EEG artifact elimination by extraction of ICA-component features using image processing algorithms
[Display omitted] •Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing algorithms are used.•LDA classification identifies range filter as powerful feature (accuracy rate 88%).•The method does not depend on direct...
Saved in:
| Published in: | Journal of neuroscience methods Vol. 243; pp. 84 - 93 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
30.03.2015
|
| Subjects: | |
| ISSN: | 0165-0270, 1872-678X, 1872-678X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing algorithms are used.•LDA classification identifies range filter as powerful feature (accuracy rate 88%).•The method does not depend on direct recording of artifact signals.•The method is not limited to a specific number of artifacts.
Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts.
In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms.
We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features.
Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact.
In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. |
|---|---|
| AbstractList | [Display omitted]
•Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing algorithms are used.•LDA classification identifies range filter as powerful feature (accuracy rate 88%).•The method does not depend on direct recording of artifact signals.•The method is not limited to a specific number of artifacts.
Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts.
In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms.
We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features.
Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact.
In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes.Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. |
| Author | Radüntz, T. Meffert, B. Hochmuth, O. Scouten, J. |
| Author_xml | – sequence: 1 givenname: T. orcidid: 0000-0003-1882-2005 surname: Radüntz fullname: Radüntz, T. email: raduentz.thea@baua.bund.de organization: Federal Institute for Occupational Safety and Health, Mental Health and Cognitive Capacity, Nöldnerstr. 40-42, 10317 Berlin, Germany – sequence: 2 givenname: J. surname: Scouten fullname: Scouten, J. organization: Federal Institute for Occupational Safety and Health, Mental Health and Cognitive Capacity, Nöldnerstr. 40-42, 10317 Berlin, Germany – sequence: 3 givenname: O. surname: Hochmuth fullname: Hochmuth, O. organization: Humboldt-Universität zu Berlin, Department of Computer Science, Rudower Chaussee 25, 12489 Berlin, Germany – sequence: 4 givenname: B. surname: Meffert fullname: Meffert, B. organization: Humboldt-Universität zu Berlin, Department of Computer Science, Rudower Chaussee 25, 12489 Berlin, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25666892$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1r3DAUFCGhu0n6FxYde7H75A_Jhhxalm1aWMglgdyELD9vtNjSVpJL8u-rzSY99JKLHhpmhmHmkpxbZ5GQFYOcAeNf9_ne4jxhfMoLYHUOLIcSzsiSNaLIuGgez8kyEesMCgELchnCHgCqFvgnsihqznnTFkvSbTa3VPloBqUjxdFMxqponKXdC8Xn6BN8_LmB_lp_z7SbDimIjXRAFWePgc7B2B01k9ohPXinMbwCatw5b-LTFK7JxaDGgJ_f7hV5-LG5X__Mtne3yXOb6aopYnrLnnWlLhUHJUTdtJUeEsIVlGUHVQ2dAsH7gbei7kUlGKs5FFqUVdNi0l2RLyfflOL3jCHKyQSN46gsujlIxnnF2qSBRF29Ueduwl4efMrvX-R7L4nATwTtXQgeh38UBvI4gNzL9wHkcQAJTKYBkvDmP6E28bXQVKUZP5Z_O8kxFfXHoJdBG7Qae-NRR9k785HFXwCWpnE |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3125728 crossref_primary_10_1108_IJICC_06_2021_0127 crossref_primary_10_3389_fphys_2018_00098 crossref_primary_10_1080_0952813X_2019_1704438 crossref_primary_10_1080_13682199_2023_2169989 crossref_primary_10_3389_fphys_2017_01019 crossref_primary_10_1007_s12553_019_00395_4 crossref_primary_10_1109_TNSRE_2022_3154891 crossref_primary_10_3389_fnagi_2023_1142540 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_3390_biomedinformatics2010007 crossref_primary_10_1016_j_jneumeth_2019_02_016 crossref_primary_10_3389_fnhum_2023_1251690 crossref_primary_10_3390_brainsci10040201 crossref_primary_10_1088_2057_1976_ac3f17 crossref_primary_10_1088_1361_6579_aba492 crossref_primary_10_1088_2057_1976_aaeeed crossref_primary_10_4028_www_scientific_net_JBBBE_41_91 crossref_primary_10_1088_1741_2552_aa69d1 crossref_primary_10_1109_TAFFC_2020_3006847 crossref_primary_10_1109_TCDS_2024_3410110 crossref_primary_10_1002_brb3_3205 crossref_primary_10_1016_j_bspc_2016_09_005 crossref_primary_10_1016_j_compbiomed_2021_104347 crossref_primary_10_1038_s41597_022_01524_x crossref_primary_10_1007_s10796_024_10484_z crossref_primary_10_1088_1741_2552_ac28d4 crossref_primary_10_1109_ACCESS_2018_2792442 crossref_primary_10_1007_s12021_018_9397_6 crossref_primary_10_7717_peerj_4380 crossref_primary_10_1007_s00521_019_04544_8 crossref_primary_10_3389_fninf_2022_1025847 crossref_primary_10_1049_iet_ipr_2018_5418 crossref_primary_10_1109_TAFFC_2017_2660485 crossref_primary_10_3390_app11052415 crossref_primary_10_1088_1361_6579_abf336 crossref_primary_10_1016_j_biopsycho_2015_12_006 crossref_primary_10_3390_s20195715 crossref_primary_10_1155_2018_1350692 crossref_primary_10_1088_1741_2552_aacfdf crossref_primary_10_1109_ACCESS_2021_3109780 crossref_primary_10_3390_brainsci14121272 crossref_primary_10_1109_JSEN_2024_3358911 crossref_primary_10_1002_hbm_26149 crossref_primary_10_1049_iet_spr_2019_0175 crossref_primary_10_3390_mps8040074 crossref_primary_10_1016_j_neuroimage_2022_119586 crossref_primary_10_1016_j_chb_2024_108351 crossref_primary_10_1111_psyp_13731 crossref_primary_10_1109_TVCG_2022_3203099 crossref_primary_10_3390_brainsci10020090 crossref_primary_10_3390_s17061326 crossref_primary_10_1371_journal_pone_0324103 crossref_primary_10_3390_app13031605 crossref_primary_10_1038_s41598_021_00812_7 crossref_primary_10_1007_s11760_016_0943_0 crossref_primary_10_1038_s41598_020_62525_7 crossref_primary_10_1007_s10776_019_00435_w crossref_primary_10_1016_j_brainres_2021_147727 crossref_primary_10_1093_cercor_bhad298 crossref_primary_10_1007_s12204_023_2609_8 crossref_primary_10_3389_fnhum_2016_00669 crossref_primary_10_3389_fnins_2020_577160 crossref_primary_10_1016_j_jff_2022_105055 crossref_primary_10_1016_j_clinph_2019_09_016 crossref_primary_10_1016_j_bbr_2025_115519 crossref_primary_10_1038_s41598_022_05079_0 crossref_primary_10_1038_s41598_022_04831_w crossref_primary_10_1061__ASCE_CO_1943_7862_0002097 crossref_primary_10_1159_000450711 crossref_primary_10_3390_s24175813 |
| Cites_doi | 10.1523/JNEUROSCI.21-04-01370.2001 10.1016/0301-0511(73)90010-0 10.1109/PROC.1984.13073 10.1016/S0031-3203(99)00179-X 10.1186/1744-9081-7-30 10.3758/BF03192720 10.1111/j.1469-8986.1991.tb03397.x 10.1016/0262-8856(85)90058-7 10.1016/S0167-8655(98)00016-6 10.1016/j.compbiomed.2007.12.001 10.1073/pnas.0305375101 10.1002/hbm.20571 10.1109/34.531802 10.1109/TPAMI.2004.37 10.1080/00029238.1967.11080683 10.1016/S0031-3203(02)00092-4 10.1029/GL014i002p00139 10.1111/1469-8986.3720163 10.1097/WNP.0b013e3180556926 10.1016/j.clinph.2006.10.019 10.2478/msr-2013-0001 10.1016/0031-3203(95)00067-4 10.1016/j.clinph.2009.01.015 10.1016/j.jneumeth.2003.10.009 10.1109/TPAMI.2002.1017623 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2015 The Authors – notice: Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jneumeth.2015.01.030 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1872-678X |
| EndPage | 93 |
| ExternalDocumentID | 25666892 10_1016_j_jneumeth_2015_01_030 S0165027015000370 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K WUQ X7M ZGI ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c482t-c43d1b3c3a60a775894cfd1b6a033b0450ba076df6975d747115602c73489e3c3 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351802300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-0270 1872-678X |
| IngestDate | Sun Sep 28 02:08:21 EDT 2025 Thu Apr 03 07:06:10 EDT 2025 Tue Nov 18 22:12:31 EST 2025 Sat Nov 29 07:21:51 EST 2025 Fri Feb 23 02:33:09 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 68U99 68U10 68T10 Image processing ICA EEG Independent component analysis Artifact elimination 92C55 Geometric features Local binary patterns Range filter 68-04 92C50 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c482t-c43d1b3c3a60a775894cfd1b6a033b0450ba076df6975d747115602c73489e3c3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0003-1882-2005 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jneumeth.2015.01.030 |
| PMID | 25666892 |
| PQID | 1664195600 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1664195600 pubmed_primary_25666892 crossref_primary_10_1016_j_jneumeth_2015_01_030 crossref_citationtrail_10_1016_j_jneumeth_2015_01_030 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_01_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-30 |
| PublicationDateYYYYMMDD | 2015-03-30 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of neuroscience methods |
| PublicationTitleAlternate | J Neurosci Methods |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Goldenholz, Ahlfors, Hämälä inen, Sharon, Ishitobi, Vaina (bib0040) 2009; 30 Makeig, Bell, Jung, Sejnowski (bib0080) 1996 Peters (bib0120) 1967; 7 Winkler, Haufe, Tangermann (bib0195) 2011 Wikipedia (bib0185) August 2014 Jung, Makeig, Humphries, Lee, Mckeown, Iragui (bib0060) 2000; 37 Huang, Wang, Tan (bib0055) 2006 Swets, Weng (bib0150) 1996; 18 Wikipedia (bib0190) April 2014 Kenemans, Molenaar, Verbaten, Slangen (bib0065) 1991; 28 Unsworth, Heitz, Schrock, Engle (bib0155) 2005; 37 Viola, Thorne, Edmonds, Schneider, Eichele, Debener (bib0165) 2009; 120 Oster, Stern (bib0115) 1980 Vanhatalo, Palva, Holmes, Miller, Voipio, Kaila (bib0160) 2004; 101 Bailey, Hodgson (bib0005) 1985; 3 Buiatti, Mognon (bib0010) 2014 Sandwell (bib0135) 1987; 14 Moghaddam, Jebara, Pentland (bib0090) 2000; 33 Mishra, Singla (bib0085) 2013; 13 Ojala, Pietikainen, Maenpaa (bib0105) 2002; 24 Wikipedia (bib0175) August 2014 Fatourechi, Bashashati, Ward, Birch (bib0030) 2007; 118 Dai, Yuen (bib0015) 2003; 36 Mognon, Jovicich, Bruzzone, Buiatti (bib0095) 2010 Horn (bib0050) 1984; 72 Linkenkaer-Hansen, Nikouline, Palva, Ilmoniemi (bib0075) 2001; 21 Delorme, Makeig (bib0020) 2004; 134 Wikipedia (bib0180) July 2014 Ojala, Pietikainen, Harwood (bib0110) 1994 Skurichina, Duin (bib0140) 1996 Fitzgibbon, Powers, Pope, Clark (bib0035) 2007; 24 Heseltine, Pears, Austin (bib0045) 2004 Ojala, Pietikainen, Harwood (bib0100) 1996; 29 Raudys, Duin (bib0125) 1998; 19 Strutz (bib0145) 2000 Weerts, Lang (bib0170) 1973; 1 Ye, Janardan, Park, Park (bib0200) 2004; 26 Romero, Ma nanas, Barbanoj (bib0130) 2008; 38 Delorme, Makeig (bib0025) July 2014 Kong, Li, Wang, Teoh, Kambhamettu (bib0070) 2005 Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0175) 2014 Ojala (10.1016/j.jneumeth.2015.01.030_bib0100) 1996; 29 Peters (10.1016/j.jneumeth.2015.01.030_bib0120) 1967; 7 Unsworth (10.1016/j.jneumeth.2015.01.030_bib0155) 2005; 37 Oster (10.1016/j.jneumeth.2015.01.030_bib0115) 1980 Ojala (10.1016/j.jneumeth.2015.01.030_bib0110) 1994 Skurichina (10.1016/j.jneumeth.2015.01.030_bib0140) 1996 Heseltine (10.1016/j.jneumeth.2015.01.030_bib0045) 2004 Swets (10.1016/j.jneumeth.2015.01.030_bib0150) 1996; 18 Linkenkaer-Hansen (10.1016/j.jneumeth.2015.01.030_bib0075) 2001; 21 Fatourechi (10.1016/j.jneumeth.2015.01.030_bib0030) 2007; 118 Goldenholz (10.1016/j.jneumeth.2015.01.030_bib0040) 2009; 30 Kenemans (10.1016/j.jneumeth.2015.01.030_bib0065) 1991; 28 Winkler (10.1016/j.jneumeth.2015.01.030_bib0195) 2011 Fitzgibbon (10.1016/j.jneumeth.2015.01.030_bib0035) 2007; 24 Moghaddam (10.1016/j.jneumeth.2015.01.030_bib0090) 2000; 33 Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0180) 2014 Dai (10.1016/j.jneumeth.2015.01.030_bib0015) 2003; 36 Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0190) 2014 Weerts (10.1016/j.jneumeth.2015.01.030_bib0170) 1973; 1 Makeig (10.1016/j.jneumeth.2015.01.030_bib0080) 1996 Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0185) 2014 Raudys (10.1016/j.jneumeth.2015.01.030_bib0125) 1998; 19 Vanhatalo (10.1016/j.jneumeth.2015.01.030_bib0160) 2004; 101 Strutz (10.1016/j.jneumeth.2015.01.030_bib0145) 2000 Huang (10.1016/j.jneumeth.2015.01.030_bib0055) 2006 Bailey (10.1016/j.jneumeth.2015.01.030_bib0005) 1985; 3 Jung (10.1016/j.jneumeth.2015.01.030_bib0060) 2000; 37 Viola (10.1016/j.jneumeth.2015.01.030_bib0165) 2009; 120 Horn (10.1016/j.jneumeth.2015.01.030_bib0050) 1984; 72 Delorme (10.1016/j.jneumeth.2015.01.030_bib0020) 2004; 134 Ojala (10.1016/j.jneumeth.2015.01.030_bib0105) 2002; 24 Sandwell (10.1016/j.jneumeth.2015.01.030_bib0135) 1987; 14 Kong (10.1016/j.jneumeth.2015.01.030_bib0070) 2005 Delorme (10.1016/j.jneumeth.2015.01.030_bib0025) 2014 Buiatti (10.1016/j.jneumeth.2015.01.030_bib0010) 2014 Mishra (10.1016/j.jneumeth.2015.01.030_bib0085) 2013; 13 Romero (10.1016/j.jneumeth.2015.01.030_bib0130) 2008; 38 Ye (10.1016/j.jneumeth.2015.01.030_bib0200) 2004; 26 Mognon (10.1016/j.jneumeth.2015.01.030_bib0095) 2010 |
| References_xml | – volume: 28 start-page: 114 year: 1991 end-page: 121 ident: bib0065 article-title: Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data publication-title: Psychophysiology – volume: 26 start-page: 982 year: 2004 end-page: 994 ident: bib0200 article-title: An optimization criterion for generalized discriminant analysis on undersampled problems publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 879 year: 2006 end-page: 888 ident: bib0055 article-title: Combining statistics of geometrical and correlative features for 3D face recognition publication-title: Proceedings of British machine vision conference – year: July 2014 ident: bib0180 article-title: Task switching (psychology) – volume: 18 start-page: 831 year: 1996 end-page: 836 ident: bib0150 article-title: Using discriminant eigenfeatures for image retrieval publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 684 year: 2004 end-page: 691 ident: bib0045 article-title: Three-dimensional face recognition: a fishersurface approach publication-title: Image analysis and recognition, vol. 3212 of lecture notes in computer science – volume: 21 start-page: 1370 year: 2001 end-page: 1377 ident: bib0075 article-title: Long-range temporal correlations and scaling behavior in human brain oscillations publication-title: J Neurosci – year: 2005 ident: bib0070 article-title: Discriminant low-dimensional subspace analysis for face recognition with small number of training samples publication-title: BMVC – year: July 2014 ident: bib0025 article-title: EEGLAB wiki – start-page: 275 year: 1980 end-page: 309 ident: bib0115 article-title: Measurement of eye movement electrooculography publication-title: Techniques in psychophysiology – year: August 2014 ident: bib0185 article-title: Stroop effect – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: bib0060 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – volume: 7 start-page: 27 year: 1967 end-page: 40 ident: bib0120 article-title: Surface electrical fields generated by eye movements publication-title: Am J EEG Technol – start-page: 145 year: 1996 end-page: 151 ident: bib0080 article-title: Independent component analysis of electroencephalographic data publication-title: Advances in neural information processing systems – start-page: 1 year: 2010 end-page: 12 ident: bib0095 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiology – volume: 24 start-page: 232 year: 2007 end-page: 243 ident: bib0035 article-title: Removal of EEG noise and artifact using blind source separation publication-title: J Clin Neurophysiol – volume: 30 start-page: 1077 year: 2009 end-page: 1086 ident: bib0040 article-title: Mapping the signal-to-noise ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum Brain Mapp – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: bib0105 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 38 start-page: 348 year: 2008 end-page: 360 ident: bib0130 article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case publication-title: Comput Biol Med – start-page: 891 year: 1996 end-page: 896 ident: bib0140 article-title: Stabilizing classifiers for very small sample sizes publication-title: Proceedings of the 13th international conference on pattern recognition, vol. 2 – year: 2011 ident: bib0195 article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals publication-title: Behav Brain Funct – volume: 33 start-page: 1771 year: 2000 end-page: 1782 ident: bib0090 article-title: Bayesian face recognition publication-title: Pattern Recognit – volume: 101 start-page: 5053 year: 2004 end-page: 5057 ident: bib0160 article-title: Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep publication-title: Proc Natl Acad Sci U S A – volume: 36 start-page: 845 year: 2003 end-page: 847 ident: bib0015 article-title: Regularized discriminant analysis and its application to face recognition publication-title: Pattern Recognit – volume: 14 start-page: 139 year: 1987 end-page: 142 ident: bib0135 article-title: Biharmonic spline interpolation of GEOS-3 and SEAS, altimeter data publication-title: Geophys Res Lett – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: bib0100 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit – volume: 19 start-page: 385 year: 1998 end-page: 392 ident: bib0125 article-title: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix publication-title: Pattern Recognit Lett – volume: 120 start-page: 868 year: 2009 end-page: 877 ident: bib0165 article-title: Semi-automatic identification of independent components representing EEG artifact publication-title: Clin Neurophysiol – volume: 1 start-page: 1 year: 1973 end-page: 19 ident: bib0170 article-title: The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV) publication-title: Biol Psychol – volume: 13 start-page: 7 year: 2013 end-page: 11 ident: bib0085 article-title: Artifact removal from biosignal using fixed point ICA algorithm for pre-processing in biometric recognition publication-title: Meas Sci Rev – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib0020 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics publication-title: J Neurosci Methods – volume: 3 start-page: 99 year: 1985 end-page: 110 ident: bib0005 article-title: Range filters: local intensity subrange filters and their properties publication-title: Image Vis Comput – year: 2014 ident: bib0010 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features – a tutorial – volume: 72 start-page: 1671 year: 1984 end-page: 1686 ident: bib0050 article-title: Extended Gaussian images publication-title: Proc IEEE – year: August 2014 ident: bib0175 article-title: n-Back – year: April 2014 ident: bib0190 article-title: Saul sternberg – year: 2000 ident: bib0145 article-title: Bilddatenkompression – volume: 118 start-page: 480 year: 2007 end-page: 494 ident: bib0030 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin Neurophysiol – volume: 37 start-page: 498 year: 2005 end-page: 505 ident: bib0155 article-title: An automated version of the operation span task publication-title: Behav Res Methods – start-page: 582 year: 1994 end-page: 585 ident: bib0110 article-title: Performance evaluation of texture measures with classification based on kullback discrimination of distributions publication-title: Proceedings of the 12th IAPR international conference on pattern recognition, computer vision and image processing, vol. 1 – volume: 21 start-page: 1370 issue: 4 year: 2001 ident: 10.1016/j.jneumeth.2015.01.030_bib0075 article-title: Long-range temporal correlations and scaling behavior in human brain oscillations publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-04-01370.2001 – volume: 1 start-page: 1 issue: 1 year: 1973 ident: 10.1016/j.jneumeth.2015.01.030_bib0170 article-title: The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV) publication-title: Biol Psychol doi: 10.1016/0301-0511(73)90010-0 – volume: 72 start-page: 1671 issue: 12 year: 1984 ident: 10.1016/j.jneumeth.2015.01.030_bib0050 article-title: Extended Gaussian images publication-title: Proc IEEE doi: 10.1109/PROC.1984.13073 – volume: 33 start-page: 1771 year: 2000 ident: 10.1016/j.jneumeth.2015.01.030_bib0090 article-title: Bayesian face recognition publication-title: Pattern Recognit doi: 10.1016/S0031-3203(99)00179-X – year: 2011 ident: 10.1016/j.jneumeth.2015.01.030_bib0195 article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals publication-title: Behav Brain Funct doi: 10.1186/1744-9081-7-30 – volume: 37 start-page: 498 issue: 3 year: 2005 ident: 10.1016/j.jneumeth.2015.01.030_bib0155 article-title: An automated version of the operation span task publication-title: Behav Res Methods doi: 10.3758/BF03192720 – volume: 28 start-page: 114 issue: 1 year: 1991 ident: 10.1016/j.jneumeth.2015.01.030_bib0065 article-title: Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1991.tb03397.x – volume: 3 start-page: 99 issue: 3 year: 1985 ident: 10.1016/j.jneumeth.2015.01.030_bib0005 article-title: Range filters: local intensity subrange filters and their properties publication-title: Image Vis Comput doi: 10.1016/0262-8856(85)90058-7 – start-page: 275 year: 1980 ident: 10.1016/j.jneumeth.2015.01.030_bib0115 article-title: Measurement of eye movement electrooculography – volume: 19 start-page: 385 issue: 5–6 year: 1998 ident: 10.1016/j.jneumeth.2015.01.030_bib0125 article-title: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(98)00016-6 – volume: 38 start-page: 348 issue: 3 year: 2008 ident: 10.1016/j.jneumeth.2015.01.030_bib0130 article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2007.12.001 – year: 2014 ident: 10.1016/j.jneumeth.2015.01.030_bib0190 – start-page: 891 year: 1996 ident: 10.1016/j.jneumeth.2015.01.030_bib0140 article-title: Stabilizing classifiers for very small sample sizes – volume: 101 start-page: 5053 issue: 14 year: 2004 ident: 10.1016/j.jneumeth.2015.01.030_bib0160 article-title: Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0305375101 – volume: 30 start-page: 1077 issue: 4 year: 2009 ident: 10.1016/j.jneumeth.2015.01.030_bib0040 article-title: Mapping the signal-to-noise ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum Brain Mapp doi: 10.1002/hbm.20571 – volume: 18 start-page: 831 issue: 8 year: 1996 ident: 10.1016/j.jneumeth.2015.01.030_bib0150 article-title: Using discriminant eigenfeatures for image retrieval publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.531802 – year: 2014 ident: 10.1016/j.jneumeth.2015.01.030_bib0010 – start-page: 145 year: 1996 ident: 10.1016/j.jneumeth.2015.01.030_bib0080 article-title: Independent component analysis of electroencephalographic data – start-page: 1 year: 2010 ident: 10.1016/j.jneumeth.2015.01.030_bib0095 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiology – volume: 26 start-page: 982 year: 2004 ident: 10.1016/j.jneumeth.2015.01.030_bib0200 article-title: An optimization criterion for generalized discriminant analysis on undersampled problems publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.37 – volume: 7 start-page: 27 issue: 2 year: 1967 ident: 10.1016/j.jneumeth.2015.01.030_bib0120 article-title: Surface electrical fields generated by eye movements publication-title: Am J EEG Technol doi: 10.1080/00029238.1967.11080683 – start-page: 879 year: 2006 ident: 10.1016/j.jneumeth.2015.01.030_bib0055 article-title: Combining statistics of geometrical and correlative features for 3D face recognition – year: 2014 ident: 10.1016/j.jneumeth.2015.01.030_bib0025 – year: 2014 ident: 10.1016/j.jneumeth.2015.01.030_bib0175 – volume: 36 start-page: 845 issue: 3 year: 2003 ident: 10.1016/j.jneumeth.2015.01.030_bib0015 article-title: Regularized discriminant analysis and its application to face recognition publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00092-4 – volume: 14 start-page: 139 issue: 2 year: 1987 ident: 10.1016/j.jneumeth.2015.01.030_bib0135 article-title: Biharmonic spline interpolation of GEOS-3 and SEAS, altimeter data publication-title: Geophys Res Lett doi: 10.1029/GL014i002p00139 – start-page: 684 year: 2004 ident: 10.1016/j.jneumeth.2015.01.030_bib0045 article-title: Three-dimensional face recognition: a fishersurface approach – volume: 37 start-page: 163 issue: 2 year: 2000 ident: 10.1016/j.jneumeth.2015.01.030_bib0060 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – year: 2005 ident: 10.1016/j.jneumeth.2015.01.030_bib0070 article-title: Discriminant low-dimensional subspace analysis for face recognition with small number of training samples – volume: 24 start-page: 232 issue: 3 year: 2007 ident: 10.1016/j.jneumeth.2015.01.030_bib0035 article-title: Removal of EEG noise and artifact using blind source separation publication-title: J Clin Neurophysiol doi: 10.1097/WNP.0b013e3180556926 – year: 2014 ident: 10.1016/j.jneumeth.2015.01.030_bib0180 – volume: 118 start-page: 480 issue: 3 year: 2007 ident: 10.1016/j.jneumeth.2015.01.030_bib0030 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.10.019 – volume: 13 start-page: 7 year: 2013 ident: 10.1016/j.jneumeth.2015.01.030_bib0085 article-title: Artifact removal from biosignal using fixed point ICA algorithm for pre-processing in biometric recognition publication-title: Meas Sci Rev doi: 10.2478/msr-2013-0001 – start-page: 582 year: 1994 ident: 10.1016/j.jneumeth.2015.01.030_bib0110 article-title: Performance evaluation of texture measures with classification based on kullback discrimination of distributions – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 10.1016/j.jneumeth.2015.01.030_bib0100 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit doi: 10.1016/0031-3203(95)00067-4 – year: 2014 ident: 10.1016/j.jneumeth.2015.01.030_bib0185 – volume: 120 start-page: 868 issue: 5 year: 2009 ident: 10.1016/j.jneumeth.2015.01.030_bib0165 article-title: Semi-automatic identification of independent components representing EEG artifact publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.01.015 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.jneumeth.2015.01.030_bib0020 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.jneumeth.2015.01.030_bib0105 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2002.1017623 – year: 2000 ident: 10.1016/j.jneumeth.2015.01.030_bib0145 |
| SSID | ssj0004906 |
| Score | 2.4473724 |
| Snippet | [Display omitted]
•Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing... Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 84 |
| SubjectTerms | Adult Algorithms Artifact elimination Brain - physiology Discriminant Analysis EEG Electroencephalography - methods Executive Function - physiology Female Geometric features Humans ICA Image processing Image Processing, Computer-Assisted - methods Independent component analysis Linear Models Local binary patterns Male Middle Aged Pattern Recognition, Automated - methods Range filter Signal Processing, Computer-Assisted Signal-To-Noise Ratio |
| Title | EEG artifact elimination by extraction of ICA-component features using image processing algorithms |
| URI | https://dx.doi.org/10.1016/j.jneumeth.2015.01.030 https://www.ncbi.nlm.nih.gov/pubmed/25666892 https://www.proquest.com/docview/1664195600 |
| Volume | 243 |
| WOSCitedRecordID | wos000351802300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFB6FUFVcqha60AVNpZYLcut17DmGKHQRDZUaJN9G47FdEiV2yILg1p_eN4sXBAh66MWKRnnxON_nN9v73kPoA-VOZsOwanGeJ5afCceK0kxYnpvzNIgSmaNKFZsIh8MojunPTudPpYW5mIZFEV1e0vl_hRraAGwpnf0HuOsfhQb4DKDDFWCH64OAHwy-yMxFYylZOMimqmqXAhkmmuCJF6Y4uJSQ9HuWDCkvC5WhKVM5PpcHa7V9MJ7JaJ651hEoJeP0d7kYr85MevObE9pWaszMVKZuAumBSX3v42G_UPVjm9DsX6Jcr4xApKZYKc5ma73hc1IzQkaeaH3RYXurwgmUds9uedcodC0YHWM9-NzSZlyy63stp6pryN3w9XrbYfJpAo8nH0rG6ekcrOae15JrD0_Y0enxMRsN4tH-_NySdcfk-bwpwrKBNt0woFEXbfa-DeLvjbaWqvqsdTdbKvPbb33XBOeuBYyayIyeoicGMNzTzHmGOlmxjXZ6QJJydoX3sYoJVoct2-jxDxN6sYMS4BWueIVbvMLJFW54hcscX-MVrniFFa-w4hVueIUbXj1Hp0eDUf-rZQp0WMKP3BVcvdRJPOFxYvMQVp7UFzm0EG57XgKLBTvhdkjSnNAwSOX2h9Ttu0JmVKIZ2L1A3QL68gphksjCdS4XAdglKaFBHkR57ruhmxPCvV0UVP8qEyZ7vSyiMmVVmOKEVWgwiQazHQZo7KLPtd1c52-514JWoDHzzujZJQPi3Wv7vkKZgZuWZ2-8yMr1kjmE-FKaa8N3Xmr46_7AqoOQiLqvH2D9Bm01b9Zb1F0t1tk79EhcrMbLxR7aCONoz1D4L42bwQ8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+artifact+elimination+by+extraction+of+ICA-component+features+using+image+processing+algorithms&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Rad%C3%BCntz%2C+T&rft.au=Scouten%2C+J&rft.au=Hochmuth%2C+O&rft.au=Meffert%2C+B&rft.date=2015-03-30&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=243&rft.spage=84&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.01.030&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |