Push‐Pull Bis‐Norbornadienes for Solar Thermal Energy Storage
The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in t...
Gespeichert in:
| Veröffentlicht in: | Chemistry : a European journal Jg. 30; H. 35; S. e202400482 - n/a |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
20.06.2024
|
| Schlagworte: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can ‘share’ a substituent. Here, we present five new NBD dimers with red‐shifted absorption spectra. One dimer features the most red‐shifted absorption onset (539 nm) and a significantly red‐shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half‐life. Promising properties for high‐performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half‐lives of the metastable isomer, up to 23 hours at 25 °C.
Not only the production, but especially the storage of renewable energy is crucial for a sustainable society. A major challenge in the field of molecular solar thermal energy storage is designing visible light‐absorbing photoswitches with long energy storage half‐lives. Five novel visible light‐absorbing norbornadiene dimers were prepared, with half‐lives up to 23.0 hours, and high energy densities up to 379.3 kJ/kg. |
|---|---|
| AbstractList | The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can ‘share’ a substituent. Here, we present five new NBD dimers with red‐shifted absorption spectra. One dimer features the most red‐shifted absorption onset (539 nm) and a significantly red‐shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half‐life. Promising properties for high‐performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half‐lives of the metastable isomer, up to 23 hours at 25 °C.
Not only the production, but especially the storage of renewable energy is crucial for a sustainable society. A major challenge in the field of molecular solar thermal energy storage is designing visible light‐absorbing photoswitches with long energy storage half‐lives. Five novel visible light‐absorbing norbornadiene dimers were prepared, with half‐lives up to 23.0 hours, and high energy densities up to 379.3 kJ/kg. The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onset (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C.The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onset (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C. The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onsets (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C. The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can ‘share’ a substituent. Here, we present five new NBD dimers with red‐shifted absorption spectra. One dimer features the most red‐shifted absorption onset (539 nm) and a significantly red‐shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half‐life. Promising properties for high‐performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half‐lives of the metastable isomer, up to 23 hours at 25 °C. |
| Author | Feringa, Ben L. Weber, Roza R. Stindt, Charlotte N. Harten, A M. J. |
| Author_xml | – sequence: 1 givenname: Roza R. surname: Weber fullname: Weber, Roza R. organization: University of Groningen – sequence: 2 givenname: Charlotte N. surname: Stindt fullname: Stindt, Charlotte N. organization: University of Groningen – sequence: 3 givenname: A M. J. surname: Harten fullname: Harten, A M. J. organization: University of Groningen – sequence: 4 givenname: Ben L. orcidid: 0000-0003-0588-8435 surname: Feringa fullname: Feringa, Ben L. email: b.l.feringa@rug.nl organization: University of Groningen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38519425$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9Kw0AQhxdRtK1ePUrAi5fU_Ztkj1qqFaoWWs_LJp20kU1WdxOkNx_BZ_RJTGmrIIinGZjvG5j5ddF-ZStA6JTgPsGYXmZLKPsUU44xT-ge6hBBScjiSOyjDpY8DiPB5BHqev-MMZYRY4foiCWCSE5FB11NGr_8fP-YNMYE14Vv2wfrUusqPS-gAh_k1gVTa7QLZktwpTbBsAK3WAXT2jq9gGN0kGvj4WRbe-jpZjgbjMLx4-3d4GocZjxhNCTzTNJEiDQRIHKWJIzoVGotM5GmLKcU4ohoHoHEDPKccwkZjue6ncU45Zr10MVm74uzrw34WpWFz8AYXYFtvKIybp_AROv30Pkv9Nk27UXGK4YjKTlhSdxSZ1uqSUuYqxdXlNqt1O45LcA3QOas9w5ylRW1rgtb1U4XRhGs1hmodQbqO4NW6__Sdpv_FORGeCsMrP6h1WA0vP9xvwD9r5m6 |
| CitedBy_id | crossref_primary_10_1002_anie_202414733 crossref_primary_10_1039_D5EE02556G crossref_primary_10_1021_acs_jpclett_5c00634 crossref_primary_10_1002_ange_202414733 crossref_primary_10_1039_D5CC01970B crossref_primary_10_1002_chem_202401430 |
| Cites_doi | 10.1002/chem.201802932 10.1021/jo202644g 10.1021/jo00224a017 10.1038/srep41145 10.1021/jacs.0c00374 10.1055/s-0034-1380417 10.1002/cptc.201900030 10.1016/j.isci.2022.104830 10.1039/D1SC05791J 10.1021/jacs.8b04277 10.1177/10245294221120986 10.1039/C8OB01470A 10.1021/jacs.2c05384 10.1016/j.tetlet.2015.01.187 10.1039/c1cc12868j 10.1038/s41467-018-04230-8 10.1016/S0040-4039(01)87002-7 10.1002/9783527827626 10.1039/C3CC47517D 10.1002/chem.201602530 10.1016/j.crci.2013.08.011 10.1016/0047-2670(85)87059-3 10.1016/j.chempr.2023.06.007 10.1039/C8CS00470F 10.1070/RC1991v060n05ABEH001088 10.1039/C8EE01011K 10.1007/s11111-023-00422-7 10.1039/C6DT01343K 10.1039/C7TA04259K 10.1002/ejoc.202100795 10.1002/anie.202309544 10.1016/j.techfore.2023.122628 10.1080/10587259708036129 10.1002/advs.201900367 10.1002/ejoc.202201398 10.1021/acs.accounts.0c00235 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.202400482 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | n/a |
| ExternalDocumentID | 38519425 10_1002_chem_202400482 CHEM202400482 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Ministerie van Onderwijs, Cultuur en Wetenschap funderid: 024.001.035 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek – fundername: H2020 European Research Council funderid: 860434; 694345 – fundername: Koninklijke Nederlandse Akademie van Wetenschappen |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX CITATION O8X NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4832-1dc92855b85e5f38831ab9aa9c5bb3f22e761a46e903eff449ec07dab3f70b4a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001204079500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Fri Jul 11 12:31:59 EDT 2025 Tue Oct 07 07:05:35 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Sat Nov 29 07:11:07 EST 2025 Tue Nov 18 22:12:06 EST 2025 Wed Aug 20 07:26:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 35 |
| Keywords | norbornadiene molecular photoswitch solar thermal energy storage |
| Language | English |
| License | Attribution 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4832-1dc92855b85e5f38831ab9aa9c5bb3f22e761a46e903eff449ec07dab3f70b4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0588-8435 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400482 |
| PMID | 38519425 |
| PQID | 3069941387 |
| PQPubID | 986340 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2974003590 proquest_journals_3069941387 pubmed_primary_38519425 crossref_citationtrail_10_1002_chem_202400482 crossref_primary_10_1002_chem_202400482 wiley_primary_10_1002_chem_202400482_CHEM202400482 |
| PublicationCentury | 2000 |
| PublicationDate | June 20, 2024 |
| PublicationDateYYYYMMDD | 2024-06-20 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 20, 2024 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2015; 56 2017; 7 1985; 29 2019; 3 2019; 6 2018; 140 2020; 142 2023; 9 1997; 297 2019; 12 1973; 14 1991; 60 2022; 25 2012; 77 2018; 47 2018; 24 2022; 144 2018; 9 2023; 62 2015; 26 2018; 8 2023; 193 2023; 45 2020; 53 2023; 26 2023; 27 2022; 13 1985; 50 2014; 17 2011; 47 2014; 50 2018; 16 2021; 2021 2016; 45 2016; 22 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 Dreos A. (e_1_2_9_25_1) 2018; 8 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 7 start-page: 41145 year: 2017 publication-title: Sci. Rep. – volume: 193 year: 2023 publication-title: Technol. Forecast. Soc. Change – volume: 142 start-page: 8688 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 4742 year: 1985 publication-title: J. Org. Chem. – volume: 45 start-page: 10 year: 2023 publication-title: Popul. Environ. – volume: 27 start-page: 429 year: 2023 publication-title: Compet. Change – volume: 297 start-page: 247 year: 1997 publication-title: Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. Mol. Cryst. Liq. Cryst. – volume: 26 start-page: 1501 year: 2015 publication-title: Synlett – volume: 5 start-page: 12369 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 start-page: 27 year: 1985 publication-title: J. Photochem. – volume: 12 start-page: 187 year: 2019 publication-title: Energy Environ. Sci. – volume: 144 start-page: 12627 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 7339 year: 2018 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 12767 year: 2018 publication-title: Chem. Eur. J. – volume: 47 start-page: 8259 year: 2011 publication-title: Chem. Commun. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 2021 start-page: 5337 year: 2021 publication-title: Eur. J. Org. Chem. – volume: 45 start-page: 8740 year: 2016 publication-title: Dalton Trans. – volume: 22 start-page: 13265 year: 2016 publication-title: Chem. Eur. J. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 16 start-page: 5585 year: 2018 publication-title: Org. Biomol. Chem. – volume: 26 year: 2023 publication-title: Eur. J. Org. Chem. – volume: 17 start-page: 403 year: 2014 publication-title: Comptes Rendus Chim. – volume: 25 year: 2022 publication-title: iScience – volume: 50 start-page: 5330 year: 2014 publication-title: Chem. Commun. – volume: 53 start-page: 1478 year: 2020 publication-title: Acc. Chem. Res. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 9 start-page: 3159 year: 2023 publication-title: Chem – volume: 13 start-page: 834 year: 2022 publication-title: Chem. Sci. – volume: 56 start-page: 1457 year: 2015 publication-title: Tetrahedron Lett. – volume: 77 start-page: 2798 year: 2012 publication-title: J. Org. Chem. – volume: 14 start-page: 3667 year: 1973 publication-title: Tetrahedron Lett. – volume: 9 start-page: 1945 year: 2018 publication-title: Nat. Commun. – volume: 140 start-page: 7710 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 268 year: 2019 publication-title: ChemPhotoChem – volume: 60 start-page: 451 year: 1991 publication-title: Russ. Chem. Rev. – ident: e_1_2_9_19_1 doi: 10.1002/chem.201802932 – ident: e_1_2_9_34_1 doi: 10.1021/jo202644g – ident: e_1_2_9_17_1 doi: 10.1021/jo00224a017 – ident: e_1_2_9_35_1 doi: 10.1038/srep41145 – ident: e_1_2_9_13_1 doi: 10.1021/jacs.0c00374 – ident: e_1_2_9_36_1 doi: 10.1055/s-0034-1380417 – ident: e_1_2_9_5_1 doi: 10.1002/cptc.201900030 – ident: e_1_2_9_4_1 doi: 10.1016/j.isci.2022.104830 – ident: e_1_2_9_14_1 doi: 10.1039/D1SC05791J – ident: e_1_2_9_33_1 doi: 10.1021/jacs.8b04277 – ident: e_1_2_9_3_1 doi: 10.1177/10245294221120986 – ident: e_1_2_9_23_1 doi: 10.1039/C8OB01470A – ident: e_1_2_9_10_1 doi: 10.1021/jacs.2c05384 – ident: e_1_2_9_9_1 doi: 10.1016/j.tetlet.2015.01.187 – ident: e_1_2_9_37_1 doi: 10.1039/c1cc12868j – ident: e_1_2_9_28_1 doi: 10.1038/s41467-018-04230-8 – ident: e_1_2_9_27_1 doi: 10.1016/S0040-4039(01)87002-7 – ident: e_1_2_9_11_1 doi: 10.1002/9783527827626 – ident: e_1_2_9_21_1 doi: 10.1039/C3CC47517D – ident: e_1_2_9_31_1 doi: 10.1002/chem.201602530 – ident: e_1_2_9_32_1 doi: 10.1016/j.crci.2013.08.011 – ident: e_1_2_9_16_1 doi: 10.1016/0047-2670(85)87059-3 – volume: 8 year: 2018 ident: e_1_2_9_25_1 publication-title: Adv. Energy Mater. – ident: e_1_2_9_12_1 doi: 10.1016/j.chempr.2023.06.007 – ident: e_1_2_9_7_1 doi: 10.1039/C8CS00470F – ident: e_1_2_9_18_1 doi: 10.1070/RC1991v060n05ABEH001088 – ident: e_1_2_9_26_1 doi: 10.1039/C8EE01011K – ident: e_1_2_9_1_1 doi: 10.1007/s11111-023-00422-7 – ident: e_1_2_9_8_1 doi: 10.1039/C6DT01343K – ident: e_1_2_9_22_1 doi: 10.1039/C7TA04259K – ident: e_1_2_9_6_1 doi: 10.1002/ejoc.202100795 – ident: e_1_2_9_29_1 doi: 10.1002/anie.202309544 – ident: e_1_2_9_2_1 doi: 10.1016/j.techfore.2023.122628 – ident: e_1_2_9_15_1 doi: 10.1080/10587259708036129 – ident: e_1_2_9_30_1 doi: 10.1002/advs.201900367 – ident: e_1_2_9_24_1 doi: 10.1002/ejoc.202201398 – ident: e_1_2_9_20_1 doi: 10.1021/acs.accounts.0c00235 |
| SSID | ssj0009633 |
| Score | 2.483636 |
| Snippet | The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST).... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202400482 |
| SubjectTerms | Absorption Absorption spectra Dimers Energy storage molecular photoswitch norbornadiene Red shift Solar energy Solar heating solar thermal energy storage Thermal energy |
| Title | Push‐Pull Bis‐Norbornadienes for Solar Thermal Energy Storage |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400482 https://www.ncbi.nlm.nih.gov/pubmed/38519425 https://www.proquest.com/docview/3069941387 https://www.proquest.com/docview/2974003590 |
| Volume | 30 |
| WOSCitedRecordID | wos001204079500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD6ICu7Lrrfd7a5KBcGnYHObJI-uOvggw-AF5q0kacoKMrNMHZ_9Cf5Gf8metJ26g4iwvpSUJDQ9t5yTy3cADihVzvqeJNYqT0TBJXGOOoKzuy5LbosQak5fqMFAj0Zm-M8t_gYfoltwi5pR2-uo4NZVRy-gofhP8SY5q4UQjfAKpVzH5A1MDF9gd3ttMnmhSARhncM2Zuxosf_itPTK11x0Xeu5p__l46Neh8-t35keN4KyAUthvAlrJ_N0b1twPJxVv58fn4YYk6a_bissDiZTFxMYx0NhoUrRvU2vYiScomyhPb9Lz-qLg-kVxu1olrbhpn92fXJO2vwKxAtUZEILb5iW0mkZZMm15tQ6Y63x0jleMhZUj1rRCybjoSyFMMFnqrBYpzInLP8Ky-PJOHyHtJDUu4w6jLeMiJttJeq5MCXjwheFkQmQOXlz34KPxxwYd3kDm8zySJi8I0wCh137Pw3sxpstd-bcylv1q3KMg-I4uFYJ7HfVSNC4G2LHYTKrcoaRVA1gmCXwreFy9ymOfqhBa5YAq5n5zhjyCF_Rvf34n04_4VMsx0NoLNuB5fvpLOzCqn-4v62me7VQ41ON9B6snF72by7-AqaO-Rg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD6IFfTFaqs1rdUIgk-DyVw2mUcriuJ2WVDBt2FmMsEF2S0b12d_Qn9jf0nPSbKRRaRQfEsyM8nkzLnO5TsAh2maOet7ilmbeSYLoZhzqWNo3fOyFLYIoR7pfjYY5Hd3etjuJqSzMA0-RDfhRpJR62sScJqQPn5BDcWfoqPkvOZC1MIfJJoaYnUuhy-4u702m7zMGKGwznEbE3682H7RLr1yNhd919r4nH98h25vwHrrecYnDatswlIYf4LV03nCt89wMpxV93-efw_xTfGPUYWXg8nUUQpj2hYWqhgd3PiaYuEYuQs1-kN8Vh8djK8xckfFtAW352c3pxeszbDAvERRZmnhNc-VcrkKqhR5LlLrtLXaK-dEyXnIeqmVvaATEcpSSh18khUWy7LESSu2YXk8GYcdiAuVepekDiMuLWm5rURJl7rkQvqi0CoCNqev8S38OGXBeDANcDI3RBjTESaCo67-rwZ4482au_PhMq0AVgYjIeqHyLMIDrpiJCith9hxmMwqwzGWqiEMkwi-NMPcfUqgJ6pRn0XA69H8Rx8MAVh0d1__p9E-rF7c_Oyb_uXg6hus0XPaksaTXVh-nM7Cd1jxT4-jarpXc_hf3t36ew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KprS9pE36iNu0daDQk4itx9o6pkmWli7LkjSQm5BkiQbCblhnc85PyG_ML-mM7XVYSimU3mxLtuV5jyV9A_Apzwtn_VAxawvPZCUUcy53DL17GaOwVQgNp8fFZFKen-tpt5qQ9sK0-BD9DzfSjMZek4KHqyruP6CG4kfRVnLeSCFa4Q1JlWQGsHF0MjobPyDvDrt68rJghMO6Qm7M-P76E9Y902_h5nr02rif0fP_MPAXsNnFnulBKyxb8CjMtuHp4ark20s4mC7rn_e3d1PMS9MvFzUeTuYLR0WMaWFYqFMMcdNTyoZTlC-06ZfpcbN5MD3F3B1N0ys4Gx3_OPzKuhoLzEtUZpZXXvNSKVeqoKIoS5Fbp63VXjknIuehGOZWDoPORIhRSh18VlQW24rMSStew2A2n4UdSCuVe5flDnMuLWnCLaKuSx25kL6qtEqArehrfAdATnUwLk0LncwNEcb0hEngc9__qoXe-GPP3RW7TKeCtcFciMYhyiKBvb4ZCUozInYW5svacMymGhDDLIE3LZv7VwmMRTVatAR4w82_jMEQhEV_9vZfbvoIT6ZHIzP-Nvn-Dp7RZVqTxrNdGFwvluE9PPY31xf14kMn4r8AD3L7kQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Push-pull+Bis-norbornadienes+for+Solar+Thermal+Energy+Storage&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Weber%2C+Roza+R&rft.au=Stindt%2C+Charlotte+N&rft.au=van+der+Harten%2C+Anne-Lot+M+J&rft.au=Feringa%2C+Ben+L&rft.date=2024-06-20&rft.eissn=1521-3765&rft.spage=e202400482&rft_id=info:doi/10.1002%2Fchem.202400482&rft_id=info%3Apmid%2F38519425&rft.externalDocID=38519425 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |