Push‐Pull Bis‐Norbornadienes for Solar Thermal Energy Storage

The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 30; číslo 35; s. e202400482 - n/a
Hlavní autoři: Weber, Roza R., Stindt, Charlotte N., Harten, A M. J., Feringa, Ben L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 20.06.2024
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can ‘share’ a substituent. Here, we present five new NBD dimers with red‐shifted absorption spectra. One dimer features the most red‐shifted absorption onset (539 nm) and a significantly red‐shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half‐life. Promising properties for high‐performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half‐lives of the metastable isomer, up to 23 hours at 25 °C. Not only the production, but especially the storage of renewable energy is crucial for a sustainable society. A major challenge in the field of molecular solar thermal energy storage is designing visible light‐absorbing photoswitches with long energy storage half‐lives. Five novel visible light‐absorbing norbornadiene dimers were prepared, with half‐lives up to 23.0 hours, and high energy densities up to 379.3 kJ/kg.
AbstractList The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onsets (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C.
The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can ‘share’ a substituent. Here, we present five new NBD dimers with red‐shifted absorption spectra. One dimer features the most red‐shifted absorption onset (539 nm) and a significantly red‐shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half‐life. Promising properties for high‐performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half‐lives of the metastable isomer, up to 23 hours at 25 °C.
The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can ‘share’ a substituent. Here, we present five new NBD dimers with red‐shifted absorption spectra. One dimer features the most red‐shifted absorption onset (539 nm) and a significantly red‐shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half‐life. Promising properties for high‐performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half‐lives of the metastable isomer, up to 23 hours at 25 °C. Not only the production, but especially the storage of renewable energy is crucial for a sustainable society. A major challenge in the field of molecular solar thermal energy storage is designing visible light‐absorbing photoswitches with long energy storage half‐lives. Five novel visible light‐absorbing norbornadiene dimers were prepared, with half‐lives up to 23.0 hours, and high energy densities up to 379.3 kJ/kg.
The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onset (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C.The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onset (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C.
Author Feringa, Ben L.
Weber, Roza R.
Stindt, Charlotte N.
Harten, A M. J.
Author_xml – sequence: 1
  givenname: Roza R.
  surname: Weber
  fullname: Weber, Roza R.
  organization: University of Groningen
– sequence: 2
  givenname: Charlotte N.
  surname: Stindt
  fullname: Stindt, Charlotte N.
  organization: University of Groningen
– sequence: 3
  givenname: A M. J.
  surname: Harten
  fullname: Harten, A M. J.
  organization: University of Groningen
– sequence: 4
  givenname: Ben L.
  orcidid: 0000-0003-0588-8435
  surname: Feringa
  fullname: Feringa, Ben L.
  email: b.l.feringa@rug.nl
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38519425$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9Kw0AQhxdRtK1ePUrAi5fU_Ztkj1qqFaoWWs_LJp20kU1WdxOkNx_BZ_RJTGmrIIinGZjvG5j5ddF-ZStA6JTgPsGYXmZLKPsUU44xT-ge6hBBScjiSOyjDpY8DiPB5BHqev-MMZYRY4foiCWCSE5FB11NGr_8fP-YNMYE14Vv2wfrUusqPS-gAh_k1gVTa7QLZktwpTbBsAK3WAXT2jq9gGN0kGvj4WRbe-jpZjgbjMLx4-3d4GocZjxhNCTzTNJEiDQRIHKWJIzoVGotM5GmLKcU4ohoHoHEDPKccwkZjue6ncU45Zr10MVm74uzrw34WpWFz8AYXYFtvKIybp_AROv30Pkv9Nk27UXGK4YjKTlhSdxSZ1uqSUuYqxdXlNqt1O45LcA3QOas9w5ylRW1rgtb1U4XRhGs1hmodQbqO4NW6__Sdpv_FORGeCsMrP6h1WA0vP9xvwD9r5m6
CitedBy_id crossref_primary_10_1002_anie_202414733
crossref_primary_10_1039_D5EE02556G
crossref_primary_10_1021_acs_jpclett_5c00634
crossref_primary_10_1002_ange_202414733
crossref_primary_10_1039_D5CC01970B
crossref_primary_10_1002_chem_202401430
Cites_doi 10.1002/chem.201802932
10.1021/jo202644g
10.1021/jo00224a017
10.1038/srep41145
10.1021/jacs.0c00374
10.1055/s-0034-1380417
10.1002/cptc.201900030
10.1016/j.isci.2022.104830
10.1039/D1SC05791J
10.1021/jacs.8b04277
10.1177/10245294221120986
10.1039/C8OB01470A
10.1021/jacs.2c05384
10.1016/j.tetlet.2015.01.187
10.1039/c1cc12868j
10.1038/s41467-018-04230-8
10.1016/S0040-4039(01)87002-7
10.1002/9783527827626
10.1039/C3CC47517D
10.1002/chem.201602530
10.1016/j.crci.2013.08.011
10.1016/0047-2670(85)87059-3
10.1016/j.chempr.2023.06.007
10.1039/C8CS00470F
10.1070/RC1991v060n05ABEH001088
10.1039/C8EE01011K
10.1007/s11111-023-00422-7
10.1039/C6DT01343K
10.1039/C7TA04259K
10.1002/ejoc.202100795
10.1002/anie.202309544
10.1016/j.techfore.2023.122628
10.1080/10587259708036129
10.1002/advs.201900367
10.1002/ejoc.202201398
10.1021/acs.accounts.0c00235
ContentType Journal Article
Copyright 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Copyright_xml – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202400482
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 38519425
10_1002_chem_202400482
CHEM202400482
Genre article
Journal Article
GrantInformation_xml – fundername: Ministerie van Onderwijs, Cultuur en Wetenschap
  funderid: 024.001.035
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
– fundername: H2020 European Research Council
  funderid: 860434; 694345
– fundername: Koninklijke Nederlandse Akademie van Wetenschappen
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4832-1dc92855b85e5f38831ab9aa9c5bb3f22e761a46e903eff449ec07dab3f70b4a3
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001204079500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 12:31:59 EDT 2025
Tue Oct 07 07:05:35 EDT 2025
Mon Jul 21 06:04:11 EDT 2025
Sat Nov 29 07:11:07 EST 2025
Tue Nov 18 22:12:06 EST 2025
Wed Aug 20 07:26:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords norbornadiene
molecular photoswitch
solar thermal energy storage
Language English
License Attribution
2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4832-1dc92855b85e5f38831ab9aa9c5bb3f22e761a46e903eff449ec07dab3f70b4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0588-8435
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400482
PMID 38519425
PQID 3069941387
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_2974003590
proquest_journals_3069941387
pubmed_primary_38519425
crossref_citationtrail_10_1002_chem_202400482
crossref_primary_10_1002_chem_202400482
wiley_primary_10_1002_chem_202400482_CHEM202400482
PublicationCentury 2000
PublicationDate June 20, 2024
PublicationDateYYYYMMDD 2024-06-20
PublicationDate_xml – month: 06
  year: 2024
  text: June 20, 2024
  day: 20
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 56
2017; 7
1985; 29
2019; 3
2019; 6
2018; 140
2020; 142
2023; 9
1997; 297
2019; 12
1973; 14
1991; 60
2022; 25
2012; 77
2018; 47
2018; 24
2022; 144
2018; 9
2023; 62
2015; 26
2018; 8
2023; 193
2023; 45
2020; 53
2023; 26
2023; 27
2022; 13
1985; 50
2014; 17
2011; 47
2014; 50
2018; 16
2021; 2021
2016; 45
2016; 22
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
Dreos A. (e_1_2_9_25_1) 2018; 8
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 41145
  year: 2017
  publication-title: Sci. Rep.
– volume: 193
  year: 2023
  publication-title: Technol. Forecast. Soc. Change
– volume: 142
  start-page: 8688
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 4742
  year: 1985
  publication-title: J. Org. Chem.
– volume: 45
  start-page: 10
  year: 2023
  publication-title: Popul. Environ.
– volume: 27
  start-page: 429
  year: 2023
  publication-title: Compet. Change
– volume: 297
  start-page: 247
  year: 1997
  publication-title: Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. Mol. Cryst. Liq. Cryst.
– volume: 26
  start-page: 1501
  year: 2015
  publication-title: Synlett
– volume: 5
  start-page: 12369
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 27
  year: 1985
  publication-title: J. Photochem.
– volume: 12
  start-page: 187
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 144
  start-page: 12627
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 7339
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 12767
  year: 2018
  publication-title: Chem. Eur. J.
– volume: 47
  start-page: 8259
  year: 2011
  publication-title: Chem. Commun.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 2021
  start-page: 5337
  year: 2021
  publication-title: Eur. J. Org. Chem.
– volume: 45
  start-page: 8740
  year: 2016
  publication-title: Dalton Trans.
– volume: 22
  start-page: 13265
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 5585
  year: 2018
  publication-title: Org. Biomol. Chem.
– volume: 26
  year: 2023
  publication-title: Eur. J. Org. Chem.
– volume: 17
  start-page: 403
  year: 2014
  publication-title: Comptes Rendus Chim.
– volume: 25
  year: 2022
  publication-title: iScience
– volume: 50
  start-page: 5330
  year: 2014
  publication-title: Chem. Commun.
– volume: 53
  start-page: 1478
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 9
  start-page: 3159
  year: 2023
  publication-title: Chem
– volume: 13
  start-page: 834
  year: 2022
  publication-title: Chem. Sci.
– volume: 56
  start-page: 1457
  year: 2015
  publication-title: Tetrahedron Lett.
– volume: 77
  start-page: 2798
  year: 2012
  publication-title: J. Org. Chem.
– volume: 14
  start-page: 3667
  year: 1973
  publication-title: Tetrahedron Lett.
– volume: 9
  start-page: 1945
  year: 2018
  publication-title: Nat. Commun.
– volume: 140
  start-page: 7710
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 268
  year: 2019
  publication-title: ChemPhotoChem
– volume: 60
  start-page: 451
  year: 1991
  publication-title: Russ. Chem. Rev.
– ident: e_1_2_9_19_1
  doi: 10.1002/chem.201802932
– ident: e_1_2_9_34_1
  doi: 10.1021/jo202644g
– ident: e_1_2_9_17_1
  doi: 10.1021/jo00224a017
– ident: e_1_2_9_35_1
  doi: 10.1038/srep41145
– ident: e_1_2_9_13_1
  doi: 10.1021/jacs.0c00374
– ident: e_1_2_9_36_1
  doi: 10.1055/s-0034-1380417
– ident: e_1_2_9_5_1
  doi: 10.1002/cptc.201900030
– ident: e_1_2_9_4_1
  doi: 10.1016/j.isci.2022.104830
– ident: e_1_2_9_14_1
  doi: 10.1039/D1SC05791J
– ident: e_1_2_9_33_1
  doi: 10.1021/jacs.8b04277
– ident: e_1_2_9_3_1
  doi: 10.1177/10245294221120986
– ident: e_1_2_9_23_1
  doi: 10.1039/C8OB01470A
– ident: e_1_2_9_10_1
  doi: 10.1021/jacs.2c05384
– ident: e_1_2_9_9_1
  doi: 10.1016/j.tetlet.2015.01.187
– ident: e_1_2_9_37_1
  doi: 10.1039/c1cc12868j
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-018-04230-8
– ident: e_1_2_9_27_1
  doi: 10.1016/S0040-4039(01)87002-7
– ident: e_1_2_9_11_1
  doi: 10.1002/9783527827626
– ident: e_1_2_9_21_1
  doi: 10.1039/C3CC47517D
– ident: e_1_2_9_31_1
  doi: 10.1002/chem.201602530
– ident: e_1_2_9_32_1
  doi: 10.1016/j.crci.2013.08.011
– ident: e_1_2_9_16_1
  doi: 10.1016/0047-2670(85)87059-3
– volume: 8
  year: 2018
  ident: e_1_2_9_25_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_9_12_1
  doi: 10.1016/j.chempr.2023.06.007
– ident: e_1_2_9_7_1
  doi: 10.1039/C8CS00470F
– ident: e_1_2_9_18_1
  doi: 10.1070/RC1991v060n05ABEH001088
– ident: e_1_2_9_26_1
  doi: 10.1039/C8EE01011K
– ident: e_1_2_9_1_1
  doi: 10.1007/s11111-023-00422-7
– ident: e_1_2_9_8_1
  doi: 10.1039/C6DT01343K
– ident: e_1_2_9_22_1
  doi: 10.1039/C7TA04259K
– ident: e_1_2_9_6_1
  doi: 10.1002/ejoc.202100795
– ident: e_1_2_9_29_1
  doi: 10.1002/anie.202309544
– ident: e_1_2_9_2_1
  doi: 10.1016/j.techfore.2023.122628
– ident: e_1_2_9_15_1
  doi: 10.1080/10587259708036129
– ident: e_1_2_9_30_1
  doi: 10.1002/advs.201900367
– ident: e_1_2_9_24_1
  doi: 10.1002/ejoc.202201398
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.accounts.0c00235
SSID ssj0009633
Score 2.483636
Snippet The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST)....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400482
SubjectTerms Absorption
Absorption spectra
Dimers
Energy storage
molecular photoswitch
norbornadiene
Red shift
Solar energy
Solar heating
solar thermal energy storage
Thermal energy
Title Push‐Pull Bis‐Norbornadienes for Solar Thermal Energy Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400482
https://www.ncbi.nlm.nih.gov/pubmed/38519425
https://www.proquest.com/docview/3069941387
https://www.proquest.com/docview/2974003590
Volume 30
WOSCitedRecordID wos001204079500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9NgMReYAwGYQxlEhJPFo7_NPZj11HxUFXV-KO-RbbjCCTUoobyzEfgM-6T7Jyk6So0IY2XyJFtxT7fne-c8-8ATpzm1ijmiMs7kogiz4kWMiUBu1LZxHFZxebcDNLhUI3HevTXLf4aH6I9cAuSUenrIODGlmdL0FCcU7hJziomRCW8niRcheQNTIyWsLudJpm8SEkAYV3ANlJ2ttp_dVt6ZWuumq7V3tPffv-oP8FWY3fG3ZpRduCDn3yGzd4i3dsudEfz8vb388sIfdL4x12JxeF0ZkMC4xAU5ssYzdv4MnjCMfIW6vP7-Ly6OBhfot-OamkPrvvnV70L0uRXIE6gIJMkd5opKa2SXhZcKZ4Yq43RTlrLC8Z82kmM6HhNuS8KIbR3NM0N1qXUCsO_wNpkOvEHEFOrc8YNy6nRgnmtLTXO-VzaACfDiwjIgryZa8DHQw6M-6yGTWZZIEzWEiaC07b9Qw278c-WR4vVyhrxKzP0g7TG7VmlEXxvq5Gg4W-ImfjpvMwYelIVgCGNYL9e5fZTHO1QnIeMgFWL-cYYsgBf0b4d_k-nr_AxlEMQGqNHsPY4m_tvsOGeHu_K2XHF1PhMx-oY1n_-6l8P_gAk5Pkf
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9NDIm9DNjYCIORSZP2ZOH6TxM_FgRiWqkqwSbeLNtxNCTUoqbd8z7CPuM-ye6SNKhCExLiLYntxD7f-e6c8-8APgcjvctFYKHoa6bKomBG6YwRdmXue0HqOjbnxzAbjfLrazNuownpLEyDD9FtuJFk1Os1CThtSB_do4bioOgouai5EFfhlwpVDbG6UON73N1-m01eZYxQWJe4jVwcrbZf1UsPjM1V27VWPmebz9DtLXjdWp7poGGVbXgRJ29g42SZ8O0tDMaL6uff33_G-Kb0-KbCy9F05imFMYWFxSpFAze9JF84Re7CFf02Pa2PDqaX6LnjwrQD389Or07OWZthgQWFosx6RTAi19rnOupS5rnsOW-cM0F7L0shYtbvOdWPhstYlkqZGHhWOCzLuFdOvoO1yXQSdyHl3hRCOlFwZ5SIxnjuQoiF9gQoI8sE2JK-NrTw45QF49Y2wMnCEmFsR5gEvnT17xrgjf_W3F9Ol20FsLLoCRmDCjrPEvjUFSNB6X-Im8TporICfakawpAn8L6Z5u5TEi1RHIdOQNSz-UgfLAFYdHd7T2l0CBvnVxdDO_w6-vYBXtFzCkkTfB_W5rNFPID18Gt-U80-1hz-D1t_-oI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7IVtQX693YqhEEn4bOzmWTeaxtF8VlWayVvg1zCy2U3bLp-uxP8Df6SzwnyaYsRQriW5KZJDNnzjU58x2A98FI70oRWIgjzVQVIzNKF4ywK0s_DFI3uTnfJ8V0Wp6emlmXTUh7YVp8iP6DG0lGo69JwNNlrPauUUNxUrSVXDRciFp4S1ElmQFsHX4dn0yukXdHXT15VTDCYV0jN3Kxt_mETct0w93c9F4b8zPe_g8DfwQPO98z32-Z5THcSfMncP9gXfLtKezPVvXZ75-_ZhiX5h_PazycLpaeihhTYliqc3Rx82OKhnPkL9TpF_lRs3kwP8bYHVXTMzgZH307-MS6GgssKBRmNozBiFJrX-qkK1mWcui8cc4E7b2shEjFaOjUKBkuU1UpZVLgRXTYVnCvnHwOg_linl5Czr2JQjoRuTNKJGM8dyGkqD1BysgqA7amrw0dADnVwbiwLXSysEQY2xMmgw99_8sWeuOvPXfXy2U7EawtxkLGoIkuiwze9c1IUPoj4uZpsaqtwGiqATHkGbxol7l_lURfFOehMxDNat4yBksQFv3Zq3-56S3cmx2O7eTz9MsOPKDLlJMm-C4Mrpar9Bruhh9X5_XyTcfifwCKZvuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Push-Pull+Bis-Norbornadienes+for+Solar+Thermal+Energy+Storage&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Weber%2C+Roza+R&rft.au=Stindt%2C+Charlotte+N&rft.au=van+der+Harten%2C+A+M+J&rft.au=Feringa%2C+Ben+L&rft.date=2024-06-20&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=30&rft.issue=35&rft.spage=e202400482&rft_id=info:doi/10.1002%2Fchem.202400482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon