesis mammography: Effects of the number of projection views and dose
– volume: 9785
  start-page: 97850X
  year: 2016
  end-page: 97850X‐6
  article-title: Detection of soft tissue densities from digital breast tomosynthesis: Comparison of conventional and deep learning approaches
  publication-title: Proc. SPIE
– volume: 262
  start-page: 788
  year: 2012
  end-page: 796
  article-title: Two‐view and single‐view tomosynthesis versus full‐field digital mammography: High‐resolution x‐ray imaging observer study
  publication-title: Radiology
– year: 2001
  article-title: The digital database for screening mammography
– year: 2015
– start-page: 1
  year: 2007
  end-page: 8
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
– volume: 61
  start-page: 7092
  year: 2016
  end-page: 7112
  article-title: Analysis of computer‐aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis
  publication-title: Phys. Med. Biol.
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 6512
  start-page: 65122U1
  year: 2007
  end-page: 65122U8
  article-title: A dynamic multiple thresholding method for automated breast boundary detection in digitized mammograms
  publication-title: Proc. SPIE
– volume: 40
  start-page: 014301
  year: 2013
  article-title: A review of breast tomosynthesis. Part I. The image acquisition process
  publication-title: Med. Phys.
– volume: 9035
  start-page: 90350Y
  year: 2014
  article-title: Digital breast tomosynthesis: Effects of projection‐view distribution on computer‐aided detection of microcalcification clusters
  publication-title: Proc. SPIE
– start-page: 560
  year: 2008
  article-title: Digital breast tomosynthesis (DBT) mammography: Effect of number of projection views on computerized mass detection using 2D and 3D approaches
– volume: 9681
  start-page: 968103‐1
  year: 2015
  end-page: 968103‐8
  article-title: A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning
  publication-title: Proc. SPIE
– volume: 9785
  start-page: 978523‐1
  year: 2016
  end-page: 978523‐7
  article-title: First and second‐order features for detection of masses in digital breast tomosynthesis
  publication-title: Proc. SPIE
– year: 2016
– start-page: 1312
  year: 2006
  end-page: 1315
  article-title: Comparing image detection algorithms using resampling
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  article-title: Convolutional neural networks for medical image Analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
– volume: 205
  start-page: 399
  year: 1997
  end-page: 406
  article-title: Digital tomosynthesis in breast imaging
  publication-title: Radiology
– year: 2012
– volume: 9785
  start-page: 97852B‐1
  year: 2016
  end-page: 97852B‐8
  article-title: Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography
  publication-title: Proc. SPIE
– volume: 15
  start-page: 598
  year: 1996
  end-page: 610
  article-title: Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 2975
  year: 2006
  end-page: 2988
  article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms
  publication-title: Med. Phys.
– volume: 25
  start-page: 2007
  year: 1998
  end-page: 2019
  article-title: Computerized analysis of mammographic microcalcifications in morphological and texture feature space
  publication-title: Med. Phys.
– volume: 277
  start-page: 56
  year: 2015
  end-page: 63
  article-title: Breast cancer: Computer‐aided detection with digital breast tomosynthesis
  publication-title: Radiology
– volume: 31
  start-page: 1987
  year: 2004
  end-page: 1995
  article-title: On the noise variance of a digital mammography system
  publication-title: Med. Phys.
– volume: 6
  start-page: 659
  year: 2007
  end-page: 669
  article-title: Computer aided detection systems for breast masses: Comparison of performances on full‐field digital mammograms and digitized screen‐film mammograms
  publication-title: Acad. Radiol.
– volume: 14
  start-page: 711
  year: 1995
  end-page: 718
  article-title: Artificial convolution neural network techniques and applications to lung nodule detection
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 2654
  year: 1999
  end-page: 2668
  article-title: Classifier design for computer‐aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers
  publication-title: Med. Phys.
– volume: 7963
  start-page: 796311‐1
  year: 2011
  end-page: 796311‐6
  article-title: Computer‐aided detection of breast masses in digital breast tomosynthesis (DBT): Improvement of false positive reduction by optimization of object segmentation
  publication-title: Proc. SPIE
– start-page: 1
  year: 2016
  end-page: 6
  article-title: Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
  publication-title: Comput. Methods Biomech. Biomed. Eng.: Imaging Visualization
– volume: 33
  start-page: 3781
  year: 2006
  end-page: 3795
  article-title: A comparative study of limited‐angle cone‐beam reconstruction methods for breast tomosynthesis
  publication-title: Med. Phys.
– volume: 8673
  start-page: 86730S‐1
  year: 2013
  end-page: 86730S‐8
  article-title: A comparison of image interpretation times in full field digital mammography and digital breast tomosynthesis
  publication-title: Proc. SPIE
– start-page: 3320
  year: 2014
  end-page: 3328
  article-title: How transferable are features in deep neural networks?
– volume: 19
  start-page: 14
  year: 2012
  end-page: 25
  article-title: The impact of mammographic screening on breast cancer mortality in Europe: A review of observational studies
  publication-title: J. Med. Screening
– volume: 8
  start-page: 1201
  year: 1995
  end-page: 1214
  article-title: Artificial convolution neural network for medical image pattern recognition
  publication-title: Neural Networks
– ident: e_1_2_8_24_1
  doi: 10.1007/978-3-319-41546-8_7
– ident: e_1_2_8_61_1
  doi: 10.1117/12.2217045
– ident: e_1_2_8_8_1
  doi: 10.1118/1.1543934
– ident: e_1_2_8_59_1
– start-page: 560
  volume-title: RSNA Program Book, 2008
  year: 2008
  ident: e_1_2_8_64_1
– ident: e_1_2_8_21_1
  doi: 10.1109/42.476112
– ident: e_1_2_8_17_1
  doi: 10.1109/42.538937
– ident: e_1_2_8_33_1
  doi: 10.1118/1.2968098
– ident: e_1_2_8_52_1
  doi: 10.1117/12.2216289
– ident: e_1_2_8_15_1
  doi: 10.1109/TMI.2016.2535302
– ident: e_1_2_8_14_1
  doi: 10.1117/12.2208825
– ident: e_1_2_8_62_1
  doi: 10.1148/radiol.2015141959
– ident: e_1_2_8_32_1
  doi: 10.1148/radiol.2373041657
– ident: e_1_2_8_4_1
– ident: e_1_2_8_40_1
  doi: 10.1117/12.710198
– start-page: 1097
  year: 2012
  ident: e_1_2_8_46_1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proc. Syst.
– ident: e_1_2_8_66_1
  doi: 10.1007/978-3-540-70538-3_39
– ident: e_1_2_8_57_1
  doi: 10.1109/ISBI.2007.356896
– ident: e_1_2_8_16_1
  doi: 10.1118/1.597428
– ident: e_1_2_8_10_1
  doi: 10.1109/34.31448
– ident: e_1_2_8_18_1
  doi: 10.1118/1.2211710
– ident: e_1_2_8_2_1
  doi: 10.1007/s11263‐015‐0816‐y
– ident: e_1_2_8_13_1
  doi: 10.1117/12.2217260
– ident: e_1_2_8_53_1
  doi: 10.1117/12.2217092
– ident: e_1_2_8_38_1
  doi: 10.1016/j.acra.2007.02.017
– ident: e_1_2_8_11_1
  doi: 10.1118/1.598805
– year: 2016
  ident: e_1_2_8_51_1
  article-title: Bladder cancer segmentation in CT for treatment response assessment: Application of deep‐learning convolution neural network—A pilot study
  publication-title: Tomography
– ident: e_1_2_8_65_1
  doi: 10.1117/12.2043513
– ident: e_1_2_8_28_1
  doi: 10.1016/j.acra.2009.11.011
– ident: e_1_2_8_7_1
  doi: 10.1148/radiology.205.2.9356620
– ident: e_1_2_8_47_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_8_30_1
  doi: 10.1259/bjr/19385909
– ident: e_1_2_8_22_1
  doi: 10.1016/0893‐6080(95)00061‐5
– ident: e_1_2_8_6_1
  doi: 10.1056/NEJMsr1504363
– ident: e_1_2_8_48_1
– ident: e_1_2_8_50_1
  doi: 10.1038/s41598-017-09315-w
– ident: e_1_2_8_42_1
  doi: 10.1118/1.598228
– ident: e_1_2_8_29_1
  doi: 10.1117/12.2006039
– ident: e_1_2_8_31_1
  doi: 10.1148/radiol.11103514
– ident: e_1_2_8_36_1
  doi: 10.1118/1.3432570
– ident: e_1_2_8_20_1
  doi: 10.1088/0031‐9155/60/21/8457
– ident: e_1_2_8_63_1
  doi: 10.1118/1.4791643
– ident: e_1_2_8_5_1
  doi: 10.1258/jms.2012.012078
– ident: e_1_2_8_12_1
  doi: 10.1109/TMI.2016.2528162
– ident: e_1_2_8_49_1
  doi: 10.1117/12.2216852
– ident: e_1_2_8_45_1
  doi: 10.1109/CVPR.2007.383157
– ident: e_1_2_8_58_1
  doi: 10.1109/ISBI.2006.1625167
– ident: e_1_2_8_56_1
  doi: 10.1088/0031‐9155/40/5/010
– ident: e_1_2_8_23_1
  doi: 10.1088/0031‐9155/61/19/7092
– ident: e_1_2_8_27_1
  doi: 10.1016/j.media.2015.08.001
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_8_54_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_60_1
– ident: e_1_2_8_39_1
  doi: 10.1118/1.1800713
– ident: e_1_2_8_41_1
  doi: 10.1117/12.2216327
– volume-title: Digital Mammography; IWDM 2000
  year: 2001
  ident: e_1_2_8_35_1
– ident: e_1_2_8_37_1
  doi: 10.1118/1.2237543
– ident: e_1_2_8_9_1
  doi: 10.1118/1.4770279
– ident: e_1_2_8_25_1
  doi: 10.1118/1.4944498
– ident: e_1_2_8_26_1
  doi: 10.1080/21681163.2015.1124249
– ident: e_1_2_8_55_1
  doi: 10.1118/1.1758791
– ident: e_1_2_8_19_1
  doi: 10.1088/0031‐9155/59/23/7457
– ident: e_1_2_8_43_1
  doi: 10.1118/1.3284974
– ident: e_1_2_8_44_1
  doi: 10.1118/1.598389
– ident: e_1_2_8_34_1
  doi: 10.1117/12.878214
– start-page: 3320
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_8_3_1
SSID ssj0006350
Score 2.6081786
Snippet Purpose: Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network...
Purpose: Develop a computer‐aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network...
Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with...
PURPOSEDevelop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6654
SubjectTerms Analysis of texture
Artificial neural networks
Biological material, e.g. blood, urine; Haemocytometers
Breast Neoplasms - diagnostic imaging
cancer
computer‐aided detection
convolutional neural network
deep‐learning
Diagnosis, Computer-Assisted
digital breast tomosynthesis
Digital computing or data processing equipment or methods, specially adapted for specific applications
Digital tomosynthesis mammography
feature extraction
Film mammography
image classification
Image data processing or generation, in general
Image detection systems
Image Processing, Computer-Assisted - methods
image segmentation
image texture
In which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
Inference methods or devices
Learning
learning (artificial intelligence)
Machine Learning
Mammography
mass
medical image processing
neural nets
Neural Networks (Computer)
QUANTITATIVE IMAGING AND IMAGE PROCESSING
radiology
Segmentation
Testing procedures
transfer learning
tumours
Title Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
URI http://dx.doi.org/10.1118/1.4967345
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4967345
https://www.ncbi.nlm.nih.gov/pubmed/27908154
https://www.proquest.com/docview/1845822987
https://pubmed.ncbi.nlm.nih.gov/PMC5135717
Volume 43
WOSCitedRecordID wos000390237200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9RADLZ6QOGFo1zhqIZDiJdAkp0TnhBlxUO3qhCV9i1K5iiR2mS1SSv13zOeZINWLQiJpzzEiZKMHX8e258B3hihNPZHxpyLLKaO2biU1MYFp0j_lBhuA2X-gTg8lPO5OtqAT6temJ4fYtxwQ8sI_2s08KIcppCkWLievqeKiwllm7CNTVU-8tre_z49Phh_xN6X9h0oimISgQ3EQv7yD-PF6-7oCsa8Wip5y3umPkm-DmeDP5re_a83uQd3BhhKPvd6cx82bL0LO7Mh0b4LN0NlqG4fwOXMw2tibBdqtmpS1cRUJzhqhJRY0N6Rrjlr2svaI8m2aj-SfWsXBIvZB6X2gkiaGQ6h5Jzg3i_pAmK2SzLMrTgh2OlCzgpvGD2L9kM4nn798eVbPMxriDX1QC42xgdPSqTKOqGldjrNslRnpeCFEDzRynk0qNmk5EwUzgMfarRxE8mtVNJ5F_oItuqmtk-ASEwfCpmyghdUWVs4lwhhTJLoxFCTRPButWz5aj1wpsZp3gc1Mk_z4aNG8GoUXfQMHtcJvVytfe7tC5MmRW2b8zb3ETBDUnwpInjc68J4m0woj6gYjUCsackogNzd62fq6mfg8GbphPlIOoLXoz797emukbpolr8l8oVxEbwNWvbn--SzIzw8_VfBZ3Db40PeV-88h61ueW5fwA190VXtcg82xVzuDUb3C0vdLcQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VLbS8cJQC4TSHEC-BHD4RL4iyKmJ3VaFW6luU9VEi0WS1SSv13-MjG7RqQUg8-SFjK4lnPJ89428AXismpLsfGVPKshgbouM5xzouKXb0T4mi2lPmT9hsxo-PxcEGfFzdhQn8EMOBm7MMv147A3cH0r2Vu8z19B0WlOWYXINNTHPGR7C59318NBlWYutMwxUUgV0UgfTMQrb7-6Hzuj-6BDIv50puW9cUouTreNY7pPHt__uUO3CrB6LoU9Ccu7Ch6x3Ymvah9h244XNDZXsPLqYWYCOlO5-1VaOqRqo6ccVG0NyltHeoa06b9qK2WLKt2g9oT-sFcunsvVpbQUeb6RufdI7c6S_qPGbWS9RXrjhB7q4LOi2taQQe7V04Gn85_Lwf9xUbYoktlIuVstsnwVKhDZNcGplmWSqzOaMlYzSRwlg8KEk-p4SVxkIfrKQyOaeaC26sE70Po7qp9UNA3AUQGU9JSUsstC6NSRhTKklkorBKIni7mrdiNSGuqsbPImxreJEW_U-N4OUguggcHlcJvVhNfmEtzIVNylo3Z21h98DE0eJzFsGDoAzDMBkTFlMRHAFbU5NBwLF3rz-pqx-exZukObF76QheDQr1t7e7Quq8Wf6WKBbKRPDGq9mfxymmB6559K-Cz2F7_3A6KSZfZ98ew02LFmnI5XkCo255pp_CdXneVe3yWW97vwAuGDDM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRQuPFoK4WkeQr0EkqyfiAtiWYHYXa0QlXqzsn6USG2y2qSV-u-xnWzQqgUhcfIhYyuJZzyfPeNvAF5rJpS_HxlTyrIYW2LiBccmzin29E-JpiZQ5k_YbMaPjsR8Cz6s78K0_BD9gZu3jLBeewM3S207K_eZ6-lbLCgbYnINtjERBA9ge_R9fDjpV2LnTNsrKAL7KALpmIVc93d9501_dAlkXs6VvOlcUxsl38SzwSGN7_zfp9yF2x0QRR9bzbkHW6bchZ1pF2rfhRshN1TVe3AxdQAbadOErK0SFSXSxbEvNoIWPqW9QU11WtUXpcOSdVG_RyNjlsins3dq7QQ9bWZoQtI58qe_qAmY2axQV7niGPm7Lug0d6bR8mjfh8Px5x-fvsRdxYZYYQflYq3d9kmwVBjLFFdWpVmWqmzBaM4YTZSwDg8qMlxQwnLroA_WStshp4YLbp0T3YdBWZXmISDuA4iMpySnORbG5NYmjGmdJCrRWCcRHKznTa4nxFfVOJHttobLVHY_NYKXveiy5fC4SujFevKlszAfNslLU53V0u2BiafF5yyCB60y9MNkTDhMRXAEbENNegHP3r35pCx-BhZvkg6J20tH8KpXqL-93RVS59Xqt4R0GhXBm6Bmfx5HTue-efSvgs9hZz4ay8nX2bfHcMuBRdqm8jyBQbM6M0_hujpvinr1rDO9X3MeMEc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+detection+in+digital+breast+tomosynthesis%3A+Deep+convolutional+neural+network+with+transfer+learning+from+mammography&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Samala%2C+Ravi+K&rft.au=Chan%2C+Heang-Ping&rft.au=Hadjiiski%2C+Lubomir&rft.au=Helvie%2C+Mark+A&rft.date=2016-12-01&rft.eissn=2473-4209&rft.volume=43&rft.issue=12&rft.spage=6654&rft.epage=6654&rft_id=info:doi/10.1118%2F1.4967345&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon