Ketones and lactate "fuel" tumor growth and metastasis Evidence that epithelial cancer cells use oxidative mitochondrial metabolism

Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Jg. 9; H. 17; S. 3506 - 3514
Hauptverfasser: Bonuccelli, Gloria, Tsirigos, Aristotelis, Whitaker-Menezes, Diana, Pavlides, Stephanos, Pestell, Richard G., Chiavarina, Barbara, Frank, Philippe G., Flomenberg, Neal, Howell, Anthony, Martinez-Outschoorn, Ubaldo E., Sotgia, Federica, Lisanti, Michael P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 01.09.2010
Landes Bioscience
Schlagworte:
ISSN:1538-4101, 1551-4005, 1551-4005
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm "The Reverse Warburg Effect." Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ~2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ~10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect." Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as Lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the up-regulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.
AbstractList Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm "The Reverse Warburg Effect." Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ~2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ~10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect." Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as Lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the up-regulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.
Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm "The Reverse Warburg Effect." Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ∼2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ∼10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect". Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as Lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the up-regulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.
Previously, we proposed a new model for understanding the “Warburg effect” in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm “The Reverse Warburg Effect.” Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ∼2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ∼10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the “reverse Warburg effect.” Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the upregulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.
Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm "The Reverse Warburg Effect." Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ∼2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ∼10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect". Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as Lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the up-regulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm "The Reverse Warburg Effect." Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ∼2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ∼10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect". Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as Lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the up-regulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.
Author Whitaker-Menezes, Diana
Pavlides, Stephanos
Tsirigos, Aristotelis
Sotgia, Federica
Martinez-Outschoorn, Ubaldo E.
Pestell, Richard G.
Frank, Philippe G.
Howell, Anthony
Bonuccelli, Gloria
Chiavarina, Barbara
Lisanti, Michael P.
Flomenberg, Neal
AuthorAffiliation 1 Department of Stem Cell Biology & Regenerative Medicine, Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
2 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
5 Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer, Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK
3 Computational Genomics Group, IBM Thomas J. Watson Research Center; Yorktown Heights, NY USA
4 Department of Medical Oncology; Thomas Jefferson University; Philadelphia, PA USA
AuthorAffiliation_xml – name: 1 Department of Stem Cell Biology & Regenerative Medicine, Cancer Biology; Thomas Jefferson University; Philadelphia, PA USA
– name: 2 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 4 Department of Medical Oncology; Thomas Jefferson University; Philadelphia, PA USA
– name: 5 Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer, Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK
– name: 3 Computational Genomics Group, IBM Thomas J. Watson Research Center; Yorktown Heights, NY USA
Author_xml – sequence: 1
  givenname: Gloria
  surname: Bonuccelli
  fullname: Bonuccelli, Gloria
– sequence: 2
  givenname: Aristotelis
  surname: Tsirigos
  fullname: Tsirigos, Aristotelis
– sequence: 3
  givenname: Diana
  surname: Whitaker-Menezes
  fullname: Whitaker-Menezes, Diana
– sequence: 4
  givenname: Stephanos
  surname: Pavlides
  fullname: Pavlides, Stephanos
– sequence: 5
  givenname: Richard G.
  surname: Pestell
  fullname: Pestell, Richard G.
– sequence: 6
  givenname: Barbara
  surname: Chiavarina
  fullname: Chiavarina, Barbara
– sequence: 7
  givenname: Philippe G.
  surname: Frank
  fullname: Frank, Philippe G.
– sequence: 8
  givenname: Neal
  surname: Flomenberg
  fullname: Flomenberg, Neal
– sequence: 9
  givenname: Anthony
  surname: Howell
  fullname: Howell, Anthony
– sequence: 10
  givenname: Ubaldo E.
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E.
– sequence: 11
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  email: federica.sotgia@jefferson.edu, mlisanti@KimmelCancerCenter.org
– sequence: 12
  givenname: Michael P.
  surname: Lisanti
  fullname: Lisanti, Michael P.
  email: federica.sotgia@jefferson.edu, mlisanti@KimmelCancerCenter.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20818174$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx4NU7A89epWhl55mzZtkJtmLYBdbpQUveg6ZzJs2kknWJNPS_97sbruoVIRAAu_7-X5f3jsmBz54JOQt0AWHDt4bs1guQCygEQxekCNoW6g5pe3B5s1kzYHCITlO6QeljRRLeEUOGypBguBHpLvCXAxTpf1QOW2yzlidjjO60yrPU4jVTQz3-XZbnzDrVI5Nr8nLUbuEbx7vE_L94tO31ef6-uvll9XH69pw2eRai5Fy3QsjObTQAzAQnVwOuhH9AE3TCMEFjIxBi22PLR-gHbBrejCtFFqzE_Jh57ue-wkHgz5H7dQ62knHBxW0VX9WvL1VN-FOMcpFB10xOHs0iOHnjCmrySaDzmmPYU5KlHEJRhkryne_R-0znmZVBGwnMDGkFHFUxpZx2bBJtk4BVZuNKGPUUoFQ240Uqv6LejL-l57v9KXDAVNvQzIWvcE9dx78bDZfsKvVFlwPY8Hof7ASo2O2xuE-Se4Q68cQJ30fohtU1g8uxDFqb2xS7PkmfwHCG8Ql
CitedBy_id crossref_primary_10_1016_j_bbamcr_2015_09_013
crossref_primary_10_1139_bcb_2018_0076
crossref_primary_10_1038_ncomms8530
crossref_primary_10_1007_s11010_021_04281_4
crossref_primary_10_1111_vco_12376
crossref_primary_10_1016_j_prp_2024_155597
crossref_primary_10_3389_fmolb_2018_00120
crossref_primary_10_1002_prca_202200042
crossref_primary_10_1155_2023_7021123
crossref_primary_10_1371_journal_pone_0065522
crossref_primary_10_1016_j_cmet_2018_08_006
crossref_primary_10_4161_cc_9_17_12908
crossref_primary_10_1186_s12943_025_02318_6
crossref_primary_10_1016_j_biocel_2014_09_004
crossref_primary_10_1016_j_cca_2024_117823
crossref_primary_10_1146_annurev_pathol_011811_120856
crossref_primary_10_12659_AJCR_890229
crossref_primary_10_1158_0008_5472_CAN_12_1068
crossref_primary_10_3390_cancers11101574
crossref_primary_10_1186_s13058_016_0712_6
crossref_primary_10_1016_j_semcdb_2019_05_016
crossref_primary_10_3389_fonc_2021_727778
crossref_primary_10_1016_j_pmatsci_2024_101375
crossref_primary_10_3390_nu14122376
crossref_primary_10_3390_jcm12041589
crossref_primary_10_1016_j_mito_2012_07_104
crossref_primary_10_1016_j_semradonc_2011_12_003
crossref_primary_10_1186_bcr3483
crossref_primary_10_1007_s13277_015_4479_7
crossref_primary_10_1016_j_tcb_2018_04_002
crossref_primary_10_1111_febs_14064
crossref_primary_10_1016_j_jtherbio_2020_102608
crossref_primary_10_1021_acs_jproteome_4c00991
crossref_primary_10_1155_2014_310372
crossref_primary_10_1186_s12967_024_05770_y
crossref_primary_10_1016_j_jff_2018_03_045
crossref_primary_10_1186_bcr3472
crossref_primary_10_1186_s40169_016_0082_9
crossref_primary_10_3390_cancers13081973
crossref_primary_10_3390_cancers11030274
crossref_primary_10_3390_jpm12081329
crossref_primary_10_1016_j_ejmech_2019_03_053
crossref_primary_10_1002_stem_3301
crossref_primary_10_18632_oncotarget_3838
crossref_primary_10_1038_s41467_018_03525_0
crossref_primary_10_3892_mco_2015_623
crossref_primary_10_1088_1752_7163_ac2cde
crossref_primary_10_1016_j_canlet_2015_07_017
crossref_primary_10_1007_s00018_018_2831_y
crossref_primary_10_1088_1752_7163_ab0bee
crossref_primary_10_1158_0008_5472_CAN_21_0914
crossref_primary_10_1016_j_clnu_2024_09_044
crossref_primary_10_3389_fonc_2022_1046102
crossref_primary_10_3390_cancers12103017
crossref_primary_10_1016_j_phrs_2022_106194
crossref_primary_10_1177_1758834014521111
crossref_primary_10_1016_j_critrevonc_2022_103702
crossref_primary_10_1186_s12916_025_03993_4
crossref_primary_10_1186_s12967_025_06151_9
crossref_primary_10_1155_2018_1723184
crossref_primary_10_1186_s40170_017_0166_z
crossref_primary_10_3390_cancers12030622
crossref_primary_10_1007_s12672_020_00389_z
crossref_primary_10_1186_s12935_024_03277_6
crossref_primary_10_1038_srep25892
crossref_primary_10_4161_cc_10_8_15330
crossref_primary_10_3892_or_2015_4326
crossref_primary_10_4161_cc_10_13_16233
crossref_primary_10_1007_s00066_014_0788_9
crossref_primary_10_1002_jnr_23338
crossref_primary_10_1186_s12864_018_4477_4
crossref_primary_10_3390_nu13041302
crossref_primary_10_1016_j_devcel_2024_06_022
crossref_primary_10_1039_C5AN02406D
crossref_primary_10_1002_mc_21922
crossref_primary_10_1016_j_bbcan_2012_04_005
crossref_primary_10_3390_cancers14092286
crossref_primary_10_1038_s41416_019_0509_3
crossref_primary_10_1186_1475_2867_13_35
crossref_primary_10_4161_cc_9_21_13817
crossref_primary_10_3892_or_2016_4660
crossref_primary_10_1111_febs_16046
crossref_primary_10_3389_fimmu_2018_00040
crossref_primary_10_1038_s41388_020_1235_2
crossref_primary_10_1038_s41598_020_61296_5
crossref_primary_10_3892_mmr_2016_4963
crossref_primary_10_1016_j_bbrc_2016_11_100
crossref_primary_10_1042_BCJ20170164
crossref_primary_10_1177_1759091418818261
crossref_primary_10_1242_dmm_007724
crossref_primary_10_1242_dmm_032920
crossref_primary_10_1016_j_bcp_2022_114943
crossref_primary_10_1016_j_livres_2022_09_001
crossref_primary_10_1017_erm_2022_42
crossref_primary_10_1038_s41598_020_76394_7
crossref_primary_10_3390_biomedicines9121942
crossref_primary_10_1016_j_semcancer_2017_03_004
crossref_primary_10_4103_jpgm_JPGM_16_17
crossref_primary_10_1158_0008_5472_CAN_15_1474
crossref_primary_10_3892_ijo_2013_1985
crossref_primary_10_1007_s00018_012_1249_1
crossref_primary_10_1111_j_1742_4658_2011_08174_x
crossref_primary_10_3390_metabo11050274
crossref_primary_10_17656_jzs_10638
crossref_primary_10_1007_s10585_023_10249_z
crossref_primary_10_1097_MD_0000000000005706
crossref_primary_10_1007_s13273_023_00378_7
crossref_primary_10_1016_j_clnu_2018_10_024
crossref_primary_10_1186_s12944_024_02368_7
crossref_primary_10_1158_0008_5472_CAN_16_0266
crossref_primary_10_1016_j_semcancer_2022_11_007
crossref_primary_10_3390_cells8080798
crossref_primary_10_1002_eji_201646477
crossref_primary_10_1038_srep09073
crossref_primary_10_1038_s41467_024_51207_x
crossref_primary_10_1186_s13045_024_01600_2
crossref_primary_10_1038_s41568_018_0083_7
crossref_primary_10_1080_14728222_2018_1511706
crossref_primary_10_1007_s00761_012_2357_0
crossref_primary_10_1007_s10238_021_00710_2
crossref_primary_10_1007_s10555_022_10043_5
crossref_primary_10_1002_tox_22215
crossref_primary_10_1007_s11033_015_3859_9
crossref_primary_10_3390_diagnostics11081500
crossref_primary_10_1002_jcsm_12475
crossref_primary_10_1016_j_semradonc_2013_05_008
crossref_primary_10_1158_1078_0432_CCR_16_0606
crossref_primary_10_1016_j_bbcan_2024_189245
crossref_primary_10_1213_ANE_0000000000007328
crossref_primary_10_1002_jssc_201701283
crossref_primary_10_1007_s11626_019_00416_6
crossref_primary_10_1158_0008_5472_CAN_23_0153
crossref_primary_10_1002_hep4_1499
crossref_primary_10_1042_BSR20180185
crossref_primary_10_1002_mc_21863
crossref_primary_10_1016_j_jsbmb_2015_07_004
crossref_primary_10_1186_s13046_022_02524_w
crossref_primary_10_4161_cc_10_11_15675
crossref_primary_10_1016_j_ebiom_2022_104410
crossref_primary_10_1016_j_phrs_2012_03_007
crossref_primary_10_1016_j_semcancer_2014_01_005
crossref_primary_10_3390_antiox13070801
crossref_primary_10_1186_s40170_024_00339_1
crossref_primary_10_1053_j_seminoncol_2014_03_002
crossref_primary_10_1053_j_seminoncol_2014_03_004
crossref_primary_10_1007_s13277_014_2345_7
crossref_primary_10_1158_1541_7786_MCR_17_0143
crossref_primary_10_1186_s13046_024_03251_0
crossref_primary_10_3389_fonc_2021_656851
crossref_primary_10_3390_cancers14163998
crossref_primary_10_1186_1755_8794_5_62
crossref_primary_10_1007_s12312_014_1173_4
crossref_primary_10_1016_j_semcancer_2017_06_006
crossref_primary_10_4161_cc_19841
crossref_primary_10_1016_j_cell_2017_09_019
crossref_primary_10_1080_15384101_2016_1253641
crossref_primary_10_3389_fphar_2019_00203
crossref_primary_10_1016_j_suronc_2015_05_002
crossref_primary_10_1038_s41598_024_73097_1
crossref_primary_10_1186_s12943_016_0577_4
crossref_primary_10_3390_nu15122730
crossref_primary_10_3390_cancers16081525
crossref_primary_10_1007_s00066_012_0203_3
crossref_primary_10_1016_j_clnu_2025_06_006
crossref_primary_10_1007_s00109_015_1307_x
crossref_primary_10_1038_srep09149
crossref_primary_10_20517_2394_5079_2025_15
crossref_primary_10_3390_cells10051046
crossref_primary_10_4161_cc_20718
crossref_primary_10_4161_cc_20717
crossref_primary_10_1038_onc_2016_411
crossref_primary_10_1111_nyas_12872
crossref_primary_10_3390_cancers12103067
crossref_primary_10_1098_rsfs_2014_0014
crossref_primary_10_1155_2015_972193
crossref_primary_10_1146_annurev_cancerbio_091724_051147
crossref_primary_10_3892_ol_2012_928
crossref_primary_10_1073_pnas_1220659110
crossref_primary_10_1038_s42003_019_0553_9
crossref_primary_10_1016_j_canlet_2024_216896
crossref_primary_10_4161_cc_10_15_16870
crossref_primary_10_1158_0008_5472_CAN_11_2474
crossref_primary_10_1016_j_canlet_2017_07_024
crossref_primary_10_1016_j_semcancer_2017_12_011
crossref_primary_10_1016_j_jconrel_2022_12_003
crossref_primary_10_1016_j_bcp_2025_117344
crossref_primary_10_3390_cancers10070219
crossref_primary_10_4161_cc_24092
crossref_primary_10_1016_j_bbabio_2012_05_010
crossref_primary_10_1016_j_canlet_2013_09_011
crossref_primary_10_1016_j_mehy_2020_110235
crossref_primary_10_1007_s10863_012_9457_9
crossref_primary_10_1038_s41598_023_34808_2
crossref_primary_10_3390_ph8040675
crossref_primary_10_1186_s12859_020_3449_2
crossref_primary_10_3390_cancers15153942
crossref_primary_10_1080_01635581_2020_1804947
crossref_primary_10_1371_journal_pone_0211916
crossref_primary_10_1002_mas_21362
crossref_primary_10_1186_s12964_023_01462_0
crossref_primary_10_1002_jcp_25349
crossref_primary_10_1016_j_phrs_2019_104500
crossref_primary_10_1152_physrev_00001_2017
crossref_primary_10_1038_s41598_018_22480_w
crossref_primary_10_4161_cc_23058
crossref_primary_10_3389_fnut_2020_00021
crossref_primary_10_1016_j_bbadis_2020_166016
crossref_primary_10_3109_09553002_2014_907932
crossref_primary_10_3390_cancers11121876
crossref_primary_10_3390_diagnostics13162647
crossref_primary_10_1007_s11064_020_03203_y
crossref_primary_10_15252_embj_2021109890
crossref_primary_10_1159_000366021
crossref_primary_10_1016_j_ccell_2014_10_003
crossref_primary_10_2147_OTT_S297140
crossref_primary_10_1128_JVI_00033_18
crossref_primary_10_3390_ijms23116271
crossref_primary_10_3390_biomedicines9111557
crossref_primary_10_4161_cc_10_23_18254
crossref_primary_10_1007_s11306_023_01972_5
crossref_primary_10_1186_s11658_022_00356_2
crossref_primary_10_3390_cells9030640
crossref_primary_10_1016_j_radonc_2013_06_003
crossref_primary_10_1002_iub_1066
crossref_primary_10_4161_cc_10_12_16002
crossref_primary_10_1016_j_semcdb_2016_11_003
crossref_primary_10_1097_MD_0000000000004494
crossref_primary_10_3389_fcell_2022_814735
crossref_primary_10_1371_journal_pone_0105666
crossref_primary_10_1158_0008_5472_CAN_12_1949
crossref_primary_10_3389_fendo_2014_00145
crossref_primary_10_1016_j_molmet_2019_08_021
crossref_primary_10_1002_wsbm_1406
crossref_primary_10_3389_fendo_2016_00005
crossref_primary_10_1007_s00404_016_4097_7
crossref_primary_10_1093_cvr_cvac132
crossref_primary_10_1007_s00066_014_0793_z
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_1002_hed_24161
crossref_primary_10_1002_cam4_1410
crossref_primary_10_4161_cc_10_23_18151
crossref_primary_10_3389_fonc_2020_00281
crossref_primary_10_3389_fonc_2020_01010
crossref_primary_10_1016_j_devcel_2024_12_007
crossref_primary_10_1186_s40170_018_0180_9
crossref_primary_10_1016_j_mam_2015_12_001
crossref_primary_10_1515_oncologie_2025_0033
crossref_primary_10_1177_1010428317695922
crossref_primary_10_3390_cancers14020322
crossref_primary_10_1038_nrc3915
crossref_primary_10_1016_j_biocel_2016_01_002
crossref_primary_10_1007_s13277_013_1588_z
crossref_primary_10_1093_toxsci_kfy116
crossref_primary_10_3389_fnut_2014_00027
crossref_primary_10_1016_j_bbadis_2024_167549
crossref_primary_10_1155_2022_3119375
crossref_primary_10_3390_pharmaceutics15092225
crossref_primary_10_1016_j_ebiom_2019_04_028
crossref_primary_10_1007_s10555_021_10013_3
crossref_primary_10_3389_fendo_2018_00678
crossref_primary_10_4161_cc_10_11_15659
crossref_primary_10_1371_journal_pone_0101004
crossref_primary_10_1152_physrev_00037_2024
crossref_primary_10_1038_s42255_023_00963_z
crossref_primary_10_1007_s00066_014_0696_z
crossref_primary_10_1002_jcsm_13131
crossref_primary_10_1080_10715762_2018_1459594
crossref_primary_10_31083_j_fbl2810245
crossref_primary_10_1016_j_brainresbull_2019_09_012
crossref_primary_10_1007_s11010_012_1428_2
crossref_primary_10_3389_fonc_2018_00203
crossref_primary_10_1093_carcin_bgt480
crossref_primary_10_3390_ijms18030540
crossref_primary_10_1371_journal_pone_0115529
crossref_primary_10_1002_cbin_12172
crossref_primary_10_1007_s00761_012_2381_0
crossref_primary_10_3389_fonc_2014_00262
crossref_primary_10_4161_cc_11_2_19006
crossref_primary_10_1002_cam4_2659
crossref_primary_10_1016_j_bpj_2021_02_044
crossref_primary_10_1007_s00018_015_2098_5
crossref_primary_10_1016_j_nut_2024_112427
crossref_primary_10_3390_cells14151177
crossref_primary_10_1590_s2175_97902018000217604
crossref_primary_10_1002_aac2_12044
crossref_primary_10_1038_s41419_020_2449_5
crossref_primary_10_1016_j_bioorg_2021_105015
crossref_primary_10_1016_j_jdsr_2017_08_003
crossref_primary_10_1007_s12032_017_0991_5
crossref_primary_10_1080_01635581_2020_1836243
crossref_primary_10_1002_jcp_25411
crossref_primary_10_4161_cc_10_17_16574
crossref_primary_10_1002_ijc_28809
crossref_primary_10_3390_cancers13061316
crossref_primary_10_3390_ijms23105572
crossref_primary_10_3390_cells13050447
crossref_primary_10_3389_fphar_2021_747001
crossref_primary_10_3892_ol_2015_3679
crossref_primary_10_1016_j_semcdb_2014_05_007
crossref_primary_10_1007_s11306_013_0606_x
crossref_primary_10_1186_1743_7075_8_75
crossref_primary_10_1155_2016_6456018
crossref_primary_10_3389_fonc_2017_00040
crossref_primary_10_1093_advances_nmaa062
crossref_primary_10_3390_metabo11070432
crossref_primary_10_3389_fonc_2017_00043
crossref_primary_10_1016_j_canlet_2017_02_012
crossref_primary_10_3389_fchem_2021_733463
crossref_primary_10_3892_or_2014_3655
crossref_primary_10_3390_cells8050445
crossref_primary_10_3390_ph8010062
crossref_primary_10_1007_s11306_019_1625_z
crossref_primary_10_1177_1010428317695968
crossref_primary_10_1038_s41598_021_84019_w
crossref_primary_10_1007_s10555_025_10264_4
crossref_primary_10_1155_2016_4502846
crossref_primary_10_1038_s41416_021_01418_6
crossref_primary_10_1089_ars_2011_4243
crossref_primary_10_3892_or_2016_4627
crossref_primary_10_3389_fnut_2023_1113739
crossref_primary_10_1186_s13148_015_0068_2
crossref_primary_10_1016_j_bbagen_2022_130301
crossref_primary_10_1111_cas_15047
crossref_primary_10_4161_cc_9_24_14230
crossref_primary_10_3390_antiox10111801
crossref_primary_10_1016_j_ccr_2013_02_005
crossref_primary_10_1177_1535370220909309
crossref_primary_10_4161_cc_23109
crossref_primary_10_1016_j_lfs_2022_121211
crossref_primary_10_1038_s41598_023_46057_4
crossref_primary_10_4161_cc_22137
crossref_primary_10_4161_cc_22136
crossref_primary_10_1038_s41598_024_71140_9
crossref_primary_10_1158_1078_0432_CCR_15_0916
crossref_primary_10_1186_s12863_016_0459_1
crossref_primary_10_4331_wjbc_v6_i3_148
crossref_primary_10_1016_j_ajpath_2012_03_017
crossref_primary_10_3390_cells10071653
crossref_primary_10_1371_journal_pone_0063402
crossref_primary_10_3389_fphar_2019_01175
crossref_primary_10_3892_ol_2016_5451
crossref_primary_10_1038_onc_2017_6
crossref_primary_10_1002_jcp_28573
crossref_primary_10_1016_j_ebiom_2017_02_019
crossref_primary_10_1158_0008_5472_CAN_14_1337
crossref_primary_10_3390_ani13182950
crossref_primary_10_1093_advances_nmaa174
crossref_primary_10_3390_cimb46030153
crossref_primary_10_4161_cc_10_24_18487
crossref_primary_10_1186_bcr2892
crossref_primary_10_1007_s11033_022_07460_8
crossref_primary_10_3390_ijms22126587
crossref_primary_10_1134_S002209302206028X
crossref_primary_10_1038_bjc_2013_177
crossref_primary_10_1007_s13277_013_0707_1
crossref_primary_10_3390_ijms22126228
crossref_primary_10_3389_fcell_2024_1310442
crossref_primary_10_1007_s00109_015_1377_9
crossref_primary_10_3390_nu14183851
crossref_primary_10_1016_j_lfs_2019_03_016
crossref_primary_10_1016_j_mito_2014_05_010
crossref_primary_10_1007_s11010_023_04861_6
crossref_primary_10_1016_j_bbcan_2013_10_004
crossref_primary_10_1016_j_bbadis_2022_166565
crossref_primary_10_15252_emmm_201606798
crossref_primary_10_3892_or_2014_3690
crossref_primary_10_3390_cancers13194836
crossref_primary_10_1016_j_soncn_2011_11_008
crossref_primary_10_1016_j_cmet_2016_12_022
crossref_primary_10_1016_j_biosystems_2014_11_001
crossref_primary_10_1186_1471_2407_11_315
crossref_primary_10_1016_j_tibs_2016_02_003
crossref_primary_10_1016_j_jpba_2014_08_020
crossref_primary_10_3390_antiox10040609
crossref_primary_10_4155_bio_2018_0273
crossref_primary_10_2174_1381612825666191022162232
crossref_primary_10_1016_j_ccell_2015_05_007
crossref_primary_10_1002_cmdc_201600483
crossref_primary_10_1016_j_jpba_2020_113871
crossref_primary_10_3390_ijms20081933
crossref_primary_10_3390_cancers17030532
crossref_primary_10_1016_j_neo_2015_08_005
crossref_primary_10_1016_j_pharmthera_2013_01_008
crossref_primary_10_1016_j_ydbio_2021_02_011
crossref_primary_10_1002_ijc_27664
crossref_primary_10_1002_lary_25799
crossref_primary_10_3390_cells9020510
crossref_primary_10_1038_s41467_020_16070_6
crossref_primary_10_1038_s41568_020_00320_2
crossref_primary_10_4161_cc_23421
crossref_primary_10_1371_journal_pone_0036197
crossref_primary_10_1016_j_heliyon_2022_e11866
crossref_primary_10_3390_nu14091722
crossref_primary_10_3389_fonc_2019_01143
crossref_primary_10_1080_10408398_2020_1847030
crossref_primary_10_1111_eci_12591
crossref_primary_10_1016_j_critrevonc_2017_07_001
crossref_primary_10_1080_15592294_2016_1140295
crossref_primary_10_1111_eci_12358
crossref_primary_10_18632_oncotarget_21176
crossref_primary_10_1371_journal_pone_0103834
crossref_primary_10_1111_his_12002
crossref_primary_10_1002_pros_22703
crossref_primary_10_1186_s12986_017_0176_4
crossref_primary_10_1080_15384101_2015_1120930
crossref_primary_10_1016_j_bbcan_2023_188987
crossref_primary_10_3390_ijms22179397
crossref_primary_10_1007_s12272_023_01431_8
crossref_primary_10_1124_jpet_114_220335
Cites_doi 10.1007/BF01832361
10.4161/cc.8.23.10238
10.1055/s-0038-1651366
10.1002/jso.2930290411
10.4161/cbt.8.11.8874
10.1001/archinte.160.6.861
10.1080/152165401753311780
10.1074/jbc.M008340200
10.1023/A:1008384019411
10.1002/1097-0142(19920115)69:2<453::AID-CNCR2820690230>3.0.CO;2-N
10.1016/0277-5379(83)90174-8
10.4161/cc.9.11.11848
10.1016/j.plefa.2003.09.007
10.2353/ajpath.2009.080924
10.4161/cc.9.16.12553
10.1152/ajpheart.00250.2002
10.1001/archotol.1993.01880200103015
10.1002/cncr.2820360920
10.1177/030089168607200106
10.4161/cc.9.12.12048
10.1021/bi00583a011
10.1097/01.TA.0000114087.46566.EB
10.1073/pnas.0506580102
10.1136/pgmj.65.768.801
10.1038/jcbfm.2008.79
10.1001/archinte.1981.00340060124034
10.4161/cbt.10.2.11983
10.1097/00000441-200002000-00011
10.1007/s10549-005-0323-x
10.1093/jjco/hyf050
10.2353/ajpath.2009.080873
10.1179/acb.2006.006
10.4161/cc.8.15.9116
10.1097/00007611-198107000-00023
10.1093/ndt/gfp245
10.4161/cc.9.17.12721
10.1097/00043426-200411000-00021
10.1007/s00592-010-0187-3
10.1097/00007611-198303000-00030
10.1159/000183250
10.18632/aging.100134
10.1007/s10549-008-9982-8
10.4161/cc.9.10.11601
10.1136/pgmj.62.726.297
ContentType Journal Article
Copyright Copyright © 2010 Landes Bioscience 2010
Copyright_xml – notice: Copyright © 2010 Landes Bioscience 2010
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4161/cc.9.17.12731
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-4005
EndPage 3514
ExternalDocumentID PMC3047616
20818174
10_4161_cc_9_17_12731
10912731
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR055660
– fundername: NCI NIH HHS
  grantid: R01 CA120876
– fundername: NCI NIH HHS
  grantid: R01 CA080250
– fundername: NCI NIH HHS
  grantid: R01 CA075503
– fundername: NCI NIH HHS
  grantid: P30 CA056036
– fundername: NCI NIH HHS
  grantid: R01-CA-75503
– fundername: NCI NIH HHS
  grantid: R01-CA-86072
– fundername: NCI NIH HHS
  grantid: P30-CA-56036
– fundername: NCI NIH HHS
  grantid: R01-CA-120876
– fundername: NCI NIH HHS
  grantid: R01-CA-080250
GroupedDBID ---
0BK
0R~
0YH
29B
30N
4.4
53G
5GY
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACFTK
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
F5P
GTTXZ
H13
HYE
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
UNR
V1K
ZA5
AAGME
AAYXX
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CITATION
CWRZV
EMOBN
IPNFZ
LJTGL
PCLFJ
RIG
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c482t-a7f04ab7c84151b11317689da27bd122277471f3315e5be54d15de62b1c587aa3
IEDL.DBID TFW
ISICitedReferencesCount 503
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281621700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4101
1551-4005
IngestDate Tue Nov 04 01:57:39 EST 2025
Thu Sep 04 18:21:05 EDT 2025
Wed Feb 19 02:01:41 EST 2025
Sat Nov 29 03:33:06 EST 2025
Tue Nov 18 21:31:42 EST 2025
Fri Jan 15 03:37:36 EST 2021
Tue May 21 11:32:56 EDT 2019
Mon Oct 20 23:42:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-a7f04ab7c84151b11317689da27bd122277471f3315e5be54d15de62b1c587aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.4161/cc.9.17.12731
PMID 20818174
PQID 755173033
PQPubID 23479
PageCount 9
ParticipantIDs crossref_citationtrail_10_4161_cc_9_17_12731
landesbioscience_primary_cc_article_12731
informaworld_taylorfrancis_310_4161_cc_9_17_12731
proquest_miscellaneous_755173033
pubmed_primary_20818174
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3047616
crossref_primary_10_4161_cc_9_17_12731
PublicationCentury 2000
PublicationDate 9/1/2010
2010/09/01
2010-09-00
2010-Sep-01
20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 9/1/2010
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2010
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References Odeh M (R41) 1989; 65
Cahill GF (R15) 2003; 114
Varanasi UR (R47) 1980; 64
Wesbey G (R48) 1981; 141
Belt JA (R50) 1979; 18
Malhotra P (R31) 1986; 33
Wall BM (R38) 2000; 319
Khan N (R29) 1991; 34
R27
Puchowicz MA (R19) 2008; 28
Hu Q (R51) 2009; 24
R1
R2
R3
R4
R5
R6
R7
R8
R9
Ryberg M (R26) 2001; 12
Colombo GM (R34) 2006; 97
Phan TT (R52) 2004; 57
Ryberg M (R24) 2005; 91
R36
Deeren D (R35) 2006; 61
R39
Raju RN (R45) 1983; 76
Lee YT (R32) 1985; 29
Yeshowardhana (R30) 1986; 72
Thomas CR (R42) 1991; 83
Veech RL (R16) 2004; 70
Zou Z (R18) 2002; 283
R40
R43
Sheriff DS (R44) 1986; 62
Pavlides S (R10) 2010; 2
Nicolucci A (R20) 2010; 47
Stacpoole PW (R46) 1981; 74
Kher A (R28) 1997; 40
Al-Mondhiry H (R33) 1975; 34
Goodstein ML (R22) 1993; 119
Nisman B (R25) 2003; 23
Kachel RG (R49) 1975; 36
Koukourakis MI (R23) 2009; 67
R53
R12
R11
R14
Sauer LA (R21) 1987; 47
R13
R17
Chau WK (R37) 2002; 32
1752638 - Indian J Pathol Microbiol. 1991 Apr;34(2):126-30
20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33
19411448 - Am J Pathol. 2009 Jun;174(6):2023-34
12820483 - Anticancer Res. 2003 Mar-Apr;23(2C):1939-42
1463874 - Breast Cancer Res Treat. 1992;24(1):75-9
19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9
12110638 - Jpn J Clin Oncol. 2002 Jun;32(6):210-4
20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505
15543020 - J Pediatr Hematol Oncol. 2004 Nov;26(11):780-2
3815372 - Cancer Res. 1987 Apr 1;47(7):1756-61
18648382 - J Cereb Blood Flow Metab. 2008 Dec;28(12):1907-16
4079407 - J Surg Oncol. 1985 Aug;29(4):242-8
16855524 - Minerva Med. 2006 Jun;97(3):295
171794 - Thromb Diath Haemorrh. 1975 Sep 30;34(1):181-93
18373191 - Breast Cancer Res Treat. 2009 Mar;114(1):47-62
19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001
3952820 - Tumori. 1986 Feb 28;72(1):35-41
20442453 - Aging (Albany NY). 2010 Apr;2(4):185-99
12813917 - Trans Am Clin Climatol Assoc. 2003;114:149-61; discussion 162-3
6263203 - Arch Intern Med. 1981 May;141(6):816-7
11249054 - Ann Oncol. 2001 Jan;12(1):81-7
2559403 - Postgrad Med J. 1989 Oct;65(768):801
16673614 - Acta Clin Belg. 2006 Jan-Feb;61(1):30-4
19474275 - Nephrol Dial Transplant. 2009 Oct;24(10):3033-41
1106835 - Cancer. 1975 Dec;36(6):2056-9
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
6683630 - Eur J Cancer Clin Oncol. 1983 May;19(5):597-601
10698099 - Am J Med Sci. 2000 Feb;319(2):126-9
1942115 - J Natl Med Assoc. 1991 Sep;83(9):809-18
11457855 - J Biol Chem. 2001 Oct 12;276(41):38121-38
9354001 - Indian J Pathol Microbiol. 1997 Jul;40(3):321-6
20495363 - Cell Cycle. 2010 May 15;9(10):1960-71
14769489 - Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):309-19
12384475 - Am J Physiol Heart Circ Physiol. 2002 Nov;283(5):H1968-74
15952055 - Breast Cancer Res Treat. 2005 Jun;91(3):217-25
15580028 - J Trauma. 2004 Nov;57(5):1032-7
19556867 - Cell Cycle. 2009 Aug;8(15):2420-4
1728374 - Cancer. 1992 Jan 15;69(2):453-6
3012499 - Postgrad Med J. 1986 Apr;62(726):297-8
8343253 - Arch Otolaryngol Head Neck Surg. 1993 Aug;119(8):897-902
11569918 - IUBMB Life. 2001 Apr;51(4):241-7
20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19
19088479 - Gynecol Obstet Invest. 2009;67(3):162-8
20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76
7471117 - Cancer Treat Rep. 1980;64(12):1283-5
19411449 - Am J Pathol. 2009 Jun;174(6):2035-43
38832 - Biochemistry. 1979 Aug 7;18(16):3506-11
10737287 - Arch Intern Med. 2000 Mar 27;160(6):861-8
20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43
6942511 - South Med J. 1981 Jul;74(7):868-70
6828908 - South Med J. 1983 Mar;76(3):397-8
3785469 - Neoplasma. 1986;33(5):641-7
20376506 - Acta Diabetol. 2010 Jun;47(2):87-95
References_xml – ident: R40
  doi: 10.1007/BF01832361
– ident: R7
  doi: 10.4161/cc.8.23.10238
– volume: 34
  start-page: 181
  year: 1975
  ident: R33
  publication-title: Thromb Diath Haemorrh
  doi: 10.1055/s-0038-1651366
– volume: 29
  start-page: 242
  year: 1985
  ident: R32
  publication-title: J Surg Oncol
  doi: 10.1002/jso.2930290411
– ident: R4
  doi: 10.4161/cbt.8.11.8874
– ident: R27
  doi: 10.1001/archinte.160.6.861
– ident: R17
  doi: 10.1080/152165401753311780
– ident: R6
  doi: 10.1074/jbc.M008340200
– volume: 12
  start-page: 81
  year: 2001
  ident: R26
  publication-title: Ann Oncol
  doi: 10.1023/A:1008384019411
– ident: R39
  doi: 10.1002/1097-0142(19920115)69:2<453::AID-CNCR2820690230>3.0.CO;2-N
– ident: R43
  doi: 10.1016/0277-5379(83)90174-8
– ident: R8
  doi: 10.4161/cc.9.11.11848
– volume: 70
  start-page: 309
  year: 2004
  ident: R16
  publication-title: Prostaglandins Leukot Essent Fatty Acids
  doi: 10.1016/j.plefa.2003.09.007
– ident: R3
  doi: 10.2353/ajpath.2009.080924
– ident: R11
  doi: 10.4161/cc.9.16.12553
– volume: 283
  start-page: 1968
  year: 2002
  ident: R18
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00250.2002
– volume: 119
  start-page: 897
  year: 1993
  ident: R22
  publication-title: Arch Otolaryngol Head Neck Surg
  doi: 10.1001/archotol.1993.01880200103015
– volume: 36
  start-page: 2056
  year: 1975
  ident: R49
  publication-title: Cancer
  doi: 10.1002/cncr.2820360920
– volume: 64
  start-page: 1283
  year: 1980
  ident: R47
  publication-title: Cancer Treat Rep
– volume: 40
  start-page: 321
  year: 1997
  ident: R28
  publication-title: Indian J Pathol Microbiol
– volume: 72
  start-page: 35
  year: 1986
  ident: R30
  publication-title: Tumori
  doi: 10.1177/030089168607200106
– ident: R12
  doi: 10.4161/cc.9.12.12048
– volume: 18
  start-page: 3506
  year: 1979
  ident: R50
  publication-title: Biochemistry
  doi: 10.1021/bi00583a011
– volume: 57
  start-page: 1032
  year: 2004
  ident: R52
  publication-title: J Trauma
  doi: 10.1097/01.TA.0000114087.46566.EB
– ident: R53
  doi: 10.1073/pnas.0506580102
– volume: 65
  start-page: 801
  year: 1989
  ident: R41
  publication-title: Postgrad Med J
  doi: 10.1136/pgmj.65.768.801
– volume: 28
  start-page: 1907
  year: 2008
  ident: R19
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2008.79
– volume: 141
  start-page: 816
  year: 1981
  ident: R48
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.1981.00340060124034
– volume: 83
  start-page: 809
  year: 1991
  ident: R42
  publication-title: J Natl Med Assoc
– ident: R2
  doi: 10.4161/cbt.10.2.11983
– volume: 114
  start-page: 149
  year: 2003
  ident: R15
  publication-title: Trans Am Clin Climatol Assoc
– volume: 319
  start-page: 126
  year: 2000
  ident: R38
  publication-title: Am J Med Sci
  doi: 10.1097/00000441-200002000-00011
– volume: 91
  start-page: 217
  year: 2005
  ident: R24
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-005-0323-x
– volume: 32
  start-page: 210
  year: 2002
  ident: R37
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hyf050
– ident: R1
  doi: 10.2353/ajpath.2009.080873
– volume: 61
  start-page: 30
  year: 2006
  ident: R35
  publication-title: Acta Clin Belg
  doi: 10.1179/acb.2006.006
– ident: R5
  doi: 10.4161/cc.8.15.9116
– volume: 74
  start-page: 868
  year: 1981
  ident: R46
  publication-title: South Med J
  doi: 10.1097/00007611-198107000-00023
– volume: 24
  start-page: 3033
  year: 2009
  ident: R51
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/gfp245
– ident: R13
  doi: 10.4161/cc.9.17.12721
– ident: R36
  doi: 10.1097/00043426-200411000-00021
– volume: 34
  start-page: 126
  year: 1991
  ident: R29
  publication-title: Indian J Pathol Microbiol
– volume: 47
  start-page: 87
  year: 2010
  ident: R20
  publication-title: Acta Diabetol
  doi: 10.1007/s00592-010-0187-3
– volume: 76
  start-page: 397
  year: 1983
  ident: R45
  publication-title: South Med J
  doi: 10.1097/00007611-198303000-00030
– volume: 67
  start-page: 162
  year: 2009
  ident: R23
  publication-title: Gynecol Obstet Invest
  doi: 10.1159/000183250
– volume: 33
  start-page: 641
  year: 1986
  ident: R31
  publication-title: Neoplasma
– volume: 23
  start-page: 1939
  year: 2003
  ident: R25
  publication-title: Anticancer Res
– volume: 2
  start-page: 185
  year: 2010
  ident: R10
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100134
– ident: R14
  doi: 10.1007/s10549-008-9982-8
– volume: 97
  start-page: 295
  year: 2006
  ident: R34
  publication-title: Minerva Med
– ident: R9
  doi: 10.4161/cc.9.10.11601
– volume: 47
  start-page: 1756
  year: 1987
  ident: R21
  publication-title: Cancer Res
– volume: 62
  start-page: 297
  year: 1986
  ident: R44
  publication-title: Postgrad Med J
  doi: 10.1136/pgmj.62.726.297
– reference: 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43
– reference: 15580028 - J Trauma. 2004 Nov;57(5):1032-7
– reference: 12110638 - Jpn J Clin Oncol. 2002 Jun;32(6):210-4
– reference: 12813917 - Trans Am Clin Climatol Assoc. 2003;114:149-61; discussion 162-3
– reference: 4079407 - J Surg Oncol. 1985 Aug;29(4):242-8
– reference: 6683630 - Eur J Cancer Clin Oncol. 1983 May;19(5):597-601
– reference: 18373191 - Breast Cancer Res Treat. 2009 Mar;114(1):47-62
– reference: 10737287 - Arch Intern Med. 2000 Mar 27;160(6):861-8
– reference: 20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43
– reference: 20376506 - Acta Diabetol. 2010 Jun;47(2):87-95
– reference: 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34
– reference: 1106835 - Cancer. 1975 Dec;36(6):2056-9
– reference: 14769489 - Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):309-19
– reference: 1728374 - Cancer. 1992 Jan 15;69(2):453-6
– reference: 3952820 - Tumori. 1986 Feb 28;72(1):35-41
– reference: 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001
– reference: 11457855 - J Biol Chem. 2001 Oct 12;276(41):38121-38
– reference: 11249054 - Ann Oncol. 2001 Jan;12(1):81-7
– reference: 3815372 - Cancer Res. 1987 Apr 1;47(7):1756-61
– reference: 1942115 - J Natl Med Assoc. 1991 Sep;83(9):809-18
– reference: 18648382 - J Cereb Blood Flow Metab. 2008 Dec;28(12):1907-16
– reference: 9354001 - Indian J Pathol Microbiol. 1997 Jul;40(3):321-6
– reference: 6942511 - South Med J. 1981 Jul;74(7):868-70
– reference: 1752638 - Indian J Pathol Microbiol. 1991 Apr;34(2):126-30
– reference: 20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19
– reference: 10698099 - Am J Med Sci. 2000 Feb;319(2):126-9
– reference: 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33
– reference: 16855524 - Minerva Med. 2006 Jun;97(3):295
– reference: 19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9
– reference: 6828908 - South Med J. 1983 Mar;76(3):397-8
– reference: 38832 - Biochemistry. 1979 Aug 7;18(16):3506-11
– reference: 11569918 - IUBMB Life. 2001 Apr;51(4):241-7
– reference: 3012499 - Postgrad Med J. 1986 Apr;62(726):297-8
– reference: 20495363 - Cell Cycle. 2010 May 15;9(10):1960-71
– reference: 19474275 - Nephrol Dial Transplant. 2009 Oct;24(10):3033-41
– reference: 19088479 - Gynecol Obstet Invest. 2009;67(3):162-8
– reference: 16673614 - Acta Clin Belg. 2006 Jan-Feb;61(1):30-4
– reference: 12820483 - Anticancer Res. 2003 Mar-Apr;23(2C):1939-42
– reference: 2559403 - Postgrad Med J. 1989 Oct;65(768):801
– reference: 12384475 - Am J Physiol Heart Circ Physiol. 2002 Nov;283(5):H1968-74
– reference: 15543020 - J Pediatr Hematol Oncol. 2004 Nov;26(11):780-2
– reference: 3785469 - Neoplasma. 1986;33(5):641-7
– reference: 19556867 - Cell Cycle. 2009 Aug;8(15):2420-4
– reference: 171794 - Thromb Diath Haemorrh. 1975 Sep 30;34(1):181-93
– reference: 7471117 - Cancer Treat Rep. 1980;64(12):1283-5
– reference: 1463874 - Breast Cancer Res Treat. 1992;24(1):75-9
– reference: 20442453 - Aging (Albany NY). 2010 Apr;2(4):185-99
– reference: 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505
– reference: 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76
– reference: 8343253 - Arch Otolaryngol Head Neck Surg. 1993 Aug;119(8):897-902
– reference: 6263203 - Arch Intern Med. 1981 May;141(6):816-7
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 15952055 - Breast Cancer Res Treat. 2005 Jun;91(3):217-25
SSID ssj0028791
Score 2.5186455
Snippet Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic...
Previously, we proposed a new model for understanding the “Warburg effect” in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3506
SubjectTerms 3-Hydroxybutyric Acid - metabolism
3-Hydroxybutyric Acid - pharmacology
Animals
Autophagy
Binding
Biology
Bioscience
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Calcium
Cancer
Cell
Cell Line, Tumor
Cell Movement
Cycle
Female
Glycolysis
Humans
Lactic Acid - pharmacology
Landes
Lung Neoplasms - pathology
Lung Neoplasms - secondary
Mice
Mitochondria - metabolism
Organogenesis
Oxidative Phosphorylation
Proteins
Stromal Cells - metabolism
Transplantation, Heterologous
Up-Regulation
Subtitle Evidence that epithelial cancer cells use oxidative mitochondrial metabolism
Title Ketones and lactate "fuel" tumor growth and metastasis
URI https://www.tandfonline.com/doi/abs/10.4161/cc.9.17.12731
http://www.landesbioscience.com/journals/cc/article/12731/
https://www.ncbi.nlm.nih.gov/pubmed/20818174
https://www.proquest.com/docview/755173033
https://pubmed.ncbi.nlm.nih.gov/PMC3047616
Volume 9
WOSCitedRecordID wos000281621700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1551-4005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028791
  issn: 1538-4101
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0KOhD67dptYQigmDOm3xt8qiHR0EoPlQ8n5b9tAfXXLkkhf733dnkwl31XvQlLzs7SWZndmayk98AvLOCSWVSFUljZZTaNIskxiqKhTGoEoGi0L7ZBDs7K2az8vtGqy8qq6Qc2nZAEX6vJuMW0ncgoXD8k1KjcoRshM71UuLjXD71Ljif_hxSrYKVPVJqEaVO6zp0zT9nb3mjLazSx3BApYV0StOjSpq_BaF3ayk3nNP04D9e6wns9xFp-LlToadwz1TP4GHXo_LmOeTfDOF116HjGy6EouA0PLGtWZyETXu5XIW_XSbfXPjxS9MIF27W8_oF_Jh-PZ-cRn2zhUilRdxEgtlxKiRThXPpKBFdYJEXpRYxkxrpj1lKX22SYGYyabJUY6ZNHktUWcGESF7CXuUe5zWEuhTZWDFEpnSaKFuOS6kNkru0aJkO4ONa6Fz1SOTUEGPBXUZCouBK8ZIj414UAbwfyK86CI5dhLi5grzx3zxs16CEJzvmRHeXebjJl2XVKjo_mU8mfsaVtgF82EnvGPfmvuYdrvWFO6MlTqIyy7bmzMWpbmtNkgBedeozMIkJY9CliQGwLcUaCAgPfHukml94XHA6Qc0xP_wHMRzBo64sgorn3sBes2rNW3igrpt5vTqG--Nfp-7KZsWxt7NbfsEr6A
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZQAVEOlGcJz6hCSEidZZ3XJEdYUS1qWXEoUjmN5klX2marTYLEv2ecZKNuYS9wzXicxGPH9ozzGeCNk1xpm2imrFMscUnKFEaaRdJa1LFEmZu22QSfzfKzs-JrX1VZ9WWVlEO7Diii_VaTcdNmNFk4xePvtR4VI-Qj9L7XZz43U-qY7XV5_H06JFv-Uo-VmrPE612Hr_nn9A1_tIFWehf2qLiQzml6XEn7tzD0ejXlFfd0tPc_L3Yf7vVBafih06IHcMOWD-F216by1yPIji1BdlehZxwupKb4NDxwjV0chHVzsVyFP3wyX5-34xe2lj7irObVY_h29Ol0MmV9vwWmkzyqmeRunEjFde69OipEH1tkeWFkxJVB-mmWMlgXx5jaVNk0MZgam0UKtV8BKeMnsFP6x3kKoSlkOtYckWuTxNoV40IZi-QxHTpuAjhcS13oHoycemIshE9KSBRCa1EI5KIVRQBvB_LLDoVjGyFeXUJRt9serutRIuItc9j1dR5u8nFZNpqOUOaTSTvj0rgA3m2l94x7i1_zDtcKI7zdEidZ2mVTCe5DVf91jeMA9jv9GZhEBDPoM8UA-IZmDQQECb45Us7PW2hwOkTNMHv2D2J4DXemp19OxMnn2fFz2O2qJKiW7gXs1KvGvoRb-mc9r1avWkP7DcKrLf0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6h8lA5UF4F87QqhITEhoxfax8hEIGKoh6K6G21TxopdarYRuLfs2M7VlLIBc7eHduzMzvfeMffALxykittE82UdYolLkmZwkizSFqLOpYoc9M2m-CzWX52VpxstPqiskrKoV1HFNHu1eTcl8aRgxMcf6f1qBghH6EPvT7xue4hc0Z51-n0-5Br5bzoqVJzlniz6-g1_5y-FY62yEpvwwHVFtIxTU8raf-GQq8WU25Ep-nBf7zXXbjTQ9LwfWdD9-CaLe_Dza5J5a8HkB1bIuyuQi83XEhN6DQ8co1dHIV1c7FchT98Kl-ft9cvbC093qzm1UP4Nv10OvnM-m4LTCd5VDPJ3TiRiuvcx3RUiB5ZZHlhZMSVQfpllvJXF8eY2lTZNDGYGptFCnWacynjQ9gr_eM8htAUMh1rjsi1SWLtinGhjEWKlw4dNwG8XStd6J6KnDpiLIRPSUgVQmtRCOSiVUUAr4fhlx0Hx66BuLmCom4_eriuQ4mId8xhV5d5uMmHZdloOkCZTybtDL9aAbzZOd4L7v19LTtc24vwXkuSZGmXTSW4B6p-b43jAB515jMIiYhk0OeJAfAtwxoGECH49pVyft4Sg9MRaobZk39Qw0u4dfJxKr5-mR0_hf2uRIIK6Z7BXr1q7HO4oX_W82r1onWz34dOLOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketones+and+lactate+%22fuel%22+tumor+growth+and+metastasis%3A+Evidence+that+epithelial+cancer+cells+use+oxidative+mitochondrial+metabolism&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Bonuccelli%2C+Gloria&rft.au=Tsirigos%2C+Aristotelis&rft.au=Whitaker-Menezes%2C+Diana&rft.au=Pavlides%2C+Stephanos&rft.date=2010-09-01&rft.issn=1551-4005&rft.eissn=1551-4005&rft.volume=9&rft.issue=17&rft.spage=3506&rft_id=info:doi/10.4161%2Fcc.9.17.12731&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon