High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq

Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood Jg. 117; H. 23; S. e207
Hauptverfasser: Schödel, Johannes, Oikonomopoulos, Spyros, Ragoussis, Jiannis, Pugh, Christopher W, Ratcliffe, Peter J, Mole, David R
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 09.06.2011
Schlagworte:
ISSN:1528-0020, 1528-0020
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.
AbstractList Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.
Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.
Author Ratcliffe, Peter J
Ragoussis, Jiannis
Schödel, Johannes
Oikonomopoulos, Spyros
Mole, David R
Pugh, Christopher W
Author_xml – sequence: 1
  givenname: Johannes
  surname: Schödel
  fullname: Schödel, Johannes
  organization: Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
– sequence: 2
  givenname: Spyros
  surname: Oikonomopoulos
  fullname: Oikonomopoulos, Spyros
– sequence: 3
  givenname: Jiannis
  surname: Ragoussis
  fullname: Ragoussis, Jiannis
– sequence: 4
  givenname: Christopher W
  surname: Pugh
  fullname: Pugh, Christopher W
– sequence: 5
  givenname: Peter J
  surname: Ratcliffe
  fullname: Ratcliffe, Peter J
– sequence: 6
  givenname: David R
  surname: Mole
  fullname: Mole, David R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21447827$$D View this record in MEDLINE/PubMed
BookMark eNpNj19LwzAUxYNM3B_9BiJ98yma3Nsu2aPMzQ0G-qDPpWlvt0ibdE2L7NtbcYJw4NzD-XHhTNnIeUeM3UrxIKWGR1N5X3AQUvBBKOMY1AWbyAQ0FwLE6N89ZtMQPoWQMUJyxcYw0EqDmrDnjd0feEvBV31nvYv25HxN_MsWFNVZ01i3j3wZbbZrbqwrfmKwHYXInKLlYfvGAx2v2WWZVYFuzj5jH-vV-3LDd68v2-XTjuexho6bQopElUUOyohFjAsVl1jMRZkoVDlKY0hpzGSeLRAQNSDkmGith8KgIJix-9-_TeuPPYUurW3IqaoyR74PqVYS9VwnOJB3Z7I3NRVp09o6a0_p33D4Bs9aW-o
CitedBy_id crossref_primary_10_1038_s41419_023_05870_5
crossref_primary_10_1007_s00424_024_02921_4
crossref_primary_10_1111_iej_13099
crossref_primary_10_1007_s00018_013_1539_2
crossref_primary_10_1189_jlb_3A0813_426RR
crossref_primary_10_1073_pnas_2408104121
crossref_primary_10_3390_biomedicines8100428
crossref_primary_10_1073_pnas_1719063115
crossref_primary_10_1093_abbs_gmu122
crossref_primary_10_4049_jimmunol_1202911
crossref_primary_10_1159_000547896
crossref_primary_10_32604_biocell_2023_024738
crossref_primary_10_1016_j_jbc_2022_101645
crossref_primary_10_1016_j_ymthe_2018_05_004
crossref_primary_10_1186_1476_4598_13_28
crossref_primary_10_1016_j_gde_2016_05_003
crossref_primary_10_1038_s41574_021_00629_4
crossref_primary_10_1172_JCI98931
crossref_primary_10_1113_jphysiol_2012_247254
crossref_primary_10_1158_1541_7786_MCR_19_0461
crossref_primary_10_1126_science_aaf4405
crossref_primary_10_4155_fmc_13_17
crossref_primary_10_1002_hep_30593
crossref_primary_10_1038_s41598_022_21447_2
crossref_primary_10_1146_annurev_pathol_012513_104720
crossref_primary_10_1002_ijc_28542
crossref_primary_10_1146_annurev_pharmtox_010818_021637
crossref_primary_10_1016_j_bbapap_2013_09_023
crossref_primary_10_1007_s12281_016_0267_0
crossref_primary_10_3390_ijms21218414
crossref_primary_10_3389_fcell_2021_727353
crossref_primary_10_1073_pnas_1422015112
crossref_primary_10_1016_j_gene_2023_147376
crossref_primary_10_1016_j_yexcr_2020_112394
crossref_primary_10_1080_14728222_2018_1538357
crossref_primary_10_1111_hdi_12567
crossref_primary_10_3390_brainsci14040341
crossref_primary_10_1016_j_ejca_2012_12_003
crossref_primary_10_1158_0008_5472_CAN_20_1232
crossref_primary_10_1186_s12864_021_07795_9
crossref_primary_10_1016_j_preteyeres_2011_11_003
crossref_primary_10_1038_nrc3183
crossref_primary_10_3390_nano13233060
crossref_primary_10_3109_08830185_2014_956358
crossref_primary_10_1007_s12672_015_0231_4
crossref_primary_10_1097_CMR_0000000000000393
crossref_primary_10_1186_s13046_021_01929_3
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_1016_j_bbagrm_2018_11_003
crossref_primary_10_1200_EDBK_350232
crossref_primary_10_1016_j_bbcan_2018_07_002
crossref_primary_10_1371_journal_pone_0134645
crossref_primary_10_1530_JOE_16_0653
crossref_primary_10_1093_molehr_gat044
crossref_primary_10_3390_ijms22189795
crossref_primary_10_1113_JP280572
crossref_primary_10_1371_journal_pone_0244255
crossref_primary_10_1007_s11914_017_0378_8
crossref_primary_10_1210_endocr_bqaa082
crossref_primary_10_1096_fj_202101987R
crossref_primary_10_1093_nar_gkr842
crossref_primary_10_1124_mol_113_089623
crossref_primary_10_15252_embr_201642198
crossref_primary_10_3390_cells11203309
crossref_primary_10_1371_journal_pone_0190241
crossref_primary_10_3389_fimmu_2022_837669
crossref_primary_10_1016_j_ijmm_2013_03_005
crossref_primary_10_1007_s00424_019_02334_8
crossref_primary_10_1038_s41467_018_05554_1
crossref_primary_10_1371_journal_pone_0188051
crossref_primary_10_1186_s13058_019_1097_0
crossref_primary_10_1038_s41586_022_05312_w
crossref_primary_10_1128_MCB_01055_15
crossref_primary_10_1039_C8MT00280K
crossref_primary_10_3389_fcell_2021_796156
crossref_primary_10_1042_BST20191106
crossref_primary_10_1016_j_toxicon_2024_108049
crossref_primary_10_1016_j_eururo_2017_10_007
crossref_primary_10_1128_IAI_00302_13
crossref_primary_10_1016_j_blre_2012_12_003
crossref_primary_10_1002_advs_202417128
crossref_primary_10_3390_cancers13020350
crossref_primary_10_1259_bjr_20180069
crossref_primary_10_1186_s12864_015_2169_x
crossref_primary_10_1093_toxsci_kfs253
crossref_primary_10_1186_s12943_017_0673_0
crossref_primary_10_1073_pnas_2106017118
crossref_primary_10_3390_cells12050798
crossref_primary_10_1126_scitranslmed_abc8922
crossref_primary_10_1038_oncsis_2015_50
crossref_primary_10_1093_jnci_djt201
crossref_primary_10_3390_ijms222313046
crossref_primary_10_1016_j_dnarep_2016_12_001
crossref_primary_10_1016_j_tem_2019_04_011
crossref_primary_10_1158_1541_7786_MCR_20_0798
crossref_primary_10_1002_stem_1657
crossref_primary_10_1155_2015_549412
crossref_primary_10_1038_labinvest_2014_48
crossref_primary_10_1098_rsos_220992
crossref_primary_10_1186_s12885_018_4227_7
crossref_primary_10_1158_0008_5472_CAN_12_1085
crossref_primary_10_4049_jimmunol_1600342
crossref_primary_10_1038_cr_2012_44
crossref_primary_10_1016_j_abb_2014_06_030
crossref_primary_10_1016_j_bbagrm_2023_194963
crossref_primary_10_1007_s10695_013_9771_0
crossref_primary_10_1016_j_jmb_2023_168162
crossref_primary_10_4049_jimmunol_1103377
crossref_primary_10_1158_0008_5472_CAN_22_2945
crossref_primary_10_3390_ijms24108956
crossref_primary_10_1007_s00204_014_1410_8
crossref_primary_10_3390_biology9090264
crossref_primary_10_1002_advs_202305620
crossref_primary_10_1128_MCB_01034_14
crossref_primary_10_1371_journal_pgen_1006872
crossref_primary_10_1007_s00109_014_1180_z
crossref_primary_10_1126_scitranslmed_add2029
crossref_primary_10_1161_CIRCULATIONAHA_111_038125
crossref_primary_10_1093_carcin_bgw089
crossref_primary_10_1089_ham_2012_1031
crossref_primary_10_1172_JCI69073
crossref_primary_10_1016_j_cmet_2019_03_013
crossref_primary_10_1242_jcs_258575
crossref_primary_10_1016_j_mehy_2022_110907
crossref_primary_10_1186_s12943_016_0510_x
crossref_primary_10_3389_fcell_2020_00566
crossref_primary_10_1186_s13046_022_02294_5
crossref_primary_10_1016_j_bbagrm_2015_07_004
crossref_primary_10_1242_dev_173427
crossref_primary_10_1172_JCI159839
crossref_primary_10_1189_jlb_0113045
crossref_primary_10_1038_s41598_021_91575_8
crossref_primary_10_1158_0008_5472_CAN_13_0523
crossref_primary_10_1007_s00018_020_03750_1
crossref_primary_10_1016_j_genrep_2020_100686
crossref_primary_10_1038_nrneph_2017_145
crossref_primary_10_1080_15592294_2015_1117736
crossref_primary_10_1038_nrneph_2015_82
crossref_primary_10_3892_ijmm_2015_2079
crossref_primary_10_3389_fmolb_2019_00060
crossref_primary_10_1002_bit_27503
crossref_primary_10_1080_21541264_2024_2417475
crossref_primary_10_1172_JCI76737
crossref_primary_10_1038_s42003_021_02648_3
crossref_primary_10_1124_jpet_117_242503
crossref_primary_10_1074_jbc_RA119_012175
crossref_primary_10_1007_s13277_016_5331_4
crossref_primary_10_1016_j_ajpath_2020_04_003
crossref_primary_10_1016_j_freeradbiomed_2020_12_452
crossref_primary_10_1093_nar_gku827
crossref_primary_10_5306_wjco_v12_i12_1101
crossref_primary_10_1177_1535370214532755
crossref_primary_10_1016_j_eururo_2015_08_007
crossref_primary_10_1186_s12885_020_06890_6
crossref_primary_10_3390_cancers13020180
crossref_primary_10_3389_fimmu_2021_664249
crossref_primary_10_7861_clinmed_ed_22_1_harv
crossref_primary_10_1074_jbc_M112_352872
crossref_primary_10_1016_j_bcp_2016_11_009
crossref_primary_10_7554_eLife_68484
crossref_primary_10_1002_art_37867
crossref_primary_10_1186_1758_2946_5_11
crossref_primary_10_3389_fonc_2014_00359
crossref_primary_10_3390_biomedicines6020060
crossref_primary_10_1038_s41392_023_01501_9
crossref_primary_10_1093_narcan_zcaf021
crossref_primary_10_7554_eLife_57345
crossref_primary_10_1038_ncomms13183
crossref_primary_10_3389_fgene_2019_00659
crossref_primary_10_3233_JCB_199005
crossref_primary_10_1038_s41598_017_11445_0
crossref_primary_10_1038_srep31355
crossref_primary_10_1242_jcs_188904
crossref_primary_10_1016_j_jbc_2023_104829
crossref_primary_10_1074_jbc_M116_745471
crossref_primary_10_1186_s40170_019_0206_y
crossref_primary_10_3389_fimmu_2022_880810
crossref_primary_10_1053_j_ackd_2019_04_004
crossref_primary_10_1371_journal_pone_0244366
crossref_primary_10_1146_annurev_genom_111119_073356
crossref_primary_10_1242_jcs_196659
crossref_primary_10_1038_s41590_020_0598_4
crossref_primary_10_1038_s41440_020_00539_4
crossref_primary_10_1089_ars_2021_0200
crossref_primary_10_1016_j_kint_2016_05_026
crossref_primary_10_1038_ki_2013_321
crossref_primary_10_1038_s41598_020_70865_7
crossref_primary_10_4161_epi_27835
crossref_primary_10_1073_pnas_1322484111
crossref_primary_10_1089_ars_2022_0173
crossref_primary_10_1038_s41419_021_03716_6
crossref_primary_10_1038_s41580_020_0255_7
crossref_primary_10_1161_CIRCRESAHA_117_305109
crossref_primary_10_3390_biomedicines6020047
crossref_primary_10_3389_fonc_2022_829524
crossref_primary_10_1002_biot_202100239
crossref_primary_10_1038_s43018_024_00761_w
crossref_primary_10_1080_13543784_2018_1493455
crossref_primary_10_1128_MCB_00644_12
crossref_primary_10_1093_nar_gkv506
crossref_primary_10_1016_j_humgen_2025_201432
crossref_primary_10_1182_blood_2017_04_778779
crossref_primary_10_1158_2326_6066_CIR_20_0561
crossref_primary_10_1002_jcb_25283
crossref_primary_10_1073_pnas_1818521116
crossref_primary_10_1002_jcp_26805
crossref_primary_10_1371_journal_ppat_1010807
crossref_primary_10_1007_s10499_025_01937_6
crossref_primary_10_1093_nar_gkv1471
crossref_primary_10_1007_s12274_016_1059_0
crossref_primary_10_1007_s12035_019_01731_5
crossref_primary_10_1016_j_bbamcr_2016_01_024
crossref_primary_10_1186_s13059_020_02087_z
crossref_primary_10_1126_scitranslmed_aac6008
crossref_primary_10_1158_1078_0432_CCR_15_2322
crossref_primary_10_1007_s11033_019_04617_w
crossref_primary_10_1080_14728222_2019_1599358
crossref_primary_10_1016_j_mito_2014_08_007
crossref_primary_10_1016_j_bbagrm_2014_10_006
crossref_primary_10_3389_fimmu_2022_967576
crossref_primary_10_1152_physiolgenomics_00007_2024
crossref_primary_10_7554_eLife_80774
crossref_primary_10_1038_onc_2017_338
crossref_primary_10_7554_eLife_75064
crossref_primary_10_3390_jcm10235496
crossref_primary_10_1016_j_tips_2012_01_005
crossref_primary_10_1016_j_jfma_2018_03_017
crossref_primary_10_1152_ajpcell_00191_2015
crossref_primary_10_1371_journal_pone_0057695
crossref_primary_10_3390_biomedicines9030260
crossref_primary_10_1038_s41598_024_65537_9
crossref_primary_10_1021_ja402993u
crossref_primary_10_1089_ars_2012_4785
crossref_primary_10_1016_j_cell_2012_01_021
crossref_primary_10_1042_BJ20131350
crossref_primary_10_1186_s12885_021_09009_7
crossref_primary_10_1016_j_biopha_2018_05_079
crossref_primary_10_1111_jcmm_16759
crossref_primary_10_1093_nar_gkw811
crossref_primary_10_1038_cddis_2015_273
crossref_primary_10_1523_JNEUROSCI_1634_20_2020
crossref_primary_10_1016_j_jbc_2022_101699
crossref_primary_10_1038_cddis_2014_368
crossref_primary_10_1111_cas_13483
crossref_primary_10_1016_j_heliyon_2024_e35846
crossref_primary_10_3389_fendo_2022_1103075
crossref_primary_10_3390_cancers14235742
crossref_primary_10_1038_srep22458
crossref_primary_10_3389_fmed_2022_908639
crossref_primary_10_3390_medicina59040706
crossref_primary_10_1111_febs_17077
crossref_primary_10_1681_ASN_2022040413
crossref_primary_10_1016_j_stem_2020_09_019
crossref_primary_10_1096_fj_201901087RR
crossref_primary_10_1042_BCJ20170945
crossref_primary_10_1016_j_atherosclerosis_2013_04_034
crossref_primary_10_1093_nar_gkx951
crossref_primary_10_1016_j_bbrc_2013_04_054
crossref_primary_10_1158_1078_0432_CCR_14_1425
crossref_primary_10_1074_jbc_RA119_007674
crossref_primary_10_1113_jphysiol_2013_251470
crossref_primary_10_1007_s12038_019_9977_0
crossref_primary_10_1007_s10126_019_09942_6
crossref_primary_10_1084_jem_20210909
crossref_primary_10_1113_JP275996
crossref_primary_10_1371_journal_pone_0074911
crossref_primary_10_3390_cells8010045
crossref_primary_10_1007_s00428_016_1988_8
crossref_primary_10_1038_onc_2015_479
crossref_primary_10_3389_fimmu_2021_652665
crossref_primary_10_33549_physiolres_935269
crossref_primary_10_1016_j_cellimm_2016_06_002
crossref_primary_10_1016_j_fsi_2018_05_015
crossref_primary_10_1038_s41467_020_16504_1
crossref_primary_10_1182_blood_2014_10_609370
crossref_primary_10_1371_journal_pone_0194146
crossref_primary_10_1182_blood_2020007505
crossref_primary_10_3390_jcdd10050215
crossref_primary_10_1007_s11302_016_9532_5
crossref_primary_10_3389_fevo_2022_870043
crossref_primary_10_1016_j_bbagen_2020_129723
crossref_primary_10_1038_s41419_018_1180_y
crossref_primary_10_1038_s41581_019_0182_z
crossref_primary_10_2147_NSS_S348580
crossref_primary_10_1007_s00018_014_1645_9
crossref_primary_10_1038_nchembio_1185
crossref_primary_10_1113_JP271050
crossref_primary_10_1161_CIRCULATIONAHA_124_069864
crossref_primary_10_1038_s41467_022_33849_x
crossref_primary_10_3390_cells11081271
crossref_primary_10_1111_gtc_12984
crossref_primary_10_3390_cancers14051259
crossref_primary_10_3389_fonc_2022_973978
crossref_primary_10_1016_j_yexcr_2018_03_020
crossref_primary_10_7554_eLife_42374
crossref_primary_10_1038_onc_2013_9
crossref_primary_10_1038_srep29311
crossref_primary_10_1371_journal_pcbi_1012735
crossref_primary_10_1242_bio_018226
crossref_primary_10_7554_eLife_36828
crossref_primary_10_1186_s12985_020_01374_2
crossref_primary_10_1038_icb_2015_64
crossref_primary_10_1007_s00262_020_02598_5
crossref_primary_10_1016_j_micinf_2011_11_003
crossref_primary_10_1016_j_biopha_2021_111798
crossref_primary_10_1002_1878_0261_13080
crossref_primary_10_1146_annurev_physiol_021113_170322
crossref_primary_10_1074_jbc_M113_533497
crossref_primary_10_1002_cbic_201500519
crossref_primary_10_1002_jcb_30658
crossref_primary_10_1002_iub_2281
crossref_primary_10_1093_molbev_msw280
crossref_primary_10_1074_jbc_RA119_009827
crossref_primary_10_1016_j_cmet_2016_01_002
crossref_primary_10_1038_nrc3844
crossref_primary_10_2217_fon_13_92
crossref_primary_10_1016_j_phrs_2024_107119
crossref_primary_10_1111_neup_13033
crossref_primary_10_3109_10409238_2013_838205
crossref_primary_10_1177_0192623319880445
crossref_primary_10_1038_s41467_021_24631_6
crossref_primary_10_1134_S1062360423020054
crossref_primary_10_1016_j_semnephrol_2013_05_009
crossref_primary_10_1042_BCJ20220008
crossref_primary_10_1038_srep40233
crossref_primary_10_1093_molehr_gaab065
crossref_primary_10_3389_fonc_2021_619300
crossref_primary_10_1007_s00018_019_03387_9
crossref_primary_10_1111_apha_12613
crossref_primary_10_1097_01_mnh_0000441049_98664_6c
crossref_primary_10_15252_embr_201846401
crossref_primary_10_1016_j_immuni_2017_04_013
crossref_primary_10_1155_2015_804264
crossref_primary_10_1038_nrneph_2015_193
crossref_primary_10_1038_s41467_020_18411_x
crossref_primary_10_1038_s42003_024_05904_4
crossref_primary_10_1089_ars_2021_0271
crossref_primary_10_3390_cells8020155
crossref_primary_10_1113_JP273309
crossref_primary_10_1038_s41598_020_79270_6
crossref_primary_10_3389_fgene_2015_00331
crossref_primary_10_1038_s41588_021_00887_y
crossref_primary_10_1007_s00262_019_02314_y
crossref_primary_10_3390_biom10010093
crossref_primary_10_1038_s41467_019_11149_1
crossref_primary_10_1016_j_cmet_2017_10_005
crossref_primary_10_1038_s41467_020_20832_7
crossref_primary_10_1016_j_cmet_2013_02_002
crossref_primary_10_1681_ASN_2015091009
crossref_primary_10_1007_s10142_023_01256_0
crossref_primary_10_3389_fphys_2018_00439
crossref_primary_10_1016_j_canlet_2024_216823
crossref_primary_10_1016_j_neo_2016_07_008
crossref_primary_10_1007_s00204_012_0919_y
crossref_primary_10_1016_j_freeradbiomed_2021_03_018
crossref_primary_10_1242_jeb_163709
crossref_primary_10_1038_s41598_017_04333_0
crossref_primary_10_3390_cancers16010081
crossref_primary_10_1042_BCJ20210554
crossref_primary_10_1093_nar_gkx1214
crossref_primary_10_1519_JSC_0000000000004909
crossref_primary_10_1016_j_yexcr_2017_02_024
crossref_primary_10_1096_fj_11_198598
crossref_primary_10_1002_glia_24019
crossref_primary_10_1371_journal_pone_0178064
crossref_primary_10_1038_s41559_017_0410_5
crossref_primary_10_1038_s41598_022_23060_9
crossref_primary_10_1128_MCB_06643_11
crossref_primary_10_1111_cen3_12195
crossref_primary_10_1134_S0006297921100011
crossref_primary_10_1371_journal_pone_0136103
crossref_primary_10_1099_jgv_0_001885
crossref_primary_10_3390_ijms23020741
crossref_primary_10_1073_pnas_1612626113
crossref_primary_10_1210_clinem_dgae630
crossref_primary_10_1074_jbc_M113_500835
crossref_primary_10_1074_jbc_RA119_011822
crossref_primary_10_1007_s11010_022_04549_3
crossref_primary_10_1159_000455166
crossref_primary_10_1091_mbc_E20_05_0291
crossref_primary_10_1101_gad_250167_114
crossref_primary_10_1053_j_gastro_2015_05_003
crossref_primary_10_1038_s41598_019_55098_7
crossref_primary_10_1016_j_ctrv_2023_102645
crossref_primary_10_1007_s40610_019_0110_9
crossref_primary_10_1038_ncb3295
crossref_primary_10_1158_1541_7786_MCR_18_0345
crossref_primary_10_1007_s00018_020_03483_1
crossref_primary_10_1093_molbev_msv248
crossref_primary_10_1016_j_phrs_2023_106713
crossref_primary_10_1038_s41419_022_04770_4
crossref_primary_10_1016_j_pharmthera_2022_108186
crossref_primary_10_1080_13543784_2018_1417386
crossref_primary_10_3390_cells14090673
crossref_primary_10_1074_jbc_M117_811109
crossref_primary_10_3389_fcell_2021_617073
crossref_primary_10_3390_cells8040300
crossref_primary_10_3390_ijms18020352
crossref_primary_10_1016_j_pharmthera_2016_04_009
crossref_primary_10_1016_j_yexcr_2017_03_030
crossref_primary_10_1172_JCI67230
crossref_primary_10_1016_j_cellsig_2011_08_019
crossref_primary_10_3390_metabo11040215
crossref_primary_10_1038_ng_2204
crossref_primary_10_1016_j_bbamcr_2016_05_001
crossref_primary_10_1016_j_lfs_2020_117859
crossref_primary_10_1096_fj_201901734RR
crossref_primary_10_1016_j_ibneur_2023_03_010
crossref_primary_10_1016_j_pneurobio_2014_11_001
crossref_primary_10_1098_rsob_160195
crossref_primary_10_1038_s41598_020_75838_4
crossref_primary_10_1155_2022_9714669
crossref_primary_10_1016_j_cellsig_2021_110209
crossref_primary_10_1016_j_tem_2020_02_008
crossref_primary_10_1002_embr_201337642
crossref_primary_10_3390_cells8020104
crossref_primary_10_3390_ijms21218162
crossref_primary_10_14814_phy2_13224
crossref_primary_10_4049_jimmunol_2001282
crossref_primary_10_1093_neuonc_noac234
crossref_primary_10_1007_s00223_016_0228_1
crossref_primary_10_1371_journal_pone_0186262
crossref_primary_10_1371_journal_pone_0093494
crossref_primary_10_1371_journal_pone_0072358
crossref_primary_10_1038_srep24141
crossref_primary_10_1016_j_yexcr_2017_03_019
crossref_primary_10_3233_NHA_170022
crossref_primary_10_1007_s10555_015_9588_7
crossref_primary_10_1016_j_cellsig_2013_05_018
crossref_primary_10_3390_dna5020022
crossref_primary_10_1016_j_yexcr_2017_03_013
crossref_primary_10_1038_s41591_023_02314_7
crossref_primary_10_1093_nar_gku158
crossref_primary_10_1371_journal_pone_0154074
crossref_primary_10_1096_fj_202100443R
crossref_primary_10_21053_ceo_2025_00029
crossref_primary_10_1101_gr_158253_113
crossref_primary_10_1073_pnas_1324290111
crossref_primary_10_14348_molcells_2014_2250
crossref_primary_10_1016_j_bmcl_2018_04_039
crossref_primary_10_1038_s43018_023_00635_7
crossref_primary_10_1096_fj_201802650RR
crossref_primary_10_1128_MCB_00647_17
crossref_primary_10_1016_j_yexcr_2017_03_008
crossref_primary_10_1002_dta_3000
crossref_primary_10_1016_j_immuni_2015_02_001
crossref_primary_10_1093_molbev_msac120
crossref_primary_10_1007_s00281_024_01015_8
crossref_primary_10_1128_msystems_00380_22
crossref_primary_10_1007_s10585_018_9930_x
crossref_primary_10_1523_JNEUROSCI_1589_18_2018
crossref_primary_10_1093_toxsci_kfae004
crossref_primary_10_1016_j_cej_2022_139506
crossref_primary_10_1155_2021_4280482
crossref_primary_10_1111_febs_13062
crossref_primary_10_1016_j_ccr_2016_07_010
crossref_primary_10_1002_1878_0261_12491
crossref_primary_10_1038_s41419_023_06012_7
crossref_primary_10_3390_cells9051202
crossref_primary_10_1172_JCI162480
crossref_primary_10_3390_cancers11020208
crossref_primary_10_3390_genes11010111
crossref_primary_10_1016_j_ejcb_2024_151386
crossref_primary_10_1074_jbc_M116_749291
crossref_primary_10_1038_onc_2016_184
crossref_primary_10_1016_j_jchemneu_2014_07_001
crossref_primary_10_1186_s12864_024_11141_0
crossref_primary_10_1517_14728222_2012_674516
crossref_primary_10_23876_j_krcp_2017_36_3_209
crossref_primary_10_1016_j_heliyon_2023_e18651
crossref_primary_10_1146_annurev_physiol_021115_105202
crossref_primary_10_1172_JCI63924
crossref_primary_10_1371_journal_pgen_1010504
crossref_primary_10_3389_fimmu_2025_1404161
crossref_primary_10_1186_1476_4598_12_78
crossref_primary_10_1016_j_febslet_2014_02_026
crossref_primary_10_1002_lary_31084
crossref_primary_10_1007_s40778_018_0127_7
crossref_primary_10_1016_j_arr_2021_101267
crossref_primary_10_1016_j_cell_2025_01_046
crossref_primary_10_1016_j_cancergen_2020_04_077
crossref_primary_10_1002_2211_5463_13220
crossref_primary_10_1089_ars_2020_8148
crossref_primary_10_1007_s12026_012_8349_8
crossref_primary_10_4161_derm_22678
crossref_primary_10_1074_jbc_R117_776393
crossref_primary_10_1038_s41467_021_21687_2
crossref_primary_10_1080_13543784_2021_1925248
crossref_primary_10_1084_jem_20150452
crossref_primary_10_3389_fcimb_2019_00042
crossref_primary_10_1182_blood_2013_01_478065
crossref_primary_10_3390_ijms25147669
crossref_primary_10_1038_onc_2014_378
crossref_primary_10_1074_jbc_M112_380949
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1182/blood-2010-10-314427
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
ExternalDocumentID 21447827
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 090532
GroupedDBID ---
-~X
.55
0R~
23N
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6J9
9M8
AAEDW
AALRI
AAXUO
ABOCM
ACGFO
ACVFH
ADBBV
ADCNI
ADVLN
AENEX
AEUPX
AFFNX
AFOSN
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
EX3
F5P
FDB
FRP
GS5
GX1
H13
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
NPM
OK1
P2P
R.V
RHI
ROL
SJN
THE
TR2
TWZ
W2D
W8F
WH7
WOQ
WOW
X7M
YHG
YKV
7X8
ID FETCH-LOGICAL-c482t-bd1057fdc27b0943974f3d60f5737c31bbe783a1ca932338232c35888bbeb30e2
IEDL.DBID 7X8
ISICitedReferencesCount 586
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291438000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-0020
IngestDate Sun Sep 28 11:03:24 EDT 2025
Mon Jul 21 06:04:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-bd1057fdc27b0943974f3d60f5737c31bbe783a1ca932338232c35888bbeb30e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1182/blood-2010-10-314427
PMID 21447827
PQID 871386853
PQPubID 23479
ParticipantIDs proquest_miscellaneous_871386853
pubmed_primary_21447827
PublicationCentury 2000
PublicationDate 2011-Jun-09
20110609
PublicationDateYYYYMMDD 2011-06-09
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-Jun-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Blood
PublicationTitleAlternate Blood
PublicationYear 2011
SSID ssj0014325
Score 2.5655057
Snippet Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage e207
SubjectTerms Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Cell Line, Tumor
Chromatin Immunoprecipitation - methods
Chromosome Mapping
Epigenesis, Genetic - physiology
Female
Genome, Human - physiology
Genome-Wide Association Study
Humans
Oxygen - metabolism
Response Elements - physiology
Title High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq
URI https://www.ncbi.nlm.nih.gov/pubmed/21447827
https://www.proquest.com/docview/871386853
Volume 117
WOSCitedRecordID wos000291438000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLZ4w8Kj5f3QDYjt1CQXksuESqECCaoOIHWrci_o0BQID_HvsS8pTIiBJYoURbqcHfuz_Z0NcGyEi3SeZ1xIHfBYqJhIAIZHLkm0NKlIlZf0TdrrycEg69fcnLKmVU5tojfUZqIpR95CYC9kgs7l7OmZ09AoKq7WEzRmYV4gkiGlTgc_RYRY-Jmr6KEkJ1hUn5xDRN2qWOG-EuztUBxH6e8Y0_ua7to_V7kOqzXIZO1KKzZgxhYNaLYLDLDHn-yEedqnz6c3YPF8erfcmQ5_a8DSbV1zb8IFUUE4RuW1kjJq6zq2_GNkLBvn1N_hgU0cu7ruUphNvpDRekqmPlnn8brPS_u8Cffdy7vOFa9nL3Ady-iVK0MDgJ3RUaqIfIhhhxMmCdwpik-LUCmbSpGHOkcAKKiYGGlxiuE0PlAisNEWzBWTwu4Aczp0SiGQtCKJA20yIzOtEEjY0Entwl1g070c4ldSwSIv7OStHH7v5i5sV_IYPlU9OIbU6Q3BTbr398v7sFIlghMeZAcw7_C_toewoN9fR-XLkdcZvPb6t18lA8mN
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+genome-wide+mapping+of+HIF-binding+sites+by+ChIP-seq&rft.jtitle=Blood&rft.au=Sch%C3%B6del%2C+Johannes&rft.au=Oikonomopoulos%2C+Spyros&rft.au=Ragoussis%2C+Jiannis&rft.au=Pugh%2C+Christopher+W&rft.date=2011-06-09&rft.issn=1528-0020&rft.eissn=1528-0020&rft.volume=117&rft.issue=23&rft.spage=e207&rft_id=info:doi/10.1182%2Fblood-2010-10-314427&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-0020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-0020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-0020&client=summon