Deformable mesh registration for the validation of automatic target localization algorithms

Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy. Methods: DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical physics (Lancaster) Ročník 40; číslo 7; s. 071721 - n/a
Hlavní autoři: Robertson, Scott, Weiss, Elisabeth, Hugo, Geoffrey D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Association of Physicists in Medicine 01.07.2013
Témata:
ISSN:0094-2405, 2473-4209, 2473-4209, 0094-2405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy. Methods: DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration. Results: For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh. Conclusions: Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces.
AbstractList To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy.PURPOSETo evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy.DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration.METHODSDMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration.For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh.RESULTSFor 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh.Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces.CONCLUSIONSProvided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces.
To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy. DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration. For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh. Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces.
Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image‐guided radiation therapy. Methods: DMR was implemented in a hierarchical model, with rigid, affine, and B‐spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration. Results: For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh. Conclusions: Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image‐guided radiation therapy, specifically in regions on or near the target surfaces.
Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy. Methods: DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration. Results: For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh. Conclusions: Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces.
Author Robertson, Scott
Weiss, Elisabeth
Hugo, Geoffrey D.
Author_xml – sequence: 1
  givenname: Scott
  surname: Robertson
  fullname: Robertson, Scott
  organization: Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
– sequence: 2
  givenname: Elisabeth
  surname: Weiss
  fullname: Weiss, Elisabeth
  organization: Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
– sequence: 3
  givenname: Geoffrey D.
  surname: Hugo
  fullname: Hugo, Geoffrey D.
  email: gdhugo@vcu.edu
  organization: Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23822425$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URNPCgT-A9ghI2_pz174goVI-pCI4wImDZXvtxMi7DrYT1P56HDapyudp7Jln3nc0cwKOpjhZAB4jeIYQ4ufojPL6gOweWGDak5ZiKI7AAkJBW0whOwYnOX-FEHaEwQfgGBOOMcVsAb68si6mUelgm9HmVZPs0ueSVPFxamqpKSvbbFXww5yKrlGbEsf6M01RaWlLE6KpwM0MqLCMyZfVmB-C-06FbB_t4yn4_Pry08Xb9urDm3cXL69aQzlhLWOccW2Yc9r0SCgurBsG3UPbaywc0b0xEHUM6451QlPOlWbIItM7QWokp-DFrLve6NEOxk51_iDXyY8qXcuovPy1MvmVXMatJD3ETOwEnu4FUvy2sbnI0WdjQ1CTjZssERGcYkq6HfrkrtetyWGjFTifAZNizsk6aXz5uZlq7YNEUO5uJpHc36x2PPut4yD6N7ad2e8-2Ot_g_L9xz3_fObzYYrbnm1Md_j14P4H_znJDznRwbc
CODEN MPHYA6
CitedBy_id crossref_primary_10_1016_j_ijrobp_2016_09_012
crossref_primary_10_1118_1_4867860
crossref_primary_10_1002_mp_12271
Cites_doi 10.1016/j.ijrobp.2008.06.1926
10.1080/02841860802256491
10.1016/j.semradonc.2007.07.003
10.1016/j.ijrobp.2009.09.080
10.1097/JTO.0b013e31820b8a52
10.1016/j.ijrobp.2010.11.032
10.1016/j.radonc.2009.12.017
10.3109/0284186X.2010.498435
10.1016/j.semradonc.2009.11.003
10.1118/1.3671929
10.1016/j.ijrobp.2008.08.059
10.1016/j.ijrobp.2007.01.014
10.1016/S0262‐8856(03)00137‐9
10.1016/j.ijrobp.2011.04.025
10.1016/j.ijrobp.2007.07.2352
10.1016/j.ijrobp.2008.09.048
10.1109/TMI.2009.2013851
10.1016/0146‐664X(80)90054‐4
10.1118/1.2836951
10.1118/1.2731029
10.1016/j.ijrobp.2011.08.021
10.1007/BF01427149
10.1088/0031‐9155/51/19/005
10.1088/0031‐9155/57/2/395
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2013 American Association of Physicists in Medicine
Copyright © 2013 American Association of Physicists in Medicine 2013 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2013 American Association of Physicists in Medicine
– notice: Copyright © 2013 American Association of Physicists in Medicine 2013 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4811105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage n/a
ExternalDocumentID PMC3702591
23822425
10_1118_1_4811105
MP1105
Genre article
Validation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01CA166119
– fundername: NIH
  funderid: R01CA166119
– fundername: NCI NIH HHS
  grantid: R01 CA166119
– fundername: NCI NIH HHS
  grantid: R01CA166119
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4835-55858bc5ffbc719a89efddb70e7b29f3b7cc01652b6569b488ab51e1c7f931e13
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321272200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 02:00:31 EST 2025
Fri Sep 05 13:03:32 EDT 2025
Mon Jul 21 06:05:48 EDT 2025
Sat Nov 29 01:32:16 EST 2025
Tue Nov 18 22:14:52 EST 2025
Wed Jan 22 16:29:34 EST 2025
Fri Jun 21 00:28:34 EDT 2024
Sun Jul 14 10:05:21 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords localization
lung cancer
deformable registration
image-guided radiation therapy
Language English
License 0094-2405/2013/40(7)/071721/9/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4835-55858bc5ffbc719a89efddb70e7b29f3b7cc01652b6569b488ab51e1c7f931e13
Notes Telephone: 804‐628‐3457; Fax: 804‐628‐0271.
Author to whom correspondence should be addressed. Electronic mail
gdhugo@vcu.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author to whom correspondence should be addressed. Electronic mail: gdhugo@vcu.edu; Telephone: 804-628-3457; Fax: 804-628-0271.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4811105
PMID 23822425
PQID 1398424361
PQPubID 23479
PageCount 9
ParticipantIDs crossref_citationtrail_10_1118_1_4811105
crossref_primary_10_1118_1_4811105
proquest_miscellaneous_1398424361
wiley_primary_10_1118_1_4811105_MP1105
scitation_primary_10_1118_1_4811105
pubmed_primary_23822425
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3702591
PublicationCentury 2000
PublicationDate July 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2013
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Bissonnette, Purdie, Higgins, Li, Bezjak (c2) 2009; 73
Zhang (c15) 1994; 13
van Herk (c1) 2007; 17
Christensen, Song, Lu, El Naqa, Low (c19) 2007; 34
Mohammed, Kestin, Grills, Shah, Glide-Hurst, Yan, Ionascu (c3) 2012; 82
Heimann (c20) 2009; 28
Borst, Sonke, Betgen, Remeijer, van Herk, Lebesque (c22) 2007; 68
Hugo, Weiss, Badawi, Orton (c12) 2011; 81
Badawi, Weiss, Sleeman, Hugo (c18) 2012; 57
Danielsson (c21) 1980; 14
Sonke, Belderbos (c7) 2010; 20
Glide-Hurst, Gopan, Hugo (c10) 2010; 77
Söhn, Birkner, Chi, Wang, Yan, Berger, Alber (c24) 2008; 35
Robertson, Weiss, Hugo (c13) 2012; 39
Malsch, Thieke, Huber, Bendl (c25) 2006; 51
Worm, Hansen, Petersen, Muren, Præstegaard, Høyer (c4) 2010; 49
Yeung, Li, Shi, Newlin, Chvetsov, Liu, Palta, Olivier (c5) 2009; 74
Zitová, Flusser (c16) 2003; 21
Lim (c11) 2011; 6
Weiss, Robertson, Mukhopadhyay, Hugo (c17) 2012; 82
Brock, Hawkins, Eccles, Moseley, Moseley, Jaffray, Dawson (c9) 2008; 47
Higgins, Bezjak, Franks, Le, Cho, Payne, Bissonnette (c6) 2009; 73
van Beek, van Kranen, Mencarelli, Remeijer, Rasch, van Herk, Sonke (c8) 2010; 94
Grills, Hugo, Kestin, Galerani, Chao, Wloch, Yan (c23) 2008; 70
2007; 17
2012; 82
2010; 77
2010; 20
1980; 14
2010; 49
2009; 74
2009; 73
2006; 51
2011; 81
2008; 47
1994; 13
2008; 35
2005
2012; 39
2012; 57
2011; 6
2008; 70
2007; 34
2007; 68
2003; 21
2010; 94
2009; 28
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Ibanez L. (e_1_2_7_15_1) 2005
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
17398021 - Int J Radiat Oncol Biol Phys. 2007 Jun 1;68(2):555-61
17903703 - Semin Radiat Oncol. 2007 Oct;17(4):258-67
20219547 - Semin Radiat Oncol. 2010 Apr;20(2):94-106
21277096 - Int J Radiat Oncol Biol Phys. 2011 Oct 1;81(2):560-7
21258244 - J Thorac Oncol. 2011 Mar;6(3):531-6
21664070 - Int J Radiat Oncol Biol Phys. 2012 Mar 15;82(4):1541-8
19095368 - Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):927-34
19395197 - Int J Radiat Oncol Biol Phys. 2009 Jul 15;74(4):1100-7
20083318 - Radiother Oncol. 2010 Feb;94(2):213-7
18404923 - Med Phys. 2008 Mar;35(3):866-78
22172998 - Phys Med Biol. 2012 Jan 21;57(2):395-413
22225303 - Med Phys. 2012 Jan;39(1):330-41
16985271 - Phys Med Biol. 2006 Oct 7;51(19):4789-806
19211338 - IEEE Trans Med Imaging. 2009 Aug;28(8):1251-65
17654918 - Med Phys. 2007 Jun;34(6):2155-63
18804335 - Int J Radiat Oncol Biol Phys. 2009 Apr 1;73(5):1404-13
22197237 - Int J Radiat Oncol Biol Phys. 2012 Mar 15;82(4):e639-45
18766475 - Acta Oncol. 2008;47(7):1279-85
20590367 - Acta Oncol. 2010 Oct;49(7):1177-83
18029110 - Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1045-56
20510201 - Int J Radiat Oncol Biol Phys. 2010 Jul 1;77(3):910-7
References_xml – volume: 70
  start-page: 1045
  year: 2008
  ident: c23
  article-title: Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 13
  start-page: 119
  year: 1994
  ident: c15
  article-title: Iterative point matching for registration of free-form curves and surfaces
  publication-title: Int. J. Comput. Vis.
– volume: 82
  start-page: e639
  year: 2012
  ident: c17
  article-title: Tumor, lymph node, and lymph node-to-tumor displacements over a radiotherapy series: Analysis of interfraction and intrafraction variations using active breathing control (ABC) in lung cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 6
  start-page: 531
  year: 2011
  ident: c11
  article-title: Tumor regression and positional changes in non-small cell lung cancer during radical radiotherapy
  publication-title: J. Thorac. Oncol.
– volume: 17
  start-page: 258
  year: 2007
  ident: c1
  article-title: Different styles of image-guided radiotherapy
  publication-title: Semin. Radiat. Oncol.
– volume: 73
  start-page: 1404
  year: 2009
  ident: c6
  article-title: Comparison of spine, carina, and tumor as registration landmarks for volumetric image-guided lung radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 77
  start-page: 910
  year: 2010
  ident: c10
  article-title: Anatomic and pathologic variability during radiotherapy for a hybrid active breath-hold gating technique
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 68
  start-page: 555
  year: 2007
  ident: c22
  article-title: Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients: First clinical results and comparison with electronic portal-imaging device
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 73
  start-page: 927
  year: 2009
  ident: c2
  article-title: Cone-beam computed tomographic image guidance for lung cancer radiation therapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 35
  start-page: 866
  year: 2008
  ident: c24
  article-title: Model-independent, multimodality deformable image registration by local matching of anatomical features and minimization of elastic energy
  publication-title: Med. Phys.
– volume: 20
  start-page: 94
  year: 2010
  ident: c7
  article-title: Adaptive radiotherapy for lung cancer
  publication-title: Semin. Radiat. Oncol.
– volume: 57
  start-page: 395
  year: 2012
  ident: c18
  article-title: Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath-hold lung cancer radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 2155
  year: 2007
  ident: c19
  article-title: Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry
  publication-title: Med. Phys.
– volume: 94
  start-page: 213
  year: 2010
  ident: c8
  article-title: First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients
  publication-title: Radiother. Oncol.
– volume: 21
  start-page: 977
  year: 2003
  ident: c16
  article-title: Image registration methods: A survey
  publication-title: Image Vis. Comput.
– volume: 28
  start-page: 1251
  year: 2009
  ident: c20
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 227
  year: 1980
  ident: c21
  article-title: Euclidean distance mapping
  publication-title: Comput. Graph. Image Process.
– volume: 51
  start-page: 4789
  year: 2006
  ident: c25
  article-title: An enhanced block matching algorithm for fast elastic registration in adaptive radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 47
  start-page: 1279
  year: 2008
  ident: c9
  article-title: Improving image-guided target localization through deformable registration
  publication-title: Acta Oncol.
– volume: 74
  start-page: 1100
  year: 2009
  ident: c5
  article-title: Tumor localization using cone-beam CT reduces setup margins in conventionally fractionated radiotherapy for lung tumors
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 49
  start-page: 1177
  year: 2010
  ident: c4
  article-title: Inter- and intrafractional localisation errors in cone-beam CT guided stereotactic radiation therapy of tumours in the liver and lung
  publication-title: Acta Oncol.
– volume: 39
  start-page: 330
  year: 2012
  ident: c13
  article-title: Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy
  publication-title: Med. Phys.
– volume: 82
  start-page: 1541
  year: 2012
  ident: c3
  article-title: Comparison of IGRT registration strategies for optimal coverage of primary lung tumors and involved nodes based on multiple four-dimensional CT scans obtained throughout the radiotherapy course
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 81
  start-page: 560
  year: 2011
  ident: c12
  article-title: Localization accuracy of the clinical target volume during image-guided radiotherapy of lung cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 70
  start-page: 1045
  year: 2008
  end-page: 1056
  article-title: Image‐guided radiotherapy via daily online cone‐beam CT substantially reduces margin requirements for stereotactic lung radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 68
  start-page: 555
  year: 2007
  end-page: 561
  article-title: Kilo‐voltage cone‐beam computed tomography setup measurements for lung cancer patients: First clinical results and comparison with electronic portal‐imaging device
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 13
  start-page: 119
  year: 1994
  end-page: 152
  article-title: Iterative point matching for registration of free‐form curves and surfaces
  publication-title: Int. J. Comput. Vis.
– volume: 82
  start-page: e639
  year: 2012
  end-page: e645
  article-title: Tumor, lymph node, and lymph node‐to‐tumor displacements over a radiotherapy series: Analysis of interfraction and intrafraction variations using active breathing control (ABC) in lung cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– year: 2005
– volume: 34
  start-page: 2155
  year: 2007
  end-page: 2163
  article-title: Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry
  publication-title: Med. Phys.
– volume: 49
  start-page: 1177
  year: 2010
  end-page: 1183
  article-title: Inter‐ and intrafractional localisation errors in cone‐beam CT guided stereotactic radiation therapy of tumours in the liver and lung
  publication-title: Acta Oncol.
– volume: 47
  start-page: 1279
  year: 2008
  end-page: 1285
  article-title: Improving image‐guided target localization through deformable registration
  publication-title: Acta Oncol.
– volume: 73
  start-page: 927
  year: 2009
  end-page: 934
  article-title: Cone‐beam computed tomographic image guidance for lung cancer radiation therapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 6
  start-page: 531
  year: 2011
  end-page: 536
  article-title: Tumor regression and positional changes in non‐small cell lung cancer during radical radiotherapy
  publication-title: J. Thorac. Oncol.
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 1265
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 258
  year: 2007
  end-page: 267
  article-title: Different styles of image‐guided radiotherapy
  publication-title: Semin. Radiat. Oncol.
– volume: 81
  start-page: 560
  year: 2011
  end-page: 567
  article-title: Localization accuracy of the clinical target volume during image‐guided radiotherapy of lung cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 82
  start-page: 1541
  year: 2012
  end-page: 1548
  article-title: Comparison of IGRT registration strategies for optimal coverage of primary lung tumors and involved nodes based on multiple four‐dimensional CT scans obtained throughout the radiotherapy course
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 73
  start-page: 1404
  year: 2009
  end-page: 1413
  article-title: Comparison of spine, carina, and tumor as registration landmarks for volumetric image‐guided lung radiotherapy
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 14
  start-page: 227
  year: 1980
  end-page: 248
  article-title: Euclidean distance mapping
  publication-title: Comput. Graph. Image Process.
– volume: 35
  start-page: 866
  year: 2008
  end-page: 878
  article-title: Model‐independent, multimodality deformable image registration by local matching of anatomical features and minimization of elastic energy
  publication-title: Med. Phys.
– volume: 94
  start-page: 213
  year: 2010
  end-page: 217
  article-title: First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head‐and‐neck cancer patients
  publication-title: Radiother. Oncol.
– volume: 57
  start-page: 395
  year: 2012
  end-page: 413
  article-title: Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath‐hold lung cancer radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 74
  start-page: 1100
  year: 2009
  end-page: 1107
  article-title: Tumor localization using cone‐beam CT reduces setup margins in conventionally fractionated radiotherapy for lung tumors
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 77
  start-page: 910
  year: 2010
  end-page: 917
  article-title: Anatomic and pathologic variability during radiotherapy for a hybrid active breath‐hold gating technique
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 20
  start-page: 94
  year: 2010
  end-page: 106
  article-title: Adaptive radiotherapy for lung cancer
  publication-title: Semin. Radiat. Oncol.
– volume: 21
  start-page: 977
  year: 2003
  end-page: 1000
  article-title: Image registration methods: A survey
  publication-title: Image Vis. Comput.
– volume: 51
  start-page: 4789
  year: 2006
  end-page: 4806
  article-title: An enhanced block matching algorithm for fast elastic registration in adaptive radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 39
  start-page: 330
  year: 2012
  end-page: 341
  article-title: Localization accuracy from automatic and semi‐automatic rigid registration of locally‐advanced lung cancer targets during image‐guided radiation therapy
  publication-title: Med. Phys.
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ijrobp.2008.06.1926
– ident: e_1_2_7_10_1
  doi: 10.1080/02841860802256491
– ident: e_1_2_7_2_1
  doi: 10.1016/j.semradonc.2007.07.003
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ijrobp.2009.09.080
– ident: e_1_2_7_12_1
  doi: 10.1097/JTO.0b013e31820b8a52
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ijrobp.2010.11.032
– ident: e_1_2_7_9_1
  doi: 10.1016/j.radonc.2009.12.017
– ident: e_1_2_7_5_1
  doi: 10.3109/0284186X.2010.498435
– ident: e_1_2_7_8_1
  doi: 10.1016/j.semradonc.2009.11.003
– ident: e_1_2_7_14_1
  doi: 10.1118/1.3671929
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ijrobp.2008.08.059
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ijrobp.2007.01.014
– ident: e_1_2_7_17_1
  doi: 10.1016/S0262‐8856(03)00137‐9
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ijrobp.2011.04.025
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ijrobp.2007.07.2352
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ijrobp.2008.09.048
– ident: e_1_2_7_21_1
  doi: 10.1109/TMI.2009.2013851
– ident: e_1_2_7_22_1
  doi: 10.1016/0146‐664X(80)90054‐4
– ident: e_1_2_7_25_1
  doi: 10.1118/1.2836951
– volume-title: The ITK Software Guide
  year: 2005
  ident: e_1_2_7_15_1
– ident: e_1_2_7_20_1
  doi: 10.1118/1.2731029
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijrobp.2011.08.021
– ident: e_1_2_7_16_1
  doi: 10.1007/BF01427149
– ident: e_1_2_7_26_1
  doi: 10.1088/0031‐9155/51/19/005
– ident: e_1_2_7_19_1
  doi: 10.1088/0031‐9155/57/2/395
– reference: 20219547 - Semin Radiat Oncol. 2010 Apr;20(2):94-106
– reference: 18804335 - Int J Radiat Oncol Biol Phys. 2009 Apr 1;73(5):1404-13
– reference: 21258244 - J Thorac Oncol. 2011 Mar;6(3):531-6
– reference: 22197237 - Int J Radiat Oncol Biol Phys. 2012 Mar 15;82(4):e639-45
– reference: 19211338 - IEEE Trans Med Imaging. 2009 Aug;28(8):1251-65
– reference: 19395197 - Int J Radiat Oncol Biol Phys. 2009 Jul 15;74(4):1100-7
– reference: 18766475 - Acta Oncol. 2008;47(7):1279-85
– reference: 20083318 - Radiother Oncol. 2010 Feb;94(2):213-7
– reference: 22225303 - Med Phys. 2012 Jan;39(1):330-41
– reference: 22172998 - Phys Med Biol. 2012 Jan 21;57(2):395-413
– reference: 18029110 - Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1045-56
– reference: 17654918 - Med Phys. 2007 Jun;34(6):2155-63
– reference: 18404923 - Med Phys. 2008 Mar;35(3):866-78
– reference: 17903703 - Semin Radiat Oncol. 2007 Oct;17(4):258-67
– reference: 21277096 - Int J Radiat Oncol Biol Phys. 2011 Oct 1;81(2):560-7
– reference: 17398021 - Int J Radiat Oncol Biol Phys. 2007 Jun 1;68(2):555-61
– reference: 20590367 - Acta Oncol. 2010 Oct;49(7):1177-83
– reference: 16985271 - Phys Med Biol. 2006 Oct 7;51(19):4789-806
– reference: 20510201 - Int J Radiat Oncol Biol Phys. 2010 Jul 1;77(3):910-7
– reference: 19095368 - Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):927-34
– reference: 21664070 - Int J Radiat Oncol Biol Phys. 2012 Mar 15;82(4):1541-8
SSID ssj0006350
Score 2.098807
Snippet Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation...
Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image‐guided radiation...
To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy....
To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation...
Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 071721
SubjectTerms Algorithms
Automation
Cancer
Computed tomography
Computerised tomographs
computerised tomography
deformable registration
Digital computing or data processing equipment or methods, specially adapted for specific applications
Humans
Image data processing or generation, in general
Image guided radiation therapy
Image Processing, Computer-Assisted - methods
image registration
localization
lung
lung cancer
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lung Neoplasms - radiotherapy
Lungs
medical image processing
Medical image quality
Medical imaging
Optimization
radiation therapy
Radiation Therapy Physics
Radiation treatment
Radiotherapy, Image-Guided - methods
Registration
Surface treatments
Tomography, X-Ray Computed
Tumor Burden
tumours
Title Deformable mesh registration for the validation of automatic target localization algorithms
URI http://dx.doi.org/10.1118/1.4811105
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4811105
https://www.ncbi.nlm.nih.gov/pubmed/23822425
https://www.proquest.com/docview/1398424361
https://pubmed.ncbi.nlm.nih.gov/PMC3702591
Volume 40
WOSCitedRecordID wos000321272200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFgoXHqVAeFTmoYpLYJ04a1ucEGXFgVYVotJKHCLbsdmVtkm12e3vZ2wnQasWhMQpkTK2svE8Pq9nvgF4U1S6EJJVqcpHLkXvN_YmpdKMVtLTkTulRGg2wU9OxHQqT7fgQ18LE_khhj_cvGUEf-0NXOmuCwn1iev0HRN46_lLd3xRFe68do6-Tc6-Do4YY2msQJHMHyIUHbEQDn8_DN4MR1cw5tVUydsYmeIh-SacDfFocu-_fsl9uNvBUPIx6s0D2LL1Huwedwfte3ArZIaa9iH8OLIB1-qFJee2nRHfyqEn2yX4iCCEJKiv89idiTSOqPWqCVSwJCaakxAxu4pPohY_m-V8NTtv9-Fs8vn7py9p15EhNQyhWlrg5kJoUzinDadSCWldVWk-slxn0uWaG-ProzKNMFFqdA5KF9RSw53M8Zo_gu26qe0TIIZmzjGtOY5iFhXDaaa8txnlcqxGJoG3_cKU_Rf3XTMWZdy2iJKW3WdL4NUgehE5Oq4TetmvbokW5I9FVG2bdVsiBhYsY_mYJvA4rvYwDQKazG_KEuAbejAIeHbuzSf1fBZYunPUyULinK8Hjfnb210jddksf0uUF5VL4DDo0Z_nKY9P_eXpvwo-gztZ6O_h84-fw_ZqubYv4Ka5XM3b5QHc4FNx0JnVL-ORIjk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6UdFv3skt3867ahbEXb7EtRxbsZawLHUtCGS0U9iAkWVoCqV3ipL9_R5LtEdqNwZ5s8JGwrXP5JB19B-BNXqq84LSMZTa0MXq_kTMpGadJyR0duZWy8MUm2GxWnJ7yox342J2FCfwQ_YKbswzvr52BuwXp1spd5nrynhZ46whMd-koY8UAdg--j08mvSfGYBqOoHDqdhHyllkIm3_oG2_Ho0sg83Ku5B6GprBLvo1nfUAa3_6_T7kDt1ogSj4FzbkLO6bahxvTdqt9H6773FDd3IMfB8YjW7U05Mw0c-KKOXR0uwQfEQSRBDV2EeozkdoSuVnXngyWhFRz4mNme-aTyOXPerVYz8-a-3Ay_nL8-TBuazLEmiJYi3OcXhRK59YqzRIuC25sWSo2NEyl3GaKae1OSKUKgSJX6B6kyhOTaGZ5htfsAQyqujKPgOgktZYqxbAVNagaVlHp_M0w4yM51BG860ZGdL_c1c1YijBxKUQi2t8Wwate9DywdFwl9LIbXoE25DZGZGXqTSMQBRc0pdkoieBhGO6-G4Q0qZuWRcC2FKEXcPzc20-qxdzzdGcMASXHPl_3KvO3t7tC6qJe_ZYQ56WN4K1XpD_3I6ZH7vL4XwVfwN7h8XQiJl9n357AzdRX-3DZyE9hsF5tzDO4pi_Wi2b1vLWuX2HgJUE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6UdGv3skt3867ahbEXb7EtRxbsZSwLG2tDGCsU9iAkWWoCqV3ipL9_R5LtEdqNwZ5s8JGwpXP5ZB19B-B1Xqq84LSMZTa0MXq_kTMpGadJyR0duZWy8MUm2HRanJzw2Q586M7CBH6I_oebswzvr52Bm_PStlbuMteTd7TAW0dguktzntMB7I6_T44Pe0-MwTQcQeHU7SLkLbMQNn_fN96OR5dA5uVcyX0MTWGXfBvP-oA0ufV_n3IbbrZAlHwMmnMHdkx1AHtH7Vb7AVz3uaG6uQs_x8YjW7U05Mw0c-KKOXR0uwQfEQSRBDV2EeozkdoSuVnXngyWhFRz4mNme-aTyOVpvVqs52fNPTiefP7x6Uvc1mSINUWwFue4vCiUzq1VmiVcFtzYslRsaJhKuc0U09qdkEoVAkWu0D1IlScm0czyDK_ZfRhUdWUeAtFJai1VimEralA1rKLS-ZthxkdyqCN4282M6Ibc1c1YirBwKUQi2mGL4GUveh5YOq4SetFNr0AbchsjsjL1phGIggua0myURPAgTHffDUKa1C3LImBbitALOH7u7SfVYu55ujOGgJJjn696lfnb210hdVGvfksI1JkI3nhF-nM_4mjmLo_-VfA57M3GE3H4dfrtMdxIfbEPl4z8BAbr1cY8hWv6Yr1oVs9a4_oFt0AkvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformable+mesh+registration+for+the+validation+of+automatic+target+localization+algorithms&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Robertson%2C+Scott&rft.au=Weiss%2C+Elisabeth&rft.au=Hugo%2C+Geoffrey+D.&rft.date=2013-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=40&rft.issue=7&rft_id=info:doi/10.1118%2F1.4811105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_4811105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon