EEG artifact elimination by extraction of ICA-component features using image processing algorithms

[Display omitted] •Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing algorithms are used.•LDA classification identifies range filter as powerful feature (accuracy rate 88%).•The method does not depend on direct...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods Vol. 243; pp. 84 - 93
Main Authors: Radüntz, T., Scouten, J., Hochmuth, O., Meffert, B.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 30.03.2015
Subjects:
ISSN:0165-0270, 1872-678X, 1872-678X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing algorithms are used.•LDA classification identifies range filter as powerful feature (accuracy rate 88%).•The method does not depend on direct recording of artifact signals.•The method is not limited to a specific number of artifacts. Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes.
AbstractList [Display omitted] •Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing algorithms are used.•LDA classification identifies range filter as powerful feature (accuracy rate 88%).•The method does not depend on direct recording of artifact signals.•The method is not limited to a specific number of artifacts. Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes.
Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes.
Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes.Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes.
Author Radüntz, T.
Meffert, B.
Hochmuth, O.
Scouten, J.
Author_xml – sequence: 1
  givenname: T.
  orcidid: 0000-0003-1882-2005
  surname: Radüntz
  fullname: Radüntz, T.
  email: raduentz.thea@baua.bund.de
  organization: Federal Institute for Occupational Safety and Health, Mental Health and Cognitive Capacity, Nöldnerstr. 40-42, 10317 Berlin, Germany
– sequence: 2
  givenname: J.
  surname: Scouten
  fullname: Scouten, J.
  organization: Federal Institute for Occupational Safety and Health, Mental Health and Cognitive Capacity, Nöldnerstr. 40-42, 10317 Berlin, Germany
– sequence: 3
  givenname: O.
  surname: Hochmuth
  fullname: Hochmuth, O.
  organization: Humboldt-Universität zu Berlin, Department of Computer Science, Rudower Chaussee 25, 12489 Berlin, Germany
– sequence: 4
  givenname: B.
  surname: Meffert
  fullname: Meffert, B.
  organization: Humboldt-Universität zu Berlin, Department of Computer Science, Rudower Chaussee 25, 12489 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25666892$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1r3DAUFCGhu0n6FxYde7H75A_Jhhxalm1aWMglgdyELD9vtNjSVpJL8u-rzSY99JKLHhpmhmHmkpxbZ5GQFYOcAeNf9_ne4jxhfMoLYHUOLIcSzsiSNaLIuGgez8kyEesMCgELchnCHgCqFvgnsihqznnTFkvSbTa3VPloBqUjxdFMxqponKXdC8Xn6BN8_LmB_lp_z7SbDimIjXRAFWePgc7B2B01k9ohPXinMbwCatw5b-LTFK7JxaDGgJ_f7hV5-LG5X__Mtne3yXOb6aopYnrLnnWlLhUHJUTdtJUeEsIVlGUHVQ2dAsH7gbei7kUlGKs5FFqUVdNi0l2RLyfflOL3jCHKyQSN46gsujlIxnnF2qSBRF29Ueduwl4efMrvX-R7L4nATwTtXQgeh38UBvI4gNzL9wHkcQAJTKYBkvDmP6E28bXQVKUZP5Z_O8kxFfXHoJdBG7Qae-NRR9k785HFXwCWpnE
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3125728
crossref_primary_10_1108_IJICC_06_2021_0127
crossref_primary_10_3389_fphys_2018_00098
crossref_primary_10_1080_0952813X_2019_1704438
crossref_primary_10_1080_13682199_2023_2169989
crossref_primary_10_3389_fphys_2017_01019
crossref_primary_10_1007_s12553_019_00395_4
crossref_primary_10_1109_TNSRE_2022_3154891
crossref_primary_10_3389_fnagi_2023_1142540
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_3390_biomedinformatics2010007
crossref_primary_10_1016_j_jneumeth_2019_02_016
crossref_primary_10_3389_fnhum_2023_1251690
crossref_primary_10_3390_brainsci10040201
crossref_primary_10_1088_2057_1976_ac3f17
crossref_primary_10_1088_1361_6579_aba492
crossref_primary_10_1088_2057_1976_aaeeed
crossref_primary_10_4028_www_scientific_net_JBBBE_41_91
crossref_primary_10_1088_1741_2552_aa69d1
crossref_primary_10_1109_TAFFC_2020_3006847
crossref_primary_10_1109_TCDS_2024_3410110
crossref_primary_10_1002_brb3_3205
crossref_primary_10_1016_j_bspc_2016_09_005
crossref_primary_10_1016_j_compbiomed_2021_104347
crossref_primary_10_1038_s41597_022_01524_x
crossref_primary_10_1007_s10796_024_10484_z
crossref_primary_10_1088_1741_2552_ac28d4
crossref_primary_10_1109_ACCESS_2018_2792442
crossref_primary_10_1007_s12021_018_9397_6
crossref_primary_10_7717_peerj_4380
crossref_primary_10_1007_s00521_019_04544_8
crossref_primary_10_3389_fninf_2022_1025847
crossref_primary_10_1049_iet_ipr_2018_5418
crossref_primary_10_1109_TAFFC_2017_2660485
crossref_primary_10_3390_app11052415
crossref_primary_10_1088_1361_6579_abf336
crossref_primary_10_1016_j_biopsycho_2015_12_006
crossref_primary_10_3390_s20195715
crossref_primary_10_1155_2018_1350692
crossref_primary_10_1088_1741_2552_aacfdf
crossref_primary_10_1109_ACCESS_2021_3109780
crossref_primary_10_3390_brainsci14121272
crossref_primary_10_1109_JSEN_2024_3358911
crossref_primary_10_1002_hbm_26149
crossref_primary_10_1049_iet_spr_2019_0175
crossref_primary_10_3390_mps8040074
crossref_primary_10_1016_j_neuroimage_2022_119586
crossref_primary_10_1016_j_chb_2024_108351
crossref_primary_10_1111_psyp_13731
crossref_primary_10_1109_TVCG_2022_3203099
crossref_primary_10_3390_brainsci10020090
crossref_primary_10_3390_s17061326
crossref_primary_10_1371_journal_pone_0324103
crossref_primary_10_3390_app13031605
crossref_primary_10_1038_s41598_021_00812_7
crossref_primary_10_1007_s11760_016_0943_0
crossref_primary_10_1038_s41598_020_62525_7
crossref_primary_10_1007_s10776_019_00435_w
crossref_primary_10_1016_j_brainres_2021_147727
crossref_primary_10_1093_cercor_bhad298
crossref_primary_10_1007_s12204_023_2609_8
crossref_primary_10_3389_fnhum_2016_00669
crossref_primary_10_3389_fnins_2020_577160
crossref_primary_10_1016_j_jff_2022_105055
crossref_primary_10_1016_j_clinph_2019_09_016
crossref_primary_10_1016_j_bbr_2025_115519
crossref_primary_10_1038_s41598_022_05079_0
crossref_primary_10_1038_s41598_022_04831_w
crossref_primary_10_1061__ASCE_CO_1943_7862_0002097
crossref_primary_10_1159_000450711
crossref_primary_10_3390_s24175813
Cites_doi 10.1523/JNEUROSCI.21-04-01370.2001
10.1016/0301-0511(73)90010-0
10.1109/PROC.1984.13073
10.1016/S0031-3203(99)00179-X
10.1186/1744-9081-7-30
10.3758/BF03192720
10.1111/j.1469-8986.1991.tb03397.x
10.1016/0262-8856(85)90058-7
10.1016/S0167-8655(98)00016-6
10.1016/j.compbiomed.2007.12.001
10.1073/pnas.0305375101
10.1002/hbm.20571
10.1109/34.531802
10.1109/TPAMI.2004.37
10.1080/00029238.1967.11080683
10.1016/S0031-3203(02)00092-4
10.1029/GL014i002p00139
10.1111/1469-8986.3720163
10.1097/WNP.0b013e3180556926
10.1016/j.clinph.2006.10.019
10.2478/msr-2013-0001
10.1016/0031-3203(95)00067-4
10.1016/j.clinph.2009.01.015
10.1016/j.jneumeth.2003.10.009
10.1109/TPAMI.2002.1017623
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2015.01.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 93
ExternalDocumentID 25666892
10_1016_j_jneumeth_2015_01_030
S0165027015000370
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
X7M
ZGI
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c482t-c43d1b3c3a60a775894cfd1b6a033b0450ba076df6975d747115602c73489e3c3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351802300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0270
1872-678X
IngestDate Sun Sep 28 02:08:21 EDT 2025
Thu Apr 03 07:06:10 EDT 2025
Tue Nov 18 22:12:31 EST 2025
Sat Nov 29 07:21:51 EST 2025
Fri Feb 23 02:33:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 68U99
68U10
68T10
Image processing
ICA
EEG
Independent component analysis
Artifact elimination
92C55
Geometric features
Local binary patterns
Range filter
68-04
92C50
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-c43d1b3c3a60a775894cfd1b6a033b0450ba076df6975d747115602c73489e3c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-1882-2005
OpenAccessLink https://dx.doi.org/10.1016/j.jneumeth.2015.01.030
PMID 25666892
PQID 1664195600
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1664195600
pubmed_primary_25666892
crossref_primary_10_1016_j_jneumeth_2015_01_030
crossref_citationtrail_10_1016_j_jneumeth_2015_01_030
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_01_030
PublicationCentury 2000
PublicationDate 2015-03-30
PublicationDateYYYYMMDD 2015-03-30
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Goldenholz, Ahlfors, Hämälä inen, Sharon, Ishitobi, Vaina (bib0040) 2009; 30
Makeig, Bell, Jung, Sejnowski (bib0080) 1996
Peters (bib0120) 1967; 7
Winkler, Haufe, Tangermann (bib0195) 2011
Wikipedia (bib0185) August 2014
Jung, Makeig, Humphries, Lee, Mckeown, Iragui (bib0060) 2000; 37
Huang, Wang, Tan (bib0055) 2006
Swets, Weng (bib0150) 1996; 18
Wikipedia (bib0190) April 2014
Kenemans, Molenaar, Verbaten, Slangen (bib0065) 1991; 28
Unsworth, Heitz, Schrock, Engle (bib0155) 2005; 37
Viola, Thorne, Edmonds, Schneider, Eichele, Debener (bib0165) 2009; 120
Oster, Stern (bib0115) 1980
Vanhatalo, Palva, Holmes, Miller, Voipio, Kaila (bib0160) 2004; 101
Bailey, Hodgson (bib0005) 1985; 3
Buiatti, Mognon (bib0010) 2014
Sandwell (bib0135) 1987; 14
Moghaddam, Jebara, Pentland (bib0090) 2000; 33
Mishra, Singla (bib0085) 2013; 13
Ojala, Pietikainen, Maenpaa (bib0105) 2002; 24
Wikipedia (bib0175) August 2014
Fatourechi, Bashashati, Ward, Birch (bib0030) 2007; 118
Dai, Yuen (bib0015) 2003; 36
Mognon, Jovicich, Bruzzone, Buiatti (bib0095) 2010
Horn (bib0050) 1984; 72
Linkenkaer-Hansen, Nikouline, Palva, Ilmoniemi (bib0075) 2001; 21
Delorme, Makeig (bib0020) 2004; 134
Wikipedia (bib0180) July 2014
Ojala, Pietikainen, Harwood (bib0110) 1994
Skurichina, Duin (bib0140) 1996
Fitzgibbon, Powers, Pope, Clark (bib0035) 2007; 24
Heseltine, Pears, Austin (bib0045) 2004
Ojala, Pietikainen, Harwood (bib0100) 1996; 29
Raudys, Duin (bib0125) 1998; 19
Strutz (bib0145) 2000
Weerts, Lang (bib0170) 1973; 1
Ye, Janardan, Park, Park (bib0200) 2004; 26
Romero, Ma nanas, Barbanoj (bib0130) 2008; 38
Delorme, Makeig (bib0025) July 2014
Kong, Li, Wang, Teoh, Kambhamettu (bib0070) 2005
Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0175) 2014
Ojala (10.1016/j.jneumeth.2015.01.030_bib0100) 1996; 29
Peters (10.1016/j.jneumeth.2015.01.030_bib0120) 1967; 7
Unsworth (10.1016/j.jneumeth.2015.01.030_bib0155) 2005; 37
Oster (10.1016/j.jneumeth.2015.01.030_bib0115) 1980
Ojala (10.1016/j.jneumeth.2015.01.030_bib0110) 1994
Skurichina (10.1016/j.jneumeth.2015.01.030_bib0140) 1996
Heseltine (10.1016/j.jneumeth.2015.01.030_bib0045) 2004
Swets (10.1016/j.jneumeth.2015.01.030_bib0150) 1996; 18
Linkenkaer-Hansen (10.1016/j.jneumeth.2015.01.030_bib0075) 2001; 21
Fatourechi (10.1016/j.jneumeth.2015.01.030_bib0030) 2007; 118
Goldenholz (10.1016/j.jneumeth.2015.01.030_bib0040) 2009; 30
Kenemans (10.1016/j.jneumeth.2015.01.030_bib0065) 1991; 28
Winkler (10.1016/j.jneumeth.2015.01.030_bib0195) 2011
Fitzgibbon (10.1016/j.jneumeth.2015.01.030_bib0035) 2007; 24
Moghaddam (10.1016/j.jneumeth.2015.01.030_bib0090) 2000; 33
Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0180) 2014
Dai (10.1016/j.jneumeth.2015.01.030_bib0015) 2003; 36
Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0190) 2014
Weerts (10.1016/j.jneumeth.2015.01.030_bib0170) 1973; 1
Makeig (10.1016/j.jneumeth.2015.01.030_bib0080) 1996
Wikipedia (10.1016/j.jneumeth.2015.01.030_bib0185) 2014
Raudys (10.1016/j.jneumeth.2015.01.030_bib0125) 1998; 19
Vanhatalo (10.1016/j.jneumeth.2015.01.030_bib0160) 2004; 101
Strutz (10.1016/j.jneumeth.2015.01.030_bib0145) 2000
Huang (10.1016/j.jneumeth.2015.01.030_bib0055) 2006
Bailey (10.1016/j.jneumeth.2015.01.030_bib0005) 1985; 3
Jung (10.1016/j.jneumeth.2015.01.030_bib0060) 2000; 37
Viola (10.1016/j.jneumeth.2015.01.030_bib0165) 2009; 120
Horn (10.1016/j.jneumeth.2015.01.030_bib0050) 1984; 72
Delorme (10.1016/j.jneumeth.2015.01.030_bib0020) 2004; 134
Ojala (10.1016/j.jneumeth.2015.01.030_bib0105) 2002; 24
Sandwell (10.1016/j.jneumeth.2015.01.030_bib0135) 1987; 14
Kong (10.1016/j.jneumeth.2015.01.030_bib0070) 2005
Delorme (10.1016/j.jneumeth.2015.01.030_bib0025) 2014
Buiatti (10.1016/j.jneumeth.2015.01.030_bib0010) 2014
Mishra (10.1016/j.jneumeth.2015.01.030_bib0085) 2013; 13
Romero (10.1016/j.jneumeth.2015.01.030_bib0130) 2008; 38
Ye (10.1016/j.jneumeth.2015.01.030_bib0200) 2004; 26
Mognon (10.1016/j.jneumeth.2015.01.030_bib0095) 2010
References_xml – volume: 28
  start-page: 114
  year: 1991
  end-page: 121
  ident: bib0065
  article-title: Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data
  publication-title: Psychophysiology
– volume: 26
  start-page: 982
  year: 2004
  end-page: 994
  ident: bib0200
  article-title: An optimization criterion for generalized discriminant analysis on undersampled problems
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 879
  year: 2006
  end-page: 888
  ident: bib0055
  article-title: Combining statistics of geometrical and correlative features for 3D face recognition
  publication-title: Proceedings of British machine vision conference
– year: July 2014
  ident: bib0180
  article-title: Task switching (psychology)
– volume: 18
  start-page: 831
  year: 1996
  end-page: 836
  ident: bib0150
  article-title: Using discriminant eigenfeatures for image retrieval
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 684
  year: 2004
  end-page: 691
  ident: bib0045
  article-title: Three-dimensional face recognition: a fishersurface approach
  publication-title: Image analysis and recognition, vol. 3212 of lecture notes in computer science
– volume: 21
  start-page: 1370
  year: 2001
  end-page: 1377
  ident: bib0075
  article-title: Long-range temporal correlations and scaling behavior in human brain oscillations
  publication-title: J Neurosci
– year: 2005
  ident: bib0070
  article-title: Discriminant low-dimensional subspace analysis for face recognition with small number of training samples
  publication-title: BMVC
– year: July 2014
  ident: bib0025
  article-title: EEGLAB wiki
– start-page: 275
  year: 1980
  end-page: 309
  ident: bib0115
  article-title: Measurement of eye movement electrooculography
  publication-title: Techniques in psychophysiology
– year: August 2014
  ident: bib0185
  article-title: Stroop effect
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib0060
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– volume: 7
  start-page: 27
  year: 1967
  end-page: 40
  ident: bib0120
  article-title: Surface electrical fields generated by eye movements
  publication-title: Am J EEG Technol
– start-page: 145
  year: 1996
  end-page: 151
  ident: bib0080
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2010
  end-page: 12
  ident: bib0095
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
– volume: 24
  start-page: 232
  year: 2007
  end-page: 243
  ident: bib0035
  article-title: Removal of EEG noise and artifact using blind source separation
  publication-title: J Clin Neurophysiol
– volume: 30
  start-page: 1077
  year: 2009
  end-page: 1086
  ident: bib0040
  article-title: Mapping the signal-to-noise ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum Brain Mapp
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: bib0105
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 38
  start-page: 348
  year: 2008
  end-page: 360
  ident: bib0130
  article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case
  publication-title: Comput Biol Med
– start-page: 891
  year: 1996
  end-page: 896
  ident: bib0140
  article-title: Stabilizing classifiers for very small sample sizes
  publication-title: Proceedings of the 13th international conference on pattern recognition, vol. 2
– year: 2011
  ident: bib0195
  article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals
  publication-title: Behav Brain Funct
– volume: 33
  start-page: 1771
  year: 2000
  end-page: 1782
  ident: bib0090
  article-title: Bayesian face recognition
  publication-title: Pattern Recognit
– volume: 101
  start-page: 5053
  year: 2004
  end-page: 5057
  ident: bib0160
  article-title: Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep
  publication-title: Proc Natl Acad Sci U S A
– volume: 36
  start-page: 845
  year: 2003
  end-page: 847
  ident: bib0015
  article-title: Regularized discriminant analysis and its application to face recognition
  publication-title: Pattern Recognit
– volume: 14
  start-page: 139
  year: 1987
  end-page: 142
  ident: bib0135
  article-title: Biharmonic spline interpolation of GEOS-3 and SEAS, altimeter data
  publication-title: Geophys Res Lett
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: bib0100
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit
– volume: 19
  start-page: 385
  year: 1998
  end-page: 392
  ident: bib0125
  article-title: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix
  publication-title: Pattern Recognit Lett
– volume: 120
  start-page: 868
  year: 2009
  end-page: 877
  ident: bib0165
  article-title: Semi-automatic identification of independent components representing EEG artifact
  publication-title: Clin Neurophysiol
– volume: 1
  start-page: 1
  year: 1973
  end-page: 19
  ident: bib0170
  article-title: The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV)
  publication-title: Biol Psychol
– volume: 13
  start-page: 7
  year: 2013
  end-page: 11
  ident: bib0085
  article-title: Artifact removal from biosignal using fixed point ICA algorithm for pre-processing in biometric recognition
  publication-title: Meas Sci Rev
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib0020
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J Neurosci Methods
– volume: 3
  start-page: 99
  year: 1985
  end-page: 110
  ident: bib0005
  article-title: Range filters: local intensity subrange filters and their properties
  publication-title: Image Vis Comput
– year: 2014
  ident: bib0010
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features – a tutorial
– volume: 72
  start-page: 1671
  year: 1984
  end-page: 1686
  ident: bib0050
  article-title: Extended Gaussian images
  publication-title: Proc IEEE
– year: August 2014
  ident: bib0175
  article-title: n-Back
– year: April 2014
  ident: bib0190
  article-title: Saul sternberg
– year: 2000
  ident: bib0145
  article-title: Bilddatenkompression
– volume: 118
  start-page: 480
  year: 2007
  end-page: 494
  ident: bib0030
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin Neurophysiol
– volume: 37
  start-page: 498
  year: 2005
  end-page: 505
  ident: bib0155
  article-title: An automated version of the operation span task
  publication-title: Behav Res Methods
– start-page: 582
  year: 1994
  end-page: 585
  ident: bib0110
  article-title: Performance evaluation of texture measures with classification based on kullback discrimination of distributions
  publication-title: Proceedings of the 12th IAPR international conference on pattern recognition, computer vision and image processing, vol. 1
– volume: 21
  start-page: 1370
  issue: 4
  year: 2001
  ident: 10.1016/j.jneumeth.2015.01.030_bib0075
  article-title: Long-range temporal correlations and scaling behavior in human brain oscillations
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-04-01370.2001
– volume: 1
  start-page: 1
  issue: 1
  year: 1973
  ident: 10.1016/j.jneumeth.2015.01.030_bib0170
  article-title: The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV)
  publication-title: Biol Psychol
  doi: 10.1016/0301-0511(73)90010-0
– volume: 72
  start-page: 1671
  issue: 12
  year: 1984
  ident: 10.1016/j.jneumeth.2015.01.030_bib0050
  article-title: Extended Gaussian images
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1984.13073
– volume: 33
  start-page: 1771
  year: 2000
  ident: 10.1016/j.jneumeth.2015.01.030_bib0090
  article-title: Bayesian face recognition
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(99)00179-X
– year: 2011
  ident: 10.1016/j.jneumeth.2015.01.030_bib0195
  article-title: Automatic classification of artifactual ICA-components for artifact removal in EEG signals
  publication-title: Behav Brain Funct
  doi: 10.1186/1744-9081-7-30
– volume: 37
  start-page: 498
  issue: 3
  year: 2005
  ident: 10.1016/j.jneumeth.2015.01.030_bib0155
  article-title: An automated version of the operation span task
  publication-title: Behav Res Methods
  doi: 10.3758/BF03192720
– volume: 28
  start-page: 114
  issue: 1
  year: 1991
  ident: 10.1016/j.jneumeth.2015.01.030_bib0065
  article-title: Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1991.tb03397.x
– volume: 3
  start-page: 99
  issue: 3
  year: 1985
  ident: 10.1016/j.jneumeth.2015.01.030_bib0005
  article-title: Range filters: local intensity subrange filters and their properties
  publication-title: Image Vis Comput
  doi: 10.1016/0262-8856(85)90058-7
– start-page: 275
  year: 1980
  ident: 10.1016/j.jneumeth.2015.01.030_bib0115
  article-title: Measurement of eye movement electrooculography
– volume: 19
  start-page: 385
  issue: 5–6
  year: 1998
  ident: 10.1016/j.jneumeth.2015.01.030_bib0125
  article-title: Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(98)00016-6
– volume: 38
  start-page: 348
  issue: 3
  year: 2008
  ident: 10.1016/j.jneumeth.2015.01.030_bib0130
  article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2007.12.001
– year: 2014
  ident: 10.1016/j.jneumeth.2015.01.030_bib0190
– start-page: 891
  year: 1996
  ident: 10.1016/j.jneumeth.2015.01.030_bib0140
  article-title: Stabilizing classifiers for very small sample sizes
– volume: 101
  start-page: 5053
  issue: 14
  year: 2004
  ident: 10.1016/j.jneumeth.2015.01.030_bib0160
  article-title: Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0305375101
– volume: 30
  start-page: 1077
  issue: 4
  year: 2009
  ident: 10.1016/j.jneumeth.2015.01.030_bib0040
  article-title: Mapping the signal-to-noise ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20571
– volume: 18
  start-page: 831
  issue: 8
  year: 1996
  ident: 10.1016/j.jneumeth.2015.01.030_bib0150
  article-title: Using discriminant eigenfeatures for image retrieval
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.531802
– year: 2014
  ident: 10.1016/j.jneumeth.2015.01.030_bib0010
– start-page: 145
  year: 1996
  ident: 10.1016/j.jneumeth.2015.01.030_bib0080
  article-title: Independent component analysis of electroencephalographic data
– start-page: 1
  year: 2010
  ident: 10.1016/j.jneumeth.2015.01.030_bib0095
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
– volume: 26
  start-page: 982
  year: 2004
  ident: 10.1016/j.jneumeth.2015.01.030_bib0200
  article-title: An optimization criterion for generalized discriminant analysis on undersampled problems
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.37
– volume: 7
  start-page: 27
  issue: 2
  year: 1967
  ident: 10.1016/j.jneumeth.2015.01.030_bib0120
  article-title: Surface electrical fields generated by eye movements
  publication-title: Am J EEG Technol
  doi: 10.1080/00029238.1967.11080683
– start-page: 879
  year: 2006
  ident: 10.1016/j.jneumeth.2015.01.030_bib0055
  article-title: Combining statistics of geometrical and correlative features for 3D face recognition
– year: 2014
  ident: 10.1016/j.jneumeth.2015.01.030_bib0025
– year: 2014
  ident: 10.1016/j.jneumeth.2015.01.030_bib0175
– volume: 36
  start-page: 845
  issue: 3
  year: 2003
  ident: 10.1016/j.jneumeth.2015.01.030_bib0015
  article-title: Regularized discriminant analysis and its application to face recognition
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(02)00092-4
– volume: 14
  start-page: 139
  issue: 2
  year: 1987
  ident: 10.1016/j.jneumeth.2015.01.030_bib0135
  article-title: Biharmonic spline interpolation of GEOS-3 and SEAS, altimeter data
  publication-title: Geophys Res Lett
  doi: 10.1029/GL014i002p00139
– start-page: 684
  year: 2004
  ident: 10.1016/j.jneumeth.2015.01.030_bib0045
  article-title: Three-dimensional face recognition: a fishersurface approach
– volume: 37
  start-page: 163
  issue: 2
  year: 2000
  ident: 10.1016/j.jneumeth.2015.01.030_bib0060
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– year: 2005
  ident: 10.1016/j.jneumeth.2015.01.030_bib0070
  article-title: Discriminant low-dimensional subspace analysis for face recognition with small number of training samples
– volume: 24
  start-page: 232
  issue: 3
  year: 2007
  ident: 10.1016/j.jneumeth.2015.01.030_bib0035
  article-title: Removal of EEG noise and artifact using blind source separation
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e3180556926
– year: 2014
  ident: 10.1016/j.jneumeth.2015.01.030_bib0180
– volume: 118
  start-page: 480
  issue: 3
  year: 2007
  ident: 10.1016/j.jneumeth.2015.01.030_bib0030
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.10.019
– volume: 13
  start-page: 7
  year: 2013
  ident: 10.1016/j.jneumeth.2015.01.030_bib0085
  article-title: Artifact removal from biosignal using fixed point ICA algorithm for pre-processing in biometric recognition
  publication-title: Meas Sci Rev
  doi: 10.2478/msr-2013-0001
– start-page: 582
  year: 1994
  ident: 10.1016/j.jneumeth.2015.01.030_bib0110
  article-title: Performance evaluation of texture measures with classification based on kullback discrimination of distributions
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 10.1016/j.jneumeth.2015.01.030_bib0100
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit
  doi: 10.1016/0031-3203(95)00067-4
– year: 2014
  ident: 10.1016/j.jneumeth.2015.01.030_bib0185
– volume: 120
  start-page: 868
  issue: 5
  year: 2009
  ident: 10.1016/j.jneumeth.2015.01.030_bib0165
  article-title: Semi-automatic identification of independent components representing EEG artifact
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.01.015
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.jneumeth.2015.01.030_bib0020
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.jneumeth.2015.01.030_bib0105
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2002.1017623
– year: 2000
  ident: 10.1016/j.jneumeth.2015.01.030_bib0145
SSID ssj0004906
Score 2.4473724
Snippet [Display omitted] •Machine-driven EEG artifact removal through automated selection of ICs is proposed.•Feature vectors extracted from IC via image processing...
Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Adult
Algorithms
Artifact elimination
Brain - physiology
Discriminant Analysis
EEG
Electroencephalography - methods
Executive Function - physiology
Female
Geometric features
Humans
ICA
Image processing
Image Processing, Computer-Assisted - methods
Independent component analysis
Linear Models
Local binary patterns
Male
Middle Aged
Pattern Recognition, Automated - methods
Range filter
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Title EEG artifact elimination by extraction of ICA-component features using image processing algorithms
URI https://dx.doi.org/10.1016/j.jneumeth.2015.01.030
https://www.ncbi.nlm.nih.gov/pubmed/25666892
https://www.proquest.com/docview/1664195600
Volume 243
WOSCitedRecordID wos000351802300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiFeEGxcxmUyEvAyhSV2YiePXVVugoHEkPpm5eKwVm1Stcm0_XuOL7nAqAYPvFiVU-fS78vpsX2-cxB6yaULXqsXO1GWE8dPgsSJSUKc3Kc0pzmnXGqh8Cd-ehpOp9HXwaButDAXC14U4eVltPqvUEMfgK2ks_8Ad3tS6IDPADq0ADu0fwX8ZPJOZS6aKcnCkVzoql0aZHA0wRKvbXFwJSEZjxwVUl4WOkOT1Dk-N0e1Xj6YLVU0z8roCLSScfGjXM-qc5ve_LpD20uNKW1l6i6QHpg0pq9OxoWuH9uFZn9Ly7qyApGWYmV6vqzNgs-XlhEq8sToi076SxVeoLV7ZtdFGvMacuLA3-O0b3-JT3sW1BSMu2bYzRrD_M0cnkU9gQrKMwlXzQV6wK6WGlnw5RgLTaG931JqN4d20C7hQRQO0e7ow2T6sRPURi7rycn_fFmVR9qeaJtTs23Sop2Xs3vorgUJjwxb7qOBLPbQ_giIUS6v8Gus44D1Bsseuv3ZhlvsowS4hBsu4R6XcHKFOy7hMse_cAk3XMKaS1hzCXdcwh2XHqDvbydn4_eOLcrhpH5IKmhp5iU0pTFzYw6zzchPc-hhsUtpAhMEN4ldzrKcRTzI1JKH0uqTVGVRiiSMe4iGBdzLY4TDjMBQlbOS5n4CQGSxn6fMpcSVYCLYAQqaX1WkNmO9KpyyEE1o4lw0wAgFjHA9AcAcoON23MrkbLlxRNSAJux7YjxKAfy7ceyLBmUBplntt8WFLOuN8BjzlRzXhe88MvC399Mw58nWI0_Rne4deoaG1bqWz9Gt9KKabdaHaIdPw0PL25-QdLb2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+artifact+elimination+by+extraction+of+ICA-component+features+using+image+processing+algorithms&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Rad%C3%BCntz%2C+T&rft.au=Scouten%2C+J&rft.au=Hochmuth%2C+O&rft.au=Meffert%2C+B&rft.date=2015-03-30&rft.eissn=1872-678X&rft.volume=243&rft.spage=84&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.01.030&rft_id=info%3Apmid%2F25666892&rft.externalDocID=25666892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon