Aggregating Local Image Descriptors into Compact Codes
This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves bet...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 9; s. 1704 - 1716 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.09.2012
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core. |
|---|---|
| AbstractList | This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image dataset takes about 250 ms on one processor core. This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core. This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core.This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core. |
| Author | Perez, P. Sanchez, J. Jegou, H. Perronnin, F. Schmid, C. Douze, M. |
| Author_xml | – sequence: 1 givenname: H. surname: Jegou fullname: Jegou, H. email: herve.jegou@inria.fr organization: INRIA, Rennes, France – sequence: 2 givenname: F. surname: Perronnin fullname: Perronnin, F. email: florent.perronnin@xrce.xerox.com organization: Xerox, Meylan, France – sequence: 3 givenname: M. surname: Douze fullname: Douze, M. email: matthijs.douze@inria.fr organization: INRIA, St. Ismier, France – sequence: 4 givenname: J. surname: Sanchez fullname: Sanchez, J. email: jsanchez@scdt.frc.utn.edu.ar organization: Res. Centre in Inf. for Eng., UTN, Cόrdoba, Argentina – sequence: 5 givenname: P. surname: Perez fullname: Perez, P. email: Patrick.Perez@technicolor.com organization: Technicolor, Cesson-Sevigne, France – sequence: 6 givenname: C. surname: Schmid fullname: Schmid, C. email: cordelia.schmid@inria.fr organization: INRIA, St. Ismier, France |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27251993$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22156101$$D View this record in MEDLINE/PubMed https://inria.hal.science/inria-00633013$$DView record in HAL |
| BookMark | eNqNkc1rGzEQxUVJaJy0114KZSEUCmHdGX15dTRO2xhc2kN6Flqtdquwu3KldaH_feTYSSFQ6Gkuvzfz5r1zcjKG0RHyBmGOCOrj7ffl1_WcAuKcMvGCzChKKBVV9ITMACUtq4pWZ-Q8pTsA5ALYS3JGKQqJgDMil10XXWcmP3bFJljTF-vBdK64dslGv51CTIUfp1CswrA1dsqzcekVOW1Nn9zr47wgPz5_ul3dlJtvX9ar5aa0vKJTaRc1a5UwDXXQVpwz1ggqsEbBoBK1Q1WDq6lVnDU1lxIaJTmtVdMoDhQVuyBXh70_Ta-30Q8m_tHBeH2z3Gg_Rm80gGQMkP3GTH840NsYfu1cmvTgk3V9b0YXdkkjMsmkyvB_oDTbEYvF3sPlM_Qu7OKY39YITFaSwgP17kjt6sE1T2Yfo87A-yNgUo65jWa0Pv3lFjkYpfbO-IGzMaQUXautn3I_YZyi8X2-qffN64fm9b55nZvPsvkz2ePmfwreHgTeOfcEZ6scRMXuAfWgsoM |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1007_s10462_016_9492_8 crossref_primary_10_1016_j_neucom_2022_05_032 crossref_primary_10_1007_s11263_016_0889_2 crossref_primary_10_1080_01431161_2018_1458346 crossref_primary_10_1016_j_patcog_2016_02_003 crossref_primary_10_1109_TPAMI_2016_2526008 crossref_primary_10_1109_TPAMI_2018_2868668 crossref_primary_10_1109_TIP_2017_2666739 crossref_primary_10_1109_TIP_2016_2531289 crossref_primary_10_1109_TIP_2019_2901407 crossref_primary_10_1145_3314051 crossref_primary_10_1007_s11280_015_0346_0 crossref_primary_10_1109_TMM_2013_2265674 crossref_primary_10_1007_s00138_014_0652_z crossref_primary_10_1007_s11063_018_9932_3 crossref_primary_10_3390_s20071999 crossref_primary_10_1016_j_cviu_2016_10_014 crossref_primary_10_1109_TMM_2017_2771462 crossref_primary_10_1109_TPAMI_2014_2313111 crossref_primary_10_1109_ACCESS_2019_2942305 crossref_primary_10_1109_TMM_2018_2834866 crossref_primary_10_1587_transinf_2016EDP7066 crossref_primary_10_1016_j_imavis_2019_01_001 crossref_primary_10_1016_j_imavis_2016_03_002 crossref_primary_10_1016_j_patcog_2021_108282 crossref_primary_10_3390_rs11010058 crossref_primary_10_1049_iet_ipr_2018_6153 crossref_primary_10_1109_TGRS_2019_2951636 crossref_primary_10_1109_TPAMI_2019_2915233 crossref_primary_10_1007_s11042_014_2292_8 crossref_primary_10_1007_s13735_016_0109_4 crossref_primary_10_1109_TPAMI_2018_2866114 crossref_primary_10_1007_s10489_023_04963_0 crossref_primary_10_1109_JSTARS_2020_3030257 crossref_primary_10_5194_amt_14_737_2021 crossref_primary_10_1007_s11263_018_1125_z crossref_primary_10_1016_j_eswa_2016_11_038 crossref_primary_10_1109_MMUL_2013_14 crossref_primary_10_1007_s11042_017_5337_y crossref_primary_10_1051_itmconf_20224301027 crossref_primary_10_1016_j_neucom_2017_01_101 crossref_primary_10_1109_TMM_2018_2877129 crossref_primary_10_1016_j_patcog_2016_10_005 crossref_primary_10_3390_rs13010108 crossref_primary_10_1109_TIP_2019_2913509 crossref_primary_10_1109_TMM_2021_3050067 crossref_primary_10_1016_j_patcog_2018_06_001 crossref_primary_10_1016_j_isprsjprs_2024_04_005 crossref_primary_10_1109_TCSVT_2021_3080920 crossref_primary_10_1109_TPAMI_2019_2941876 crossref_primary_10_1007_s11042_015_2536_2 crossref_primary_10_1109_TIP_2016_2624141 crossref_primary_10_1109_TITS_2015_2475721 crossref_primary_10_3390_app10072474 crossref_primary_10_1109_TKDE_2015_2477296 crossref_primary_10_1186_s12938_019_0638_1 crossref_primary_10_1049_ipr2_12190 crossref_primary_10_1016_j_neucom_2015_04_114 crossref_primary_10_1109_MSP_2015_2409557 crossref_primary_10_1155_2017_3090343 crossref_primary_10_1016_j_asoc_2024_112439 crossref_primary_10_3390_e21111037 crossref_primary_10_1007_s10044_015_0472_4 crossref_primary_10_1109_TIM_2022_3146944 crossref_primary_10_1109_TRO_2023_3238201 crossref_primary_10_1016_j_jvcir_2024_104384 crossref_primary_10_1007_s11042_015_2524_6 crossref_primary_10_1587_transinf_2020EDP7017 crossref_primary_10_1016_j_infrared_2020_103383 crossref_primary_10_1016_j_birob_2024_100203 crossref_primary_10_1007_s11042_022_13658_6 crossref_primary_10_1016_j_neucom_2017_03_072 crossref_primary_10_1016_j_neucom_2014_09_104 crossref_primary_10_1016_j_eswa_2023_122913 crossref_primary_10_1016_j_patcog_2019_01_027 crossref_primary_10_3233_JIFS_201400 crossref_primary_10_1007_s11042_018_5854_3 crossref_primary_10_1109_TMM_2018_2856628 crossref_primary_10_3390_s23156804 crossref_primary_10_3233_AIS_150347 crossref_primary_10_1007_s11263_021_01444_0 crossref_primary_10_1145_2795234 crossref_primary_10_1109_TIP_2014_2362052 crossref_primary_10_3389_frobt_2019_00072 crossref_primary_10_1109_TGRS_2019_2893115 crossref_primary_10_1109_TPAMI_2015_2389824 crossref_primary_10_3390_rs11182142 crossref_primary_10_3169_mta_5_24 crossref_primary_10_1109_LGRS_2024_3416946 crossref_primary_10_1016_j_ins_2021_05_050 crossref_primary_10_1016_j_neucom_2016_02_082 crossref_primary_10_1016_j_neucom_2016_02_083 crossref_primary_10_1016_j_patcog_2016_09_037 crossref_primary_10_1109_TMM_2016_2602060 crossref_primary_10_1002_cnr2_1796 crossref_primary_10_1088_1742_6596_1955_1_012029 crossref_primary_10_1016_j_neucom_2021_04_030 crossref_primary_10_1016_j_neucom_2018_04_015 crossref_primary_10_1109_ACCESS_2025_3581068 crossref_primary_10_1016_j_imavis_2015_09_005 crossref_primary_10_1109_TIP_2020_3019185 crossref_primary_10_1109_TMM_2017_2705918 crossref_primary_10_1016_j_patrec_2017_06_015 crossref_primary_10_1117_1_JRS_16_036506 crossref_primary_10_1007_s00371_018_1573_z crossref_primary_10_1007_s11042_023_15649_7 crossref_primary_10_3390_foods11233800 crossref_primary_10_1016_j_patcog_2014_05_009 crossref_primary_10_1007_s00034_019_01110_4 crossref_primary_10_1016_j_eswa_2020_114545 crossref_primary_10_3390_app9040738 crossref_primary_10_1109_TPAMI_2022_3218591 crossref_primary_10_1007_s00530_022_01010_9 crossref_primary_10_1007_s11263_017_1023_9 crossref_primary_10_1016_j_image_2024_117237 crossref_primary_10_1109_TMM_2017_2671414 crossref_primary_10_1007_s11063_021_10502_0 crossref_primary_10_1016_j_cviu_2016_03_013 crossref_primary_10_1007_s11063_025_11719_z crossref_primary_10_1016_j_imavis_2016_02_005 crossref_primary_10_1016_j_imavis_2016_02_006 crossref_primary_10_1109_TCSVT_2023_3306160 crossref_primary_10_1109_TIP_2016_2590323 crossref_primary_10_1016_j_inffus_2022_12_001 crossref_primary_10_1016_j_neucom_2016_06_017 crossref_primary_10_1016_j_cviu_2018_06_001 crossref_primary_10_1109_TPAMI_2017_2711011 crossref_primary_10_1016_j_neucom_2022_07_075 crossref_primary_10_3390_en13020392 crossref_primary_10_1109_TMM_2015_2399851 crossref_primary_10_1049_iet_cvi_2017_0005 crossref_primary_10_1109_TMM_2018_2883860 crossref_primary_10_1134_S1054661817010035 crossref_primary_10_1371_journal_pone_0300017 crossref_primary_10_1109_ACCESS_2019_2953455 crossref_primary_10_1145_3051481 crossref_primary_10_1109_TIP_2014_2312617 crossref_primary_10_1016_j_neucom_2020_02_001 crossref_primary_10_1007_s10851_015_0629_1 crossref_primary_10_1007_s11042_018_6414_6 crossref_primary_10_1109_TCSVT_2016_2637379 crossref_primary_10_1109_TIP_2019_2910662 crossref_primary_10_1109_TMM_2016_2532603 crossref_primary_10_1109_TKDE_2023_3297195 crossref_primary_10_1109_TMM_2017_2703636 crossref_primary_10_1109_TCSVT_2021_3051003 crossref_primary_10_1109_TPAMI_2018_2833865 crossref_primary_10_1038_srep12818 crossref_primary_10_1109_ACCESS_2020_3019609 crossref_primary_10_1109_LGRS_2014_2316143 crossref_primary_10_1016_j_neucom_2018_10_110 crossref_primary_10_1109_TITS_2024_3465830 crossref_primary_10_1109_ACCESS_2019_2962284 crossref_primary_10_1016_j_jestch_2022_101098 crossref_primary_10_1016_j_patrec_2014_06_011 crossref_primary_10_1007_s11042_023_14761_y crossref_primary_10_1016_j_jvcir_2018_12_008 crossref_primary_10_1109_LGRS_2016_2542358 crossref_primary_10_1016_j_eswa_2019_112977 crossref_primary_10_1016_j_ins_2019_01_024 crossref_primary_10_1016_j_neucom_2022_07_056 crossref_primary_10_1016_j_ins_2015_08_030 crossref_primary_10_1007_s00530_013_0318_0 crossref_primary_10_1109_TMM_2015_2500734 crossref_primary_10_1109_LRA_2024_3354627 crossref_primary_10_1371_journal_pone_0121838 crossref_primary_10_1016_j_neucom_2015_03_124 crossref_primary_10_1016_j_neucom_2015_03_123 crossref_primary_10_1016_j_patcog_2019_02_003 crossref_primary_10_1109_TMM_2014_2329648 crossref_primary_10_1016_j_patrec_2016_05_022 crossref_primary_10_1016_j_patcog_2020_107760 crossref_primary_10_1016_j_imavis_2015_11_010 crossref_primary_10_1109_TIP_2018_2863028 crossref_primary_10_3390_s24030855 crossref_primary_10_1109_TPAMI_2013_240 crossref_primary_10_1016_j_patcog_2014_04_007 crossref_primary_10_1109_TNNLS_2020_3017200 crossref_primary_10_1109_JSTARS_2017_2683799 crossref_primary_10_1109_TPAMI_2017_2667665 crossref_primary_10_3389_fncom_2014_00168 crossref_primary_10_1016_j_patcog_2021_107926 crossref_primary_10_1155_2020_8881760 crossref_primary_10_1016_j_patcog_2017_06_011 crossref_primary_10_1109_TGRS_2017_2685945 crossref_primary_10_1109_TCSVT_2019_2944009 crossref_primary_10_1109_MCSE_2018_108164530 crossref_primary_10_1007_s11263_015_0878_x crossref_primary_10_1017_S0263574723000085 crossref_primary_10_1109_TMM_2017_2766842 crossref_primary_10_1109_TPAMI_2013_113 crossref_primary_10_1109_JSTARS_2017_2761800 crossref_primary_10_1109_TGRS_2021_3105004 crossref_primary_10_3390_s151229847 crossref_primary_10_1137_140956117 crossref_primary_10_1109_LRA_2023_3260700 crossref_primary_10_1109_TGRS_2021_3070383 crossref_primary_10_1016_j_cviu_2013_02_004 crossref_primary_10_1109_TKDE_2018_2885520 crossref_primary_10_1109_TMM_2017_2692181 crossref_primary_10_1007_s11042_018_6212_1 crossref_primary_10_1109_TITS_2021_3102429 crossref_primary_10_1016_j_patcog_2023_110076 crossref_primary_10_1016_j_neucom_2021_11_081 crossref_primary_10_1109_TMM_2016_2585023 crossref_primary_10_1109_ACCESS_2019_2892455 crossref_primary_10_1007_s00138_021_01260_z crossref_primary_10_1016_j_neunet_2019_04_012 crossref_primary_10_1177_0278364920929398 crossref_primary_10_1016_j_dsp_2022_103457 crossref_primary_10_1016_j_sigpro_2018_03_005 crossref_primary_10_1155_2021_5546572 crossref_primary_10_1016_j_patcog_2018_01_023 crossref_primary_10_1109_TMM_2019_2959426 crossref_primary_10_1109_TPAMI_2015_2409868 crossref_primary_10_1109_TPAMI_2013_146 crossref_primary_10_1007_s11042_016_4020_z crossref_primary_10_1109_JSTARS_2024_3511256 crossref_primary_10_1109_TPAMI_2016_2613873 crossref_primary_10_1016_j_neucom_2017_12_020 crossref_primary_10_1016_j_robot_2020_103625 crossref_primary_10_1109_TIP_2018_2830127 crossref_primary_10_1016_j_jvcir_2015_09_021 crossref_primary_10_1016_j_jvcir_2025_104440 crossref_primary_10_1007_s12652_018_0895_z crossref_primary_10_1016_j_knosys_2020_105591 crossref_primary_10_1007_s11042_015_2819_7 crossref_primary_10_3390_rs11050493 crossref_primary_10_1186_s13640_016_0145_2 crossref_primary_10_1016_j_neucom_2016_10_074 crossref_primary_10_1109_TIP_2018_2874286 crossref_primary_10_3390_rs13245076 crossref_primary_10_1109_TITS_2022_3229364 crossref_primary_10_1016_j_patrec_2018_05_019 crossref_primary_10_1109_TCSVT_2016_2576761 crossref_primary_10_1016_j_jvcir_2020_102771 crossref_primary_10_1109_TBME_2018_2866166 crossref_primary_10_1007_s00371_023_03018_2 crossref_primary_10_1109_JSTARS_2021_3114404 crossref_primary_10_1016_j_neucom_2018_05_121 crossref_primary_10_1109_TGRS_2018_2869101 crossref_primary_10_1016_j_imavis_2014_10_013 crossref_primary_10_1109_TCAD_2021_3072340 crossref_primary_10_1145_3532202 crossref_primary_10_1007_s00371_020_01931_4 crossref_primary_10_1007_s10462_020_09897_4 crossref_primary_10_1016_j_jvcir_2015_07_005 crossref_primary_10_1631_FITEE_1700833 crossref_primary_10_1109_TMM_2016_2568748 crossref_primary_10_1016_j_optlaseng_2025_109170 crossref_primary_10_1016_j_isprsjprs_2018_06_018 crossref_primary_10_1155_2021_6663710 crossref_primary_10_1109_TNNLS_2021_3107194 crossref_primary_10_1109_TIP_2019_2922826 crossref_primary_10_1177_2513850220964956 crossref_primary_10_1016_j_patcog_2020_107205 crossref_primary_10_1109_TGRS_2020_3044054 crossref_primary_10_3169_mta_4_326 crossref_primary_10_1109_TIP_2019_2917234 crossref_primary_10_1007_s11042_016_4240_2 crossref_primary_10_1109_MMUL_2013_65 crossref_primary_10_1007_s11263_016_0924_3 crossref_primary_10_1109_MMUL_2013_66 crossref_primary_10_1016_j_asoc_2020_106782 crossref_primary_10_1016_j_jvcir_2015_07_012 crossref_primary_10_1093_bioinformatics_btx027 crossref_primary_10_3390_rs14236017 crossref_primary_10_1007_s11704_018_7403_7 crossref_primary_10_1109_TPAMI_2024_3504274 crossref_primary_10_1109_TIP_2014_2344296 crossref_primary_10_1049_trit_2018_0003 crossref_primary_10_1109_TPAMI_2018_2846566 crossref_primary_10_1109_TPAMI_2019_2952114 crossref_primary_10_4218_etrij_17_0116_0034 crossref_primary_10_1631_jzus_CIDE1304 crossref_primary_10_1109_TIM_2024_3418112 crossref_primary_10_3390_a13120318 crossref_primary_10_1016_j_neucom_2017_04_007 crossref_primary_10_1016_j_neucom_2018_06_014 crossref_primary_10_1109_TPAMI_2025_3556859 crossref_primary_10_1007_s11042_016_4057_z crossref_primary_10_1145_2602186 crossref_primary_10_1016_j_patcog_2021_107952 crossref_primary_10_1016_j_neucom_2016_05_061 crossref_primary_10_1038_s41598_024_73853_3 crossref_primary_10_1109_ACCESS_2018_2844221 crossref_primary_10_1109_ACCESS_2020_2999727 crossref_primary_10_1109_TIP_2017_2736346 crossref_primary_10_1109_ACCESS_2018_2808486 crossref_primary_10_1109_TMM_2023_3325728 crossref_primary_10_1109_TCSVT_2017_2712704 crossref_primary_10_1109_TPAMI_2018_2858760 crossref_primary_10_1109_TPAMI_2019_2937292 crossref_primary_10_3390_rs16101653 crossref_primary_10_1089_cmb_2018_0023 crossref_primary_10_1109_TNNLS_2019_2922123 crossref_primary_10_1109_TASLP_2014_2362006 crossref_primary_10_1007_s42979_022_01472_8 crossref_primary_10_1007_s11042_017_4450_2 crossref_primary_10_1186_s13640_018_0247_0 crossref_primary_10_1016_j_patrec_2017_04_004 crossref_primary_10_1016_j_jvcir_2018_04_009 crossref_primary_10_1016_j_neucom_2017_11_022 crossref_primary_10_1111_1556_4029_13798 crossref_primary_10_1007_s00530_015_0452_y crossref_primary_10_1051_e3sconf_202235101073 crossref_primary_10_1109_TGRS_2024_3475633 crossref_primary_10_1145_3510004 crossref_primary_10_1007_s00521_020_05415_3 crossref_primary_10_1007_s00530_024_01323_x crossref_primary_10_1016_j_neucom_2017_05_025 crossref_primary_10_1109_TMM_2017_2673415 crossref_primary_10_1145_3355394 crossref_primary_10_1016_j_neucom_2016_10_033 crossref_primary_10_1007_s13735_014_0066_8 crossref_primary_10_1080_17538947_2024_2353166 crossref_primary_10_1109_TGRS_2017_2776321 crossref_primary_10_1109_ACCESS_2017_2757030 crossref_primary_10_1109_TCYB_2015_2493538 crossref_primary_10_1109_TKDE_2015_2505284 crossref_primary_10_1109_TNNLS_2018_2874657 crossref_primary_10_3390_app11083397 crossref_primary_10_1142_S0219467825500548 crossref_primary_10_1371_journal_pone_0131721 crossref_primary_10_1109_TCSVT_2016_2589622 crossref_primary_10_1109_TIP_2017_2678163 crossref_primary_10_1109_TPAMI_2015_2484342 crossref_primary_10_1109_TIP_2018_2867104 crossref_primary_10_1109_LRA_2020_3009077 crossref_primary_10_1109_LRA_2023_3268848 crossref_primary_10_1007_s11042_017_5374_6 crossref_primary_10_1080_01431161_2024_2302353 crossref_primary_10_3390_s22197137 crossref_primary_10_1007_s11554_016_0632_9 crossref_primary_10_1016_j_neucom_2016_04_056 crossref_primary_10_3390_rs14102304 crossref_primary_10_1038_s42003_020_01151_5 crossref_primary_10_3390_jimaging8100256 crossref_primary_10_1007_s11263_018_1063_9 crossref_primary_10_1007_s10514_016_9560_6 crossref_primary_10_1109_TCSVT_2016_2589679 crossref_primary_10_3389_fict_2015_00028 crossref_primary_10_1016_j_image_2017_06_010 crossref_primary_10_1109_TGRS_2019_2925805 crossref_primary_10_1109_TCSVT_2018_2816960 crossref_primary_10_1016_j_neucom_2015_08_110 crossref_primary_10_1109_TMM_2018_2839893 crossref_primary_10_1145_3209662 crossref_primary_10_1109_JBHI_2017_2705031 crossref_primary_10_1109_TIFS_2018_2823276 crossref_primary_10_1016_j_neucom_2023_127202 crossref_primary_10_1016_j_neucom_2019_11_073 crossref_primary_10_1109_TCSVT_2019_2896029 crossref_primary_10_1109_TMM_2016_2530399 crossref_primary_10_1109_TPAMI_2016_2615621 crossref_primary_10_1109_TDSC_2021_3136163 crossref_primary_10_1109_JSTARS_2020_3005403 crossref_primary_10_1109_TIFS_2024_3493594 crossref_primary_10_1109_TIP_2016_2549360 crossref_primary_10_1016_j_patcog_2016_06_001 crossref_primary_10_1109_TIP_2018_2872831 crossref_primary_10_1109_LSP_2013_2296532 crossref_primary_10_1007_s11042_018_6712_z crossref_primary_10_1016_j_patcog_2018_02_027 crossref_primary_10_1109_TPAMI_2016_2645157 crossref_primary_10_1109_ACCESS_2020_3048756 crossref_primary_10_1016_j_jvcir_2016_04_013 crossref_primary_10_1016_j_jvcir_2016_04_012 crossref_primary_10_1109_LRA_2019_2895826 crossref_primary_10_1109_TPAMI_2016_2560816 crossref_primary_10_1109_ACCESS_2021_3065953 crossref_primary_10_1109_TCSVT_2023_3288903 crossref_primary_10_1109_TIP_2016_2514498 crossref_primary_10_1109_TGRS_2021_3095957 crossref_primary_10_1109_TPAMI_2015_2509988 crossref_primary_10_1109_TMM_2020_2999188 crossref_primary_10_26599_JICV_2025_9210063 crossref_primary_10_1049_ipr2_12883 crossref_primary_10_1145_2964911 crossref_primary_10_1155_2017_4019213 crossref_primary_10_1109_TIP_2014_2365955 crossref_primary_10_1016_j_sigpro_2017_08_016 crossref_primary_10_1109_TSM_2019_2937793 crossref_primary_10_1109_LRA_2021_3097244 crossref_primary_10_3390_rs8050436 crossref_primary_10_1016_j_eswa_2021_115473 crossref_primary_10_1109_TII_2019_2957268 crossref_primary_10_3390_s18061974 crossref_primary_10_1007_s10032_025_00536_8 crossref_primary_10_1109_TIFS_2020_2991880 crossref_primary_10_1109_TGRS_2019_2913816 crossref_primary_10_1016_j_neucom_2016_12_070 crossref_primary_10_1109_ACCESS_2021_3128140 crossref_primary_10_1007_s11042_016_3619_4 crossref_primary_10_1109_TMM_2017_2755986 crossref_primary_10_1016_j_imavis_2019_103862 crossref_primary_10_1016_j_media_2020_101883 crossref_primary_10_1109_TIM_2021_3116288 crossref_primary_10_1016_j_ins_2020_06_011 crossref_primary_10_1007_s00371_020_01798_5 crossref_primary_10_1007_s42979_024_03011_z crossref_primary_10_1109_TIE_2021_3057025 crossref_primary_10_3390_ijgi8090393 crossref_primary_10_1007_s13042_024_02172_w crossref_primary_10_1016_j_image_2021_116399 crossref_primary_10_3390_rs14194885 crossref_primary_10_1016_j_neucom_2016_12_002 crossref_primary_10_1016_j_patcog_2019_03_002 crossref_primary_10_1007_s10791_014_9247_6 crossref_primary_10_1007_s11042_017_4795_6 crossref_primary_10_1016_j_neucom_2015_09_074 crossref_primary_10_1016_j_sigpro_2016_05_021 crossref_primary_10_1109_TPAMI_2017_2709749 crossref_primary_10_1016_j_imavis_2013_09_005 crossref_primary_10_1007_s11042_017_4773_z crossref_primary_10_1016_j_image_2018_01_007 crossref_primary_10_3390_rs10071158 crossref_primary_10_1109_TMM_2016_2600438 crossref_primary_10_1109_ACCESS_2024_3417301 crossref_primary_10_1109_TGRS_2025_3569616 crossref_primary_10_1109_TMM_2019_2942478 crossref_primary_10_1088_1742_6596_1654_1_012080 crossref_primary_10_1007_s13735_015_0089_9 crossref_primary_10_1007_s10032_022_00394_8 crossref_primary_10_3390_s20143871 crossref_primary_10_1016_j_neucom_2018_02_072 crossref_primary_10_1016_j_image_2016_03_004 crossref_primary_10_1109_TIP_2018_2859752 crossref_primary_10_1016_j_robot_2020_103598 crossref_primary_10_1109_ACCESS_2022_3145980 crossref_primary_10_1016_j_eswa_2018_03_014 crossref_primary_10_1109_TIP_2020_2965306 crossref_primary_10_1007_s11042_017_4928_y crossref_primary_10_1007_s11042_022_12928_7 crossref_primary_10_1109_TIP_2020_2988435 crossref_primary_10_1016_j_patcog_2019_107086 crossref_primary_10_1016_j_patcog_2020_107380 crossref_primary_10_1016_j_cviu_2014_03_002 crossref_primary_10_1080_08839514_2022_2093705 crossref_primary_10_3390_rs13132566 crossref_primary_10_1007_s11263_013_0636_x crossref_primary_10_1109_ACCESS_2021_3060180 crossref_primary_10_1109_TPAMI_2020_3048727 crossref_primary_10_1016_j_neucom_2016_12_021 crossref_primary_10_2197_ipsjtcva_7_69 crossref_primary_10_1109_TGRS_2023_3262840 crossref_primary_10_1109_TMM_2015_2419973 crossref_primary_10_1016_j_patrec_2022_06_017 crossref_primary_10_1109_TGRS_2022_3190934 crossref_primary_10_1007_s10921_023_00992_4 crossref_primary_10_1007_s11042_017_5252_2 crossref_primary_10_1016_j_neucom_2020_05_090 crossref_primary_10_1109_TNNLS_2023_3263195 crossref_primary_10_1016_j_ins_2016_05_029 crossref_primary_10_1016_j_patcog_2014_11_013 crossref_primary_10_3390_rs12162633 crossref_primary_10_1080_21681163_2022_2111720 crossref_primary_10_1049_iet_cvi_2015_0189 crossref_primary_10_1109_LGRS_2018_2881834 crossref_primary_10_1109_TCSVT_2019_2918591 crossref_primary_10_1016_j_patrec_2015_03_003 crossref_primary_10_5772_62162 crossref_primary_10_1109_LRA_2025_3608641 crossref_primary_10_1145_2766959 crossref_primary_10_1007_s12652_019_01325_y crossref_primary_10_1016_j_patrec_2017_02_001 crossref_primary_10_1007_s11042_019_08486_0 crossref_primary_10_1016_j_patrec_2020_02_002 crossref_primary_10_1016_j_jpdc_2018_11_009 crossref_primary_10_1145_3060056 crossref_primary_10_1371_journal_pone_0157112 crossref_primary_10_1007_s10489_022_03546_9 crossref_primary_10_1109_TCSVT_2015_2409693 crossref_primary_10_1016_j_cviu_2015_10_013 crossref_primary_10_1109_TNNLS_2018_2812799 crossref_primary_10_1109_ACCESS_2021_3060760 crossref_primary_10_3390_jimaging7110245 crossref_primary_10_1109_TIP_2017_2652730 crossref_primary_10_1109_TPAMI_2020_2974833 crossref_primary_10_1109_TITS_2023_3320489 crossref_primary_10_1155_2018_8639367 crossref_primary_10_1007_s00138_013_0527_8 crossref_primary_10_1016_j_jvcir_2017_08_006 crossref_primary_10_1007_s10586_023_04159_8 crossref_primary_10_1016_j_image_2019_115652 crossref_primary_10_1049_bme2_12041 crossref_primary_10_1016_j_isprsjprs_2020_03_013 crossref_primary_10_1109_TPAMI_2017_2686861 crossref_primary_10_1007_s11042_020_10283_z crossref_primary_10_1109_TCYB_2022_3222606 crossref_primary_10_1007_s11042_016_3955_4 crossref_primary_10_1109_TCSVT_2017_2667710 crossref_primary_10_1109_TPAMI_2014_2382092 crossref_primary_10_1007_s00530_024_01534_2 crossref_primary_10_1155_2021_5843816 crossref_primary_10_1016_j_neucom_2015_11_008 crossref_primary_10_1109_TGRS_2023_3336471 crossref_primary_10_1109_LGRS_2017_2786241 crossref_primary_10_1162_neco_a_00990 crossref_primary_10_3390_e18080311 crossref_primary_10_1109_JSTARS_2018_2860989 crossref_primary_10_1007_s11280_015_0354_0 crossref_primary_10_1016_j_neucom_2015_08_076 crossref_primary_10_1017_ATSIP_2016_14 crossref_primary_10_1109_ACCESS_2018_2872798 crossref_primary_10_1109_TIP_2017_2726182 crossref_primary_10_3390_rs16050801 crossref_primary_10_1109_JSTARS_2024_3396168 crossref_primary_10_1109_TNNLS_2019_2908982 crossref_primary_10_1016_j_patcog_2016_01_022 crossref_primary_10_3390_info9030056 crossref_primary_10_1016_j_patcog_2018_04_015 crossref_primary_10_3390_info7010009 crossref_primary_10_3390_rs10060871 crossref_primary_10_3390_app15137015 crossref_primary_10_1109_JSTARS_2022_3225791 crossref_primary_10_1109_TETC_2015_2418714 crossref_primary_10_1109_TMM_2015_2406574 crossref_primary_10_1109_TPAMI_2016_2627563 crossref_primary_10_1007_s11042_022_13200_8 crossref_primary_10_1109_TIP_2019_2955561 crossref_primary_10_1049_bme2_12023 crossref_primary_10_1080_01431161_2019_1597312 crossref_primary_10_1007_s13735_017_0122_2 crossref_primary_10_1016_j_sigpro_2014_08_029 crossref_primary_10_1109_JSTARS_2020_3011333 crossref_primary_10_1016_j_patcog_2013_10_011 crossref_primary_10_3390_rs13234876 crossref_primary_10_1016_j_asoc_2020_106281 crossref_primary_10_1007_s11042_017_4798_3 crossref_primary_10_3390_rs11212504 crossref_primary_10_1016_j_imavis_2016_05_005 crossref_primary_10_1109_ACCESS_2020_2966329 crossref_primary_10_1007_s11263_016_0896_3 crossref_primary_10_1016_j_neucom_2015_11_012 crossref_primary_10_3390_s23208632 crossref_primary_10_1080_09500340_2019_1601273 crossref_primary_10_1016_j_patcog_2017_10_013 crossref_primary_10_1109_TPAMI_2019_2914686 crossref_primary_10_1007_s00034_023_02545_6 crossref_primary_10_1007_s11042_023_16753_4 crossref_primary_10_1016_j_patrec_2015_07_015 crossref_primary_10_1016_j_ultrasmedbio_2019_02_011 crossref_primary_10_1049_bme2_12039 crossref_primary_10_1080_01431161_2019_1597302 crossref_primary_10_1109_TCSVT_2022_3216905 crossref_primary_10_1016_j_engappai_2024_109890 crossref_primary_10_1007_s11042_019_08489_x crossref_primary_10_1016_j_neucom_2022_09_127 crossref_primary_10_1109_ACCESS_2022_3147543 crossref_primary_10_3390_s21010255 crossref_primary_10_1007_s00371_022_02753_2 crossref_primary_10_1016_j_neucom_2017_01_081 crossref_primary_10_1007_s11263_016_0918_1 crossref_primary_10_1007_s11063_019_10119_4 crossref_primary_10_1016_j_patrec_2015_06_023 crossref_primary_10_1109_JSTARS_2023_3323819 crossref_primary_10_1109_TPAMI_2013_83 crossref_primary_10_1016_j_jag_2022_103162 crossref_primary_10_3390_electronics8101072 crossref_primary_10_3390_app10186427 crossref_primary_10_1587_transinf_2016EDL8109 crossref_primary_10_1016_j_patcog_2017_03_004 crossref_primary_10_1016_j_patcog_2017_03_003 crossref_primary_10_1016_j_neucom_2020_05_118 crossref_primary_10_1007_s11263_014_0793_6 crossref_primary_10_1109_TMM_2017_2652071 crossref_primary_10_1007_s13735_017_0121_3 crossref_primary_10_1109_TIFS_2019_2922331 crossref_primary_10_1007_s12524_024_02021_x crossref_primary_10_1109_TIP_2014_2332764 crossref_primary_10_1007_s10032_021_00383_3 crossref_primary_10_1007_s11042_020_10491_7 crossref_primary_10_1016_j_image_2017_01_005 crossref_primary_10_3390_sym11101280 crossref_primary_10_7554_eLife_32605 crossref_primary_10_1007_s13735_015_0086_z crossref_primary_10_1049_iet_ipr_2018_5381 crossref_primary_10_1016_j_cviu_2019_01_001 crossref_primary_10_1007_s11042_016_3768_5 crossref_primary_10_1109_TITS_2022_3175656 crossref_primary_10_1109_TGRS_2022_3195692 crossref_primary_10_1007_s12046_020_1313_8 crossref_primary_10_1016_j_parco_2022_102992 crossref_primary_10_1016_j_jestch_2019_12_004 crossref_primary_10_1109_TIP_2018_2839886 crossref_primary_10_1155_2017_8513949 crossref_primary_10_1007_s11042_015_3008_4 crossref_primary_10_1007_s13369_021_06148_8 crossref_primary_10_1109_TSP_2016_2560134 crossref_primary_10_1155_2021_2449603 crossref_primary_10_3390_s20143906 crossref_primary_10_1109_TMM_2014_2311016 crossref_primary_10_1007_s11045_018_0609_x crossref_primary_10_1016_j_solener_2019_02_067 crossref_primary_10_1016_j_patcog_2021_108397 crossref_primary_10_1109_LRA_2024_3399591 crossref_primary_10_1016_j_future_2017_11_002 crossref_primary_10_1007_s00371_018_1499_5 crossref_primary_10_1016_j_patcog_2016_01_014 crossref_primary_10_1016_j_patrec_2016_07_013 crossref_primary_10_1007_s11042_018_5829_4 crossref_primary_10_1016_j_mri_2020_04_006 crossref_primary_10_1007_s00521_024_09735_6 crossref_primary_10_1007_s11042_023_16393_8 crossref_primary_10_1016_j_imavis_2021_104289 crossref_primary_10_1016_j_media_2021_102032 crossref_primary_10_1007_s11042_014_2251_4 crossref_primary_10_1109_TGRS_2022_3151405 crossref_primary_10_1109_TMM_2019_2915036 crossref_primary_10_1109_TMM_2015_2408563 crossref_primary_10_1016_j_patcog_2018_11_018 crossref_primary_10_1109_MMUL_2020_3015990 crossref_primary_10_1007_s13042_022_01645_0 crossref_primary_10_3390_s24041130 crossref_primary_10_1007_s11390_015_1526_1 crossref_primary_10_32604_cmc_2025_058233 crossref_primary_10_1109_TGRS_2023_3336283 crossref_primary_10_1109_TNNLS_2019_2954856 crossref_primary_10_1134_S1054661819030222 |
| Cites_doi | 10.1109/CVPR.2008.4587635 10.1007/978-1-4615-7566-5 10.1109/CVPR.2007.383266 10.1109/ICCV.2009.5459466 10.1023/A:1011139631724 10.1145/1646396.1646421 10.1007/s11263-009-0285-2 10.5244/C.22.50 10.1109/TPAMI.2010.57 10.1145/1282280.1282336 10.1007/s11263-009-0275-4 10.1109/ICCV.2009.5459419 10.1109/CVPR.2010.5540009 10.1109/CVPR.2010.5539914 10.1109/CVPR.2009.5206531 10.1023/b:visi.0000029664.99615.94 10.1109/CVPR.2010.5539949 10.1109/ICCV.2003.1238663 10.1007/978-3-540-88682-2_24 10.5220/0001787803310340 10.1109/CVPR.2007.382971 10.7551/mitpress/4908.001.0001 10.1109/CVPR.2009.5206582 10.1109/TPAMI.2009.132 10.1109/ICCV.2005.171 10.1109/ICCV.2009.5459354 10.1109/CVPR.2009.5206839 10.1145/997817.997857 10.1109/TPAMI.2005.188 10.1109/CVPR.2009.5206609 10.1109/CVPR.2007.383172 10.1007/s11263-005-3848-x 10.1109/CVPR.2006.264 10.1109/CVPR.2008.4587633 10.1109/CVPR.2010.5540039 10.1109/CVPR.2009.5206566 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 1XC VOOES |
| DOI | 10.1109/TPAMI.2011.235 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1716 |
| ExternalDocumentID | oai:HAL:inria-00633013v1 2747798171 22156101 27251993 10_1109_TPAMI_2011_235 6104058 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 1XC VOOES |
| ID | FETCH-LOGICAL-c482t-c7b3f95ad2e0f84433d5251b153085be19b0eb2c943db4660d9642b9dd9402193 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 765 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000306409100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Tue Oct 14 20:58:54 EDT 2025 Sun Nov 09 10:58:45 EST 2025 Mon Sep 29 06:06:42 EDT 2025 Sun Nov 09 06:11:45 EST 2025 Mon Jul 21 06:04:31 EDT 2025 Mon Jul 21 09:16:12 EDT 2025 Tue Nov 18 21:58:06 EST 2025 Sat Nov 29 08:11:23 EST 2025 Wed Aug 27 02:47:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Image retrieval Image databank High precision Information retrieval Fisher information Kernel method Image search Dimension reduction Bag of words Image matching Efficiency Large scale Content analysis Indexing indexing image retrieval image search |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-c7b3f95ad2e0f84433d5251b153085be19b0eb2c943db4660d9642b9dd9402193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://inria.hal.science/inria-00633013 |
| PMID | 22156101 |
| PQID | 1036862079 |
| PQPubID | 85458 |
| PageCount | 13 |
| ParticipantIDs | pascalfrancis_primary_27251993 proquest_miscellaneous_1126605779 hal_primary_oai_HAL_inria_00633013v1 crossref_primary_10_1109_TPAMI_2011_235 proquest_journals_1036862079 crossref_citationtrail_10_1109_TPAMI_2011_235 pubmed_primary_22156101 ieee_primary_6104058 proquest_miscellaneous_1136369013 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-01 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2012 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Jaakkola (ref20) ref2 ref1 ref17 ref16 ref38 ref19 Weiss (ref18) ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref27 doi: 10.1109/CVPR.2008.4587635 – ident: ref34 doi: 10.1007/978-1-4615-7566-5 – volume-title: Proc. Conf. Neural Information Processing Systems ident: ref18 article-title: Spectral Hashing – ident: ref21 doi: 10.1109/CVPR.2007.383266 – ident: ref17 doi: 10.1109/ICCV.2009.5459466 – ident: ref16 doi: 10.1023/A:1011139631724 – ident: ref19 doi: 10.1145/1646396.1646421 – ident: ref35 doi: 10.1007/s11263-009-0285-2 – ident: ref14 doi: 10.5244/C.22.50 – ident: ref24 doi: 10.1109/TPAMI.2010.57 – ident: ref4 doi: 10.1145/1282280.1282336 – ident: ref5 doi: 10.1007/s11263-009-0275-4 – ident: ref12 doi: 10.1109/ICCV.2009.5459419 – ident: ref22 doi: 10.1109/CVPR.2010.5540009 – ident: ref31 doi: 10.1109/CVPR.2010.5539914 – ident: ref13 doi: 10.1109/CVPR.2009.5206531 – ident: ref7 doi: 10.1023/b:visi.0000029664.99615.94 – ident: ref32 doi: 10.1109/CVPR.2010.5539949 – volume-title: Proc. Conf. Neural Information Processing Systems ident: ref20 article-title: Exploiting Generative Models in Discriminative Classifiers – ident: ref6 doi: 10.1109/ICCV.2003.1238663 – ident: ref26 doi: 10.1007/978-3-540-88682-2_24 – ident: ref37 doi: 10.5220/0001787803310340 – ident: ref9 doi: 10.1109/CVPR.2007.382971 – ident: ref38 doi: 10.7551/mitpress/4908.001.0001 – ident: ref15 doi: 10.1109/CVPR.2009.5206582 – ident: ref28 doi: 10.1109/TPAMI.2009.132 – ident: ref30 doi: 10.1109/ICCV.2005.171 – ident: ref33 doi: 10.1109/ICCV.2009.5459354 – ident: ref10 doi: 10.1109/CVPR.2009.5206839 – ident: ref36 doi: 10.1145/997817.997857 – ident: ref8 doi: 10.1109/TPAMI.2005.188 – ident: ref29 doi: 10.1109/CVPR.2009.5206609 – ident: ref1 doi: 10.1109/CVPR.2007.383172 – ident: ref25 doi: 10.1007/s11263-005-3848-x – ident: ref2 doi: 10.1109/CVPR.2006.264 – ident: ref11 doi: 10.1109/CVPR.2008.4587633 – ident: ref23 doi: 10.1109/CVPR.2010.5540039 – ident: ref3 doi: 10.1109/CVPR.2009.5206566 |
| SSID | ssj0014503 |
| Score | 2.62465 |
| Snippet | This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage.... |
| SourceID | hal proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1704 |
| SubjectTerms | Accuracy Applied sciences Artificial intelligence Computer Science Computer science; control theory; systems Computer Vision and Pattern Recognition Data processing. List processing. Character string processing Exact sciences and technology Image representation image retrieval Image search Indexing Kernel Mathematical analysis Memory organisation. Data processing Microprocessors Pattern analysis Pattern recognition. Digital image processing. Computational geometry Representations Searching Software Vectors Vectors (mathematics) Visualization |
| Title | Aggregating Local Image Descriptors into Compact Codes |
| URI | https://ieeexplore.ieee.org/document/6104058 https://www.ncbi.nlm.nih.gov/pubmed/22156101 https://www.proquest.com/docview/1036862079 https://www.proquest.com/docview/1126605779 https://www.proquest.com/docview/1136369013 https://inria.hal.science/inria-00633013 |
| Volume | 34 |
| WOSCitedRecordID | wos000306409100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2yoYf2kLRJP9ymiwuBXurGlmTLOi6lIYE05JDC3owtyelCape1N78_T7LXbaAp9LQLHnaFRjPzniXNIzrOuagzoLZIKy4iAUgSKVunEWOod7JMDauEF5uQl5f5cqmudujTdBfGWusPn9nP7qvfyzet3rhXZSco9cAX-YxmUsrhrta0YyBSr4IMBIMIB40YGzQmsTq5vlp8Ox-6dTLupGoY6hx-K3lQi2Y_3ElIL7HiDkiWHeaoHsQtHkefvgqd7v_f-J_T3og2w8WwPF7Qjm0OaH-r5BCOgX1Az_5oS3hI2eIGLNy13mhuwgtX7MLzn8g7IUiqTzLtugtXTd-GPpvoHp_Gdi_p--nX6y9n0aivEGmRsz7SsuK1SkvDbFznQnBuUsCdCkkQQKyyiapiEG-tBDeVyLLYKLCVShmjwDqB_F7RbtM29g2FeZWxSgP9lUYLFsvS8UaQlUy7fmVSBhRtZ7rQY_Nxp4FxW3gSEqvCO6lwTirgpIA-Tva_hrYbj1oew3GTkeuWfba4KFYN4rdwAAwZjN8lAR06f0x2oysCmj_w9PScSXelV_GAjrauL8bo7jAS7i7WxFIF9GF6jLh0my1lY9sNbBJAH4Dhf9vwjDtFMPzN62FZ_R7AuEbf_n3g7-gpZoANp92OaLdfb-x7eqLv-lW3niNAlvncB8g9bIYFWg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB61BYlyoNDyMJRipEpcMLV31489RogqEWnUQ5B6W3kfLpHArmKnv5-ZtWOoRJE4JZJHyWZnZ-b7srvzAZwWXFQZorbISC4igZAkkq5KI8aw3uVlapkWXmwiXyyKqyt5uQMfx7swzjl_-Mx9ord-L982ZkN_lZ1hqUd8UezCg1QIlvS3tcY9A5F6HWTEMBjjSCSGFo1JLM-Wl5OLWd-vk3ESq2FY6fDTkjvVaPc7nYX0Iit0RLJscZaqXt7ifvzp69D5wf_9gqfwZMCb4aRfIM9gx9WHcLDVcgiH0D6Ex380JjyCbHKNPJyab9TX4ZzKXTj7iZknRJrq00yzbsNV3TWhzyemw1fr2ufw7fzL8vM0GhQWIiMK1kUm17ySaWmZi6tCCM5tioBHYxpEKKZdInWM1NtIwa0WWRZbiXxFS2sl8k7Efi9gr25q9wrCQmdMG8R_pTWCxXlJzBHpSmaoY1meBxBtZ1qZof04qWD8UJ6GxFJ5JylykkInBfBhtL_pG2_ca3mKjhuNqF_2dDJXqxojWBEEwxzGb5MAjsgfo93gigBO7nh6fM5yutQreQDHW9erIb5bHAmnqzVxLgN4Pz7GyKTtlrJ2zQZtEgQ_CIf_bcMzTppg-DUv-2X1ewDDGn3994G_g0fT5cVczWeLr29gH2eD9WffjmGvW2_cW3hobrtVuz7xYfIL_qUHuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.atitle=Aggregating+Local+Image+Descriptors+into+Compact+Codes&rft.au=JEGOU%2C+Herv%C3%A9&rft.au=PERRONNIN%2C+Florent&rft.au=DOUZE%2C+Matthijs&rft.au=SANCHEZ%2C+Jorge&rft.date=2012-09-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=34&rft.issue=9&rft.spage=1704&rft.epage=1716&rft_id=info:doi/10.1109%2FTPAMI.2011.235&rft.externalDBID=n%2Fa&rft.externalDocID=27251993 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |