High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq
Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate bot...
Gespeichert in:
| Veröffentlicht in: | Blood Jg. 117; H. 23; S. e207 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
09.06.2011
|
| Schlagworte: | |
| ISSN: | 1528-0020, 1528-0020 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia. |
|---|---|
| AbstractList | Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia. Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia. |
| Author | Ratcliffe, Peter J Ragoussis, Jiannis Schödel, Johannes Oikonomopoulos, Spyros Mole, David R Pugh, Christopher W |
| Author_xml | – sequence: 1 givenname: Johannes surname: Schödel fullname: Schödel, Johannes organization: Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK – sequence: 2 givenname: Spyros surname: Oikonomopoulos fullname: Oikonomopoulos, Spyros – sequence: 3 givenname: Jiannis surname: Ragoussis fullname: Ragoussis, Jiannis – sequence: 4 givenname: Christopher W surname: Pugh fullname: Pugh, Christopher W – sequence: 5 givenname: Peter J surname: Ratcliffe fullname: Ratcliffe, Peter J – sequence: 6 givenname: David R surname: Mole fullname: Mole, David R |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21447827$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj19LwzAUxYNM3B_9BiJ98yma3Nsu2aPMzQ0G-qDPpWlvt0ibdE2L7NtbcYJw4NzD-XHhTNnIeUeM3UrxIKWGR1N5X3AQUvBBKOMY1AWbyAQ0FwLE6N89ZtMQPoWQMUJyxcYw0EqDmrDnjd0feEvBV31nvYv25HxN_MsWFNVZ01i3j3wZbbZrbqwrfmKwHYXInKLlYfvGAx2v2WWZVYFuzj5jH-vV-3LDd68v2-XTjuexho6bQopElUUOyohFjAsVl1jMRZkoVDlKY0hpzGSeLRAQNSDkmGith8KgIJix-9-_TeuPPYUurW3IqaoyR74PqVYS9VwnOJB3Z7I3NRVp09o6a0_p33D4Bs9aW-o |
| CitedBy_id | crossref_primary_10_1038_s41419_023_05870_5 crossref_primary_10_1007_s00424_024_02921_4 crossref_primary_10_1111_iej_13099 crossref_primary_10_1007_s00018_013_1539_2 crossref_primary_10_1189_jlb_3A0813_426RR crossref_primary_10_1073_pnas_2408104121 crossref_primary_10_3390_biomedicines8100428 crossref_primary_10_1073_pnas_1719063115 crossref_primary_10_1093_abbs_gmu122 crossref_primary_10_4049_jimmunol_1202911 crossref_primary_10_1159_000547896 crossref_primary_10_32604_biocell_2023_024738 crossref_primary_10_1016_j_jbc_2022_101645 crossref_primary_10_1016_j_ymthe_2018_05_004 crossref_primary_10_1186_1476_4598_13_28 crossref_primary_10_1016_j_gde_2016_05_003 crossref_primary_10_1038_s41574_021_00629_4 crossref_primary_10_1172_JCI98931 crossref_primary_10_1113_jphysiol_2012_247254 crossref_primary_10_1158_1541_7786_MCR_19_0461 crossref_primary_10_1126_science_aaf4405 crossref_primary_10_4155_fmc_13_17 crossref_primary_10_1002_hep_30593 crossref_primary_10_1038_s41598_022_21447_2 crossref_primary_10_1146_annurev_pathol_012513_104720 crossref_primary_10_1002_ijc_28542 crossref_primary_10_1146_annurev_pharmtox_010818_021637 crossref_primary_10_1016_j_bbapap_2013_09_023 crossref_primary_10_1007_s12281_016_0267_0 crossref_primary_10_3390_ijms21218414 crossref_primary_10_3389_fcell_2021_727353 crossref_primary_10_1073_pnas_1422015112 crossref_primary_10_1016_j_gene_2023_147376 crossref_primary_10_1016_j_yexcr_2020_112394 crossref_primary_10_1080_14728222_2018_1538357 crossref_primary_10_1111_hdi_12567 crossref_primary_10_3390_brainsci14040341 crossref_primary_10_1016_j_ejca_2012_12_003 crossref_primary_10_1158_0008_5472_CAN_20_1232 crossref_primary_10_1186_s12864_021_07795_9 crossref_primary_10_1016_j_preteyeres_2011_11_003 crossref_primary_10_1038_nrc3183 crossref_primary_10_3390_nano13233060 crossref_primary_10_3109_08830185_2014_956358 crossref_primary_10_1007_s12672_015_0231_4 crossref_primary_10_1097_CMR_0000000000000393 crossref_primary_10_1186_s13046_021_01929_3 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1016_j_bbagrm_2018_11_003 crossref_primary_10_1200_EDBK_350232 crossref_primary_10_1016_j_bbcan_2018_07_002 crossref_primary_10_1371_journal_pone_0134645 crossref_primary_10_1530_JOE_16_0653 crossref_primary_10_1093_molehr_gat044 crossref_primary_10_3390_ijms22189795 crossref_primary_10_1113_JP280572 crossref_primary_10_1371_journal_pone_0244255 crossref_primary_10_1007_s11914_017_0378_8 crossref_primary_10_1210_endocr_bqaa082 crossref_primary_10_1096_fj_202101987R crossref_primary_10_1093_nar_gkr842 crossref_primary_10_1124_mol_113_089623 crossref_primary_10_15252_embr_201642198 crossref_primary_10_3390_cells11203309 crossref_primary_10_1371_journal_pone_0190241 crossref_primary_10_3389_fimmu_2022_837669 crossref_primary_10_1016_j_ijmm_2013_03_005 crossref_primary_10_1007_s00424_019_02334_8 crossref_primary_10_1038_s41467_018_05554_1 crossref_primary_10_1371_journal_pone_0188051 crossref_primary_10_1186_s13058_019_1097_0 crossref_primary_10_1038_s41586_022_05312_w crossref_primary_10_1128_MCB_01055_15 crossref_primary_10_1039_C8MT00280K crossref_primary_10_3389_fcell_2021_796156 crossref_primary_10_1042_BST20191106 crossref_primary_10_1016_j_toxicon_2024_108049 crossref_primary_10_1016_j_eururo_2017_10_007 crossref_primary_10_1128_IAI_00302_13 crossref_primary_10_1016_j_blre_2012_12_003 crossref_primary_10_1002_advs_202417128 crossref_primary_10_3390_cancers13020350 crossref_primary_10_1259_bjr_20180069 crossref_primary_10_1186_s12864_015_2169_x crossref_primary_10_1093_toxsci_kfs253 crossref_primary_10_1186_s12943_017_0673_0 crossref_primary_10_1073_pnas_2106017118 crossref_primary_10_3390_cells12050798 crossref_primary_10_1126_scitranslmed_abc8922 crossref_primary_10_1038_oncsis_2015_50 crossref_primary_10_1093_jnci_djt201 crossref_primary_10_3390_ijms222313046 crossref_primary_10_1016_j_dnarep_2016_12_001 crossref_primary_10_1016_j_tem_2019_04_011 crossref_primary_10_1158_1541_7786_MCR_20_0798 crossref_primary_10_1002_stem_1657 crossref_primary_10_1155_2015_549412 crossref_primary_10_1038_labinvest_2014_48 crossref_primary_10_1098_rsos_220992 crossref_primary_10_1186_s12885_018_4227_7 crossref_primary_10_1158_0008_5472_CAN_12_1085 crossref_primary_10_4049_jimmunol_1600342 crossref_primary_10_1038_cr_2012_44 crossref_primary_10_1016_j_abb_2014_06_030 crossref_primary_10_1016_j_bbagrm_2023_194963 crossref_primary_10_1007_s10695_013_9771_0 crossref_primary_10_1016_j_jmb_2023_168162 crossref_primary_10_4049_jimmunol_1103377 crossref_primary_10_1158_0008_5472_CAN_22_2945 crossref_primary_10_3390_ijms24108956 crossref_primary_10_1007_s00204_014_1410_8 crossref_primary_10_3390_biology9090264 crossref_primary_10_1002_advs_202305620 crossref_primary_10_1128_MCB_01034_14 crossref_primary_10_1371_journal_pgen_1006872 crossref_primary_10_1007_s00109_014_1180_z crossref_primary_10_1126_scitranslmed_add2029 crossref_primary_10_1161_CIRCULATIONAHA_111_038125 crossref_primary_10_1093_carcin_bgw089 crossref_primary_10_1089_ham_2012_1031 crossref_primary_10_1172_JCI69073 crossref_primary_10_1016_j_cmet_2019_03_013 crossref_primary_10_1242_jcs_258575 crossref_primary_10_1016_j_mehy_2022_110907 crossref_primary_10_1186_s12943_016_0510_x crossref_primary_10_3389_fcell_2020_00566 crossref_primary_10_1186_s13046_022_02294_5 crossref_primary_10_1016_j_bbagrm_2015_07_004 crossref_primary_10_1242_dev_173427 crossref_primary_10_1172_JCI159839 crossref_primary_10_1189_jlb_0113045 crossref_primary_10_1038_s41598_021_91575_8 crossref_primary_10_1158_0008_5472_CAN_13_0523 crossref_primary_10_1007_s00018_020_03750_1 crossref_primary_10_1016_j_genrep_2020_100686 crossref_primary_10_1038_nrneph_2017_145 crossref_primary_10_1080_15592294_2015_1117736 crossref_primary_10_1038_nrneph_2015_82 crossref_primary_10_3892_ijmm_2015_2079 crossref_primary_10_3389_fmolb_2019_00060 crossref_primary_10_1002_bit_27503 crossref_primary_10_1080_21541264_2024_2417475 crossref_primary_10_1172_JCI76737 crossref_primary_10_1038_s42003_021_02648_3 crossref_primary_10_1124_jpet_117_242503 crossref_primary_10_1074_jbc_RA119_012175 crossref_primary_10_1007_s13277_016_5331_4 crossref_primary_10_1016_j_ajpath_2020_04_003 crossref_primary_10_1016_j_freeradbiomed_2020_12_452 crossref_primary_10_1093_nar_gku827 crossref_primary_10_5306_wjco_v12_i12_1101 crossref_primary_10_1177_1535370214532755 crossref_primary_10_1016_j_eururo_2015_08_007 crossref_primary_10_1186_s12885_020_06890_6 crossref_primary_10_3390_cancers13020180 crossref_primary_10_3389_fimmu_2021_664249 crossref_primary_10_7861_clinmed_ed_22_1_harv crossref_primary_10_1074_jbc_M112_352872 crossref_primary_10_1016_j_bcp_2016_11_009 crossref_primary_10_7554_eLife_68484 crossref_primary_10_1002_art_37867 crossref_primary_10_1186_1758_2946_5_11 crossref_primary_10_3389_fonc_2014_00359 crossref_primary_10_3390_biomedicines6020060 crossref_primary_10_1038_s41392_023_01501_9 crossref_primary_10_1093_narcan_zcaf021 crossref_primary_10_7554_eLife_57345 crossref_primary_10_1038_ncomms13183 crossref_primary_10_3389_fgene_2019_00659 crossref_primary_10_3233_JCB_199005 crossref_primary_10_1038_s41598_017_11445_0 crossref_primary_10_1038_srep31355 crossref_primary_10_1242_jcs_188904 crossref_primary_10_1016_j_jbc_2023_104829 crossref_primary_10_1074_jbc_M116_745471 crossref_primary_10_1186_s40170_019_0206_y crossref_primary_10_3389_fimmu_2022_880810 crossref_primary_10_1053_j_ackd_2019_04_004 crossref_primary_10_1371_journal_pone_0244366 crossref_primary_10_1146_annurev_genom_111119_073356 crossref_primary_10_1242_jcs_196659 crossref_primary_10_1038_s41590_020_0598_4 crossref_primary_10_1038_s41440_020_00539_4 crossref_primary_10_1089_ars_2021_0200 crossref_primary_10_1016_j_kint_2016_05_026 crossref_primary_10_1038_ki_2013_321 crossref_primary_10_1038_s41598_020_70865_7 crossref_primary_10_4161_epi_27835 crossref_primary_10_1073_pnas_1322484111 crossref_primary_10_1089_ars_2022_0173 crossref_primary_10_1038_s41419_021_03716_6 crossref_primary_10_1038_s41580_020_0255_7 crossref_primary_10_1161_CIRCRESAHA_117_305109 crossref_primary_10_3390_biomedicines6020047 crossref_primary_10_3389_fonc_2022_829524 crossref_primary_10_1002_biot_202100239 crossref_primary_10_1038_s43018_024_00761_w crossref_primary_10_1080_13543784_2018_1493455 crossref_primary_10_1128_MCB_00644_12 crossref_primary_10_1093_nar_gkv506 crossref_primary_10_1016_j_humgen_2025_201432 crossref_primary_10_1182_blood_2017_04_778779 crossref_primary_10_1158_2326_6066_CIR_20_0561 crossref_primary_10_1002_jcb_25283 crossref_primary_10_1073_pnas_1818521116 crossref_primary_10_1002_jcp_26805 crossref_primary_10_1371_journal_ppat_1010807 crossref_primary_10_1007_s10499_025_01937_6 crossref_primary_10_1093_nar_gkv1471 crossref_primary_10_1007_s12274_016_1059_0 crossref_primary_10_1007_s12035_019_01731_5 crossref_primary_10_1016_j_bbamcr_2016_01_024 crossref_primary_10_1186_s13059_020_02087_z crossref_primary_10_1126_scitranslmed_aac6008 crossref_primary_10_1158_1078_0432_CCR_15_2322 crossref_primary_10_1007_s11033_019_04617_w crossref_primary_10_1080_14728222_2019_1599358 crossref_primary_10_1016_j_mito_2014_08_007 crossref_primary_10_1016_j_bbagrm_2014_10_006 crossref_primary_10_3389_fimmu_2022_967576 crossref_primary_10_1152_physiolgenomics_00007_2024 crossref_primary_10_7554_eLife_80774 crossref_primary_10_1038_onc_2017_338 crossref_primary_10_7554_eLife_75064 crossref_primary_10_3390_jcm10235496 crossref_primary_10_1016_j_tips_2012_01_005 crossref_primary_10_1016_j_jfma_2018_03_017 crossref_primary_10_1152_ajpcell_00191_2015 crossref_primary_10_1371_journal_pone_0057695 crossref_primary_10_3390_biomedicines9030260 crossref_primary_10_1038_s41598_024_65537_9 crossref_primary_10_1021_ja402993u crossref_primary_10_1089_ars_2012_4785 crossref_primary_10_1016_j_cell_2012_01_021 crossref_primary_10_1042_BJ20131350 crossref_primary_10_1186_s12885_021_09009_7 crossref_primary_10_1016_j_biopha_2018_05_079 crossref_primary_10_1111_jcmm_16759 crossref_primary_10_1093_nar_gkw811 crossref_primary_10_1038_cddis_2015_273 crossref_primary_10_1523_JNEUROSCI_1634_20_2020 crossref_primary_10_1016_j_jbc_2022_101699 crossref_primary_10_1038_cddis_2014_368 crossref_primary_10_1111_cas_13483 crossref_primary_10_1016_j_heliyon_2024_e35846 crossref_primary_10_3389_fendo_2022_1103075 crossref_primary_10_3390_cancers14235742 crossref_primary_10_1038_srep22458 crossref_primary_10_3389_fmed_2022_908639 crossref_primary_10_3390_medicina59040706 crossref_primary_10_1111_febs_17077 crossref_primary_10_1681_ASN_2022040413 crossref_primary_10_1016_j_stem_2020_09_019 crossref_primary_10_1096_fj_201901087RR crossref_primary_10_1042_BCJ20170945 crossref_primary_10_1016_j_atherosclerosis_2013_04_034 crossref_primary_10_1093_nar_gkx951 crossref_primary_10_1016_j_bbrc_2013_04_054 crossref_primary_10_1158_1078_0432_CCR_14_1425 crossref_primary_10_1074_jbc_RA119_007674 crossref_primary_10_1113_jphysiol_2013_251470 crossref_primary_10_1007_s12038_019_9977_0 crossref_primary_10_1007_s10126_019_09942_6 crossref_primary_10_1084_jem_20210909 crossref_primary_10_1113_JP275996 crossref_primary_10_1371_journal_pone_0074911 crossref_primary_10_3390_cells8010045 crossref_primary_10_1007_s00428_016_1988_8 crossref_primary_10_1038_onc_2015_479 crossref_primary_10_3389_fimmu_2021_652665 crossref_primary_10_33549_physiolres_935269 crossref_primary_10_1016_j_cellimm_2016_06_002 crossref_primary_10_1016_j_fsi_2018_05_015 crossref_primary_10_1038_s41467_020_16504_1 crossref_primary_10_1182_blood_2014_10_609370 crossref_primary_10_1371_journal_pone_0194146 crossref_primary_10_1182_blood_2020007505 crossref_primary_10_3390_jcdd10050215 crossref_primary_10_1007_s11302_016_9532_5 crossref_primary_10_3389_fevo_2022_870043 crossref_primary_10_1016_j_bbagen_2020_129723 crossref_primary_10_1038_s41419_018_1180_y crossref_primary_10_1038_s41581_019_0182_z crossref_primary_10_2147_NSS_S348580 crossref_primary_10_1007_s00018_014_1645_9 crossref_primary_10_1038_nchembio_1185 crossref_primary_10_1113_JP271050 crossref_primary_10_1161_CIRCULATIONAHA_124_069864 crossref_primary_10_1038_s41467_022_33849_x crossref_primary_10_3390_cells11081271 crossref_primary_10_1111_gtc_12984 crossref_primary_10_3390_cancers14051259 crossref_primary_10_3389_fonc_2022_973978 crossref_primary_10_1016_j_yexcr_2018_03_020 crossref_primary_10_7554_eLife_42374 crossref_primary_10_1038_onc_2013_9 crossref_primary_10_1038_srep29311 crossref_primary_10_1371_journal_pcbi_1012735 crossref_primary_10_1242_bio_018226 crossref_primary_10_7554_eLife_36828 crossref_primary_10_1186_s12985_020_01374_2 crossref_primary_10_1038_icb_2015_64 crossref_primary_10_1007_s00262_020_02598_5 crossref_primary_10_1016_j_micinf_2011_11_003 crossref_primary_10_1016_j_biopha_2021_111798 crossref_primary_10_1002_1878_0261_13080 crossref_primary_10_1146_annurev_physiol_021113_170322 crossref_primary_10_1074_jbc_M113_533497 crossref_primary_10_1002_cbic_201500519 crossref_primary_10_1002_jcb_30658 crossref_primary_10_1002_iub_2281 crossref_primary_10_1093_molbev_msw280 crossref_primary_10_1074_jbc_RA119_009827 crossref_primary_10_1016_j_cmet_2016_01_002 crossref_primary_10_1038_nrc3844 crossref_primary_10_2217_fon_13_92 crossref_primary_10_1016_j_phrs_2024_107119 crossref_primary_10_1111_neup_13033 crossref_primary_10_3109_10409238_2013_838205 crossref_primary_10_1177_0192623319880445 crossref_primary_10_1038_s41467_021_24631_6 crossref_primary_10_1134_S1062360423020054 crossref_primary_10_1016_j_semnephrol_2013_05_009 crossref_primary_10_1042_BCJ20220008 crossref_primary_10_1038_srep40233 crossref_primary_10_1093_molehr_gaab065 crossref_primary_10_3389_fonc_2021_619300 crossref_primary_10_1007_s00018_019_03387_9 crossref_primary_10_1111_apha_12613 crossref_primary_10_1097_01_mnh_0000441049_98664_6c crossref_primary_10_15252_embr_201846401 crossref_primary_10_1016_j_immuni_2017_04_013 crossref_primary_10_1155_2015_804264 crossref_primary_10_1038_nrneph_2015_193 crossref_primary_10_1038_s41467_020_18411_x crossref_primary_10_1038_s42003_024_05904_4 crossref_primary_10_1089_ars_2021_0271 crossref_primary_10_3390_cells8020155 crossref_primary_10_1113_JP273309 crossref_primary_10_1038_s41598_020_79270_6 crossref_primary_10_3389_fgene_2015_00331 crossref_primary_10_1038_s41588_021_00887_y crossref_primary_10_1007_s00262_019_02314_y crossref_primary_10_3390_biom10010093 crossref_primary_10_1038_s41467_019_11149_1 crossref_primary_10_1016_j_cmet_2017_10_005 crossref_primary_10_1038_s41467_020_20832_7 crossref_primary_10_1016_j_cmet_2013_02_002 crossref_primary_10_1681_ASN_2015091009 crossref_primary_10_1007_s10142_023_01256_0 crossref_primary_10_3389_fphys_2018_00439 crossref_primary_10_1016_j_canlet_2024_216823 crossref_primary_10_1016_j_neo_2016_07_008 crossref_primary_10_1007_s00204_012_0919_y crossref_primary_10_1016_j_freeradbiomed_2021_03_018 crossref_primary_10_1242_jeb_163709 crossref_primary_10_1038_s41598_017_04333_0 crossref_primary_10_3390_cancers16010081 crossref_primary_10_1042_BCJ20210554 crossref_primary_10_1093_nar_gkx1214 crossref_primary_10_1519_JSC_0000000000004909 crossref_primary_10_1016_j_yexcr_2017_02_024 crossref_primary_10_1096_fj_11_198598 crossref_primary_10_1002_glia_24019 crossref_primary_10_1371_journal_pone_0178064 crossref_primary_10_1038_s41559_017_0410_5 crossref_primary_10_1038_s41598_022_23060_9 crossref_primary_10_1128_MCB_06643_11 crossref_primary_10_1111_cen3_12195 crossref_primary_10_1134_S0006297921100011 crossref_primary_10_1371_journal_pone_0136103 crossref_primary_10_1099_jgv_0_001885 crossref_primary_10_3390_ijms23020741 crossref_primary_10_1073_pnas_1612626113 crossref_primary_10_1210_clinem_dgae630 crossref_primary_10_1074_jbc_M113_500835 crossref_primary_10_1074_jbc_RA119_011822 crossref_primary_10_1007_s11010_022_04549_3 crossref_primary_10_1159_000455166 crossref_primary_10_1091_mbc_E20_05_0291 crossref_primary_10_1101_gad_250167_114 crossref_primary_10_1053_j_gastro_2015_05_003 crossref_primary_10_1038_s41598_019_55098_7 crossref_primary_10_1016_j_ctrv_2023_102645 crossref_primary_10_1007_s40610_019_0110_9 crossref_primary_10_1038_ncb3295 crossref_primary_10_1158_1541_7786_MCR_18_0345 crossref_primary_10_1007_s00018_020_03483_1 crossref_primary_10_1093_molbev_msv248 crossref_primary_10_1016_j_phrs_2023_106713 crossref_primary_10_1038_s41419_022_04770_4 crossref_primary_10_1016_j_pharmthera_2022_108186 crossref_primary_10_1080_13543784_2018_1417386 crossref_primary_10_3390_cells14090673 crossref_primary_10_1074_jbc_M117_811109 crossref_primary_10_3389_fcell_2021_617073 crossref_primary_10_3390_cells8040300 crossref_primary_10_3390_ijms18020352 crossref_primary_10_1016_j_pharmthera_2016_04_009 crossref_primary_10_1016_j_yexcr_2017_03_030 crossref_primary_10_1172_JCI67230 crossref_primary_10_1016_j_cellsig_2011_08_019 crossref_primary_10_3390_metabo11040215 crossref_primary_10_1038_ng_2204 crossref_primary_10_1016_j_bbamcr_2016_05_001 crossref_primary_10_1016_j_lfs_2020_117859 crossref_primary_10_1096_fj_201901734RR crossref_primary_10_1016_j_ibneur_2023_03_010 crossref_primary_10_1016_j_pneurobio_2014_11_001 crossref_primary_10_1098_rsob_160195 crossref_primary_10_1038_s41598_020_75838_4 crossref_primary_10_1155_2022_9714669 crossref_primary_10_1016_j_cellsig_2021_110209 crossref_primary_10_1016_j_tem_2020_02_008 crossref_primary_10_1002_embr_201337642 crossref_primary_10_3390_cells8020104 crossref_primary_10_3390_ijms21218162 crossref_primary_10_14814_phy2_13224 crossref_primary_10_4049_jimmunol_2001282 crossref_primary_10_1093_neuonc_noac234 crossref_primary_10_1007_s00223_016_0228_1 crossref_primary_10_1371_journal_pone_0186262 crossref_primary_10_1371_journal_pone_0093494 crossref_primary_10_1371_journal_pone_0072358 crossref_primary_10_1038_srep24141 crossref_primary_10_1016_j_yexcr_2017_03_019 crossref_primary_10_3233_NHA_170022 crossref_primary_10_1007_s10555_015_9588_7 crossref_primary_10_1016_j_cellsig_2013_05_018 crossref_primary_10_3390_dna5020022 crossref_primary_10_1016_j_yexcr_2017_03_013 crossref_primary_10_1038_s41591_023_02314_7 crossref_primary_10_1093_nar_gku158 crossref_primary_10_1371_journal_pone_0154074 crossref_primary_10_1096_fj_202100443R crossref_primary_10_21053_ceo_2025_00029 crossref_primary_10_1101_gr_158253_113 crossref_primary_10_1073_pnas_1324290111 crossref_primary_10_14348_molcells_2014_2250 crossref_primary_10_1016_j_bmcl_2018_04_039 crossref_primary_10_1038_s43018_023_00635_7 crossref_primary_10_1096_fj_201802650RR crossref_primary_10_1128_MCB_00647_17 crossref_primary_10_1016_j_yexcr_2017_03_008 crossref_primary_10_1002_dta_3000 crossref_primary_10_1016_j_immuni_2015_02_001 crossref_primary_10_1093_molbev_msac120 crossref_primary_10_1007_s00281_024_01015_8 crossref_primary_10_1128_msystems_00380_22 crossref_primary_10_1007_s10585_018_9930_x crossref_primary_10_1523_JNEUROSCI_1589_18_2018 crossref_primary_10_1093_toxsci_kfae004 crossref_primary_10_1016_j_cej_2022_139506 crossref_primary_10_1155_2021_4280482 crossref_primary_10_1111_febs_13062 crossref_primary_10_1016_j_ccr_2016_07_010 crossref_primary_10_1002_1878_0261_12491 crossref_primary_10_1038_s41419_023_06012_7 crossref_primary_10_3390_cells9051202 crossref_primary_10_1172_JCI162480 crossref_primary_10_3390_cancers11020208 crossref_primary_10_3390_genes11010111 crossref_primary_10_1016_j_ejcb_2024_151386 crossref_primary_10_1074_jbc_M116_749291 crossref_primary_10_1038_onc_2016_184 crossref_primary_10_1016_j_jchemneu_2014_07_001 crossref_primary_10_1186_s12864_024_11141_0 crossref_primary_10_1517_14728222_2012_674516 crossref_primary_10_23876_j_krcp_2017_36_3_209 crossref_primary_10_1016_j_heliyon_2023_e18651 crossref_primary_10_1146_annurev_physiol_021115_105202 crossref_primary_10_1172_JCI63924 crossref_primary_10_1371_journal_pgen_1010504 crossref_primary_10_3389_fimmu_2025_1404161 crossref_primary_10_1186_1476_4598_12_78 crossref_primary_10_1016_j_febslet_2014_02_026 crossref_primary_10_1002_lary_31084 crossref_primary_10_1007_s40778_018_0127_7 crossref_primary_10_1016_j_arr_2021_101267 crossref_primary_10_1016_j_cell_2025_01_046 crossref_primary_10_1016_j_cancergen_2020_04_077 crossref_primary_10_1002_2211_5463_13220 crossref_primary_10_1089_ars_2020_8148 crossref_primary_10_1007_s12026_012_8349_8 crossref_primary_10_4161_derm_22678 crossref_primary_10_1074_jbc_R117_776393 crossref_primary_10_1038_s41467_021_21687_2 crossref_primary_10_1080_13543784_2021_1925248 crossref_primary_10_1084_jem_20150452 crossref_primary_10_3389_fcimb_2019_00042 crossref_primary_10_1182_blood_2013_01_478065 crossref_primary_10_3390_ijms25147669 crossref_primary_10_1038_onc_2014_378 crossref_primary_10_1074_jbc_M112_380949 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1182/blood-2010-10-314427 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Chemistry Biology Anatomy & Physiology |
| EISSN | 1528-0020 |
| ExternalDocumentID | 21447827 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 090532 |
| GroupedDBID | --- -~X .55 0R~ 23N 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6J9 9M8 AAEDW AALRI AAXUO ABOCM ACGFO ACVFH ADBBV ADCNI ADVLN AENEX AEUPX AFFNX AFOSN AFPUW AGCQF AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD EX3 F5P FDB FRP GS5 GX1 H13 IH2 K-O KQ8 L7B LSO MJL N9A NPM OK1 P2P R.V RHI ROL SJN THE TR2 TWZ W2D W8F WH7 WOQ WOW X7M YHG YKV 7X8 |
| ID | FETCH-LOGICAL-c482t-bd1057fdc27b0943974f3d60f5737c31bbe783a1ca932338232c35888bbeb30e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 586 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291438000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1528-0020 |
| IngestDate | Sun Sep 28 11:03:24 EDT 2025 Mon Jul 21 06:04:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-bd1057fdc27b0943974f3d60f5737c31bbe783a1ca932338232c35888bbeb30e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1182/blood-2010-10-314427 |
| PMID | 21447827 |
| PQID | 871386853 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_871386853 pubmed_primary_21447827 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Jun-09 20110609 |
| PublicationDateYYYYMMDD | 2011-06-09 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-Jun-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Blood |
| PublicationTitleAlternate | Blood |
| PublicationYear | 2011 |
| SSID | ssj0014325 |
| Score | 2.5655057 |
| Snippet | Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | e207 |
| SubjectTerms | Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Cell Line, Tumor Chromatin Immunoprecipitation - methods Chromosome Mapping Epigenesis, Genetic - physiology Female Genome, Human - physiology Genome-Wide Association Study Humans Oxygen - metabolism Response Elements - physiology |
| Title | High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21447827 https://www.proquest.com/docview/871386853 |
| Volume | 117 |
| WOSCitedRecordID | wos000291438000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLZ4w8Kj5f3QDYjt1CQXksuESqECCaoOIHWrci_o0BQID_HvsS8pTIiBJYoURbqcHfuz_Z0NcGyEi3SeZ1xIHfBYqJhIAIZHLkm0NKlIlZf0TdrrycEg69fcnLKmVU5tojfUZqIpR95CYC9kgs7l7OmZ09AoKq7WEzRmYV4gkiGlTgc_RYRY-Jmr6KEkJ1hUn5xDRN2qWOG-EuztUBxH6e8Y0_ua7to_V7kOqzXIZO1KKzZgxhYNaLYLDLDHn-yEedqnz6c3YPF8erfcmQ5_a8DSbV1zb8IFUUE4RuW1kjJq6zq2_GNkLBvn1N_hgU0cu7ruUphNvpDRekqmPlnn8brPS_u8Cffdy7vOFa9nL3Ady-iVK0MDgJ3RUaqIfIhhhxMmCdwpik-LUCmbSpGHOkcAKKiYGGlxiuE0PlAisNEWzBWTwu4Aczp0SiGQtCKJA20yIzOtEEjY0Entwl1g070c4ldSwSIv7OStHH7v5i5sV_IYPlU9OIbU6Q3BTbr398v7sFIlghMeZAcw7_C_toewoN9fR-XLkdcZvPb6t18lA8mN |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+genome-wide+mapping+of+HIF-binding+sites+by+ChIP-seq&rft.jtitle=Blood&rft.au=Sch%C3%B6del%2C+Johannes&rft.au=Oikonomopoulos%2C+Spyros&rft.au=Ragoussis%2C+Jiannis&rft.au=Pugh%2C+Christopher+W&rft.date=2011-06-09&rft.issn=1528-0020&rft.eissn=1528-0020&rft.volume=117&rft.issue=23&rft.spage=e207&rft_id=info:doi/10.1182%2Fblood-2010-10-314427&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-0020&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-0020&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-0020&client=summon |