Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond

Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis Vol. 25; no. 3; pp. 563 - 582
Main Author: Ophus, Colin
Format: Journal Article
Language:English
Published: New York, USA Cambridge University Press 01.06.2019
Oxford University Press
Subjects:
ISSN:1431-9276, 1435-8115, 1435-8115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.
AbstractList Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.
Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.
Author Ophus, Colin
Author_xml – sequence: 1
  givenname: Colin
  orcidid: 0000-0003-2348-8558
  surname: Ophus
  fullname: Ophus, Colin
  email: cophus@gmail.com
  organization: National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31084643$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvFCEUx4mpse3qB_BiJvFSD6M8YIDxpu1uNWnVZNfzhAFmSzMDK8we5uJnl2m3aVKjJ17g9wfe752iIx-8Reg14PeAQXxYA6NQE8GhxhizWjxDJ3mrKiVAdXRXQzmfH6PTlG4zQ7HgL9AxBSwZZ_QE_V6FfSwv3GB9csGrvlhr5b3z22ITlU-DS_N-seytHmMurp2OIemwm4ozdlGuN8vrdx-LVQzDY_Kb8sG4rotKj3N4DMWPcdI3YRvV7mYqlDfFZzsFb16i553qk311WBfo52q5Of9SXn2__Hr-6arUTJKxVKSDmlPDOK20sIpgZjpTcy21zo1UbcexwbJuLecgZWsJCAK1EayzwkhCF-js_t5dDL_2No1Nbkzbvlfehn1qCKEgmSD5kQV6-wS9zYqymUzRKgvMPutMvTlQ-3awptlFN6g4NQ9mMyDugVlXirZrtBvVrGOMyvUN4GaeYfPXDHMSniQfLv9fhh4yamijM1v7-Ot_p_4AxTCroA
CitedBy_id crossref_primary_10_3390_sym16030301
crossref_primary_10_1103_PhysRevApplied_19_034036
crossref_primary_10_1002_smtd_202300258
crossref_primary_10_1017_S1431927622012090
crossref_primary_10_1038_s41563_023_01783_y
crossref_primary_10_1051_bioconf_202412926011
crossref_primary_10_1093_mam_ozae044_315
crossref_primary_10_1093_mam_ozaf048_059
crossref_primary_10_1007_s41871_023_00193_7
crossref_primary_10_1002_jemt_23556
crossref_primary_10_1002_aenm_202404057
crossref_primary_10_1017_S1431927620016384
crossref_primary_10_1126_science_adz7157
crossref_primary_10_1016_j_matt_2021_05_005
crossref_primary_10_1017_S1431927621001306
crossref_primary_10_1016_j_matdes_2025_114282
crossref_primary_10_1016_j_actamat_2022_118426
crossref_primary_10_1093_mam_ozaf048_065
crossref_primary_10_1002_admi_202201189
crossref_primary_10_1109_JSEN_2023_3315357
crossref_primary_10_1093_mam_ozaf048_1113
crossref_primary_10_1093_mam_ozaf048_1115
crossref_primary_10_1016_j_matchar_2023_113559
crossref_primary_10_1017_S1431927622010911
crossref_primary_10_1002_aenm_202404280
crossref_primary_10_1038_s41427_024_00577_1
crossref_primary_10_1093_mam_ozaf048_067
crossref_primary_10_1017_S1431927621000441
crossref_primary_10_1111_maps_14124
crossref_primary_10_1007_s12274_023_6392_5
crossref_primary_10_1093_mam_ozaf048_073
crossref_primary_10_1038_s41467_022_30413_5
crossref_primary_10_1038_s41467_023_42947_3
crossref_primary_10_1038_s41586_024_08278_z
crossref_primary_10_1093_mam_ozaf048_197
crossref_primary_10_59717_j_xinn_mater_2024_100068
crossref_primary_10_1093_mam_ozaf048_1127
crossref_primary_10_1007_s40820_023_01180_9
crossref_primary_10_1002_advs_202508554
crossref_primary_10_1021_acs_nanolett_4c06697
crossref_primary_10_1002_adts_202300247
crossref_primary_10_1017_S1431927621012538
crossref_primary_10_1017_S143192762200201X
crossref_primary_10_1038_s41467_022_34335_0
crossref_primary_10_1017_S1431927622002148
crossref_primary_10_1002_advs_202500706
crossref_primary_10_1017_S1431927621000799
crossref_primary_10_1021_acscentsci_2c01137
crossref_primary_10_1038_s41563_022_01412_0
crossref_primary_10_1063_5_0266507
crossref_primary_10_1002_ppsc_202100087
crossref_primary_10_1016_j_ccr_2022_214826
crossref_primary_10_1016_j_actamat_2023_118721
crossref_primary_10_1017_S1431927622002276
crossref_primary_10_1007_s11837_021_05034_w
crossref_primary_10_1093_mam_ozae044_329
crossref_primary_10_1002_adem_202500716
crossref_primary_10_1017_S1431927622002392
crossref_primary_10_1039_D3NH00494E
crossref_primary_10_1093_micmic_ozad067_714
crossref_primary_10_1093_mam_ozaf048_288
crossref_primary_10_1093_mam_ozaf048_289
crossref_primary_10_1002_sstr_202400691
crossref_primary_10_1093_mam_ozae044_204
crossref_primary_10_1093_mam_ozaf048_049
crossref_primary_10_1002_adfm_202214390
crossref_primary_10_1016_j_ultramic_2023_113777
crossref_primary_10_1093_mam_ozaf048_292
crossref_primary_10_1364_AO_487694
crossref_primary_10_1107_S2053273325000142
crossref_primary_10_1002_adma_202308832
crossref_primary_10_1088_1674_1056_ad8a4a
crossref_primary_10_1109_TII_2025_3528550
crossref_primary_10_1016_j_pmatsci_2022_100947
crossref_primary_10_1038_s41467_024_48082_x
crossref_primary_10_3390_sym17020239
crossref_primary_10_1038_s41467_021_21363_5
crossref_primary_10_1038_s42004_025_01513_2
crossref_primary_10_1557_mrs_2019_288
crossref_primary_10_1088_1361_6463_ad8a6b
crossref_primary_10_1557_mrs_2019_284
crossref_primary_10_1093_mam_ozae044_879
crossref_primary_10_1093_micmic_ozad067_988
crossref_primary_10_1021_jacs_0c08773
crossref_primary_10_1073_pnas_2019068118
crossref_primary_10_1038_s41586_022_05540_0
crossref_primary_10_1017_S1431927622002240
crossref_primary_10_1038_s41427_021_00336_6
crossref_primary_10_1093_micmic_ozad067_1090
crossref_primary_10_1038_s41467_024_52403_5
crossref_primary_10_1146_annurev_matsci_080222_030535
crossref_primary_10_1002_smtd_202301304
crossref_primary_10_1016_j_ultramic_2025_114118
crossref_primary_10_1038_s41524_022_00793_9
crossref_primary_10_1017_S1431927622002136
crossref_primary_10_1038_s44160_025_00787_7
crossref_primary_10_1063_1_5114706
crossref_primary_10_1017_S1431927622002495
crossref_primary_10_1116_6_0001451
crossref_primary_10_1016_j_sbi_2023_102730
crossref_primary_10_1016_j_commatsci_2022_111527
crossref_primary_10_1016_j_ssi_2024_116572
crossref_primary_10_1111_jmi_13275
crossref_primary_10_1002_admi_201901944
crossref_primary_10_1093_mam_ozaf048_273
crossref_primary_10_1111_jmi_13276
crossref_primary_10_1017_S1431927621012861
crossref_primary_10_1088_2053_1583_adfa31
crossref_primary_10_1016_j_commatsci_2022_111642
crossref_primary_10_1116_6_0003518
crossref_primary_10_1002_adfm_202207406
crossref_primary_10_1002_aisy_202400986
crossref_primary_10_1016_j_ultramic_2024_114066
crossref_primary_10_1002_admi_202201039
crossref_primary_10_1016_j_jcrysgro_2022_126972
crossref_primary_10_1016_j_ultramic_2025_114122
crossref_primary_10_1557_mrs_2020_230
crossref_primary_10_1002_smtd_202400081
crossref_primary_10_1017_S1431927622002586
crossref_primary_10_3390_ma14247550
crossref_primary_10_1017_S1431927622002343
crossref_primary_10_1016_j_matchar_2025_115165
crossref_primary_10_1093_mam_ozaf048_598
crossref_primary_10_1016_j_scriptamat_2025_116719
crossref_primary_10_1093_mam_ozae044_531
crossref_primary_10_1038_s41467_023_38504_7
crossref_primary_10_1016_j_matchar_2021_111512
crossref_primary_10_1002_smll_202107620
crossref_primary_10_1017_S1431927621000635
crossref_primary_10_1021_acsaenm_5c00343
crossref_primary_10_1016_j_ultramic_2024_114059
crossref_primary_10_1039_D2NR03791B
crossref_primary_10_1038_s41524_025_01766_4
crossref_primary_10_1016_j_ultramic_2024_114040
crossref_primary_10_1017_S143192762001911X
crossref_primary_10_1093_mam_ozae044_889
crossref_primary_10_1038_s41467_024_53346_7
crossref_primary_10_1017_S1431927622002471
crossref_primary_10_1093_mam_ozae044_883
crossref_primary_10_1073_pnas_2006975117
crossref_primary_10_1038_s41467_025_56215_z
crossref_primary_10_1557_s43578_023_01216_1
crossref_primary_10_1093_micmic_ozad067_1088
crossref_primary_10_1093_micmic_ozad067_1089
crossref_primary_10_1002_smtd_202301539
crossref_primary_10_1016_j_ultramic_2023_113696
crossref_primary_10_1107_S2052252523009661
crossref_primary_10_1093_micmic_ozad067_782
crossref_primary_10_1039_D1RA09152B
crossref_primary_10_1002_smll_202504839
crossref_primary_10_1017_S1431927621002117
crossref_primary_10_1016_j_jcat_2024_115480
crossref_primary_10_1017_S1431927621007923
crossref_primary_10_1007_s10853_022_07331_4
crossref_primary_10_1038_s41565_023_01595_w
crossref_primary_10_1093_mam_ozae044_950
crossref_primary_10_1088_1361_6463_abc77d
crossref_primary_10_1051_bioconf_202412930004
crossref_primary_10_1016_j_jnoncrysol_2023_122197
crossref_primary_10_1063_5_0015532
crossref_primary_10_1016_j_ultramic_2024_114036
crossref_primary_10_1017_S1431927622011394
crossref_primary_10_1038_s41467_023_41138_4
crossref_primary_10_1016_j_actamat_2025_121028
crossref_primary_10_1017_S1431927622002331
crossref_primary_10_1002_adfm_202401365
crossref_primary_10_1039_D2NH00567K
crossref_primary_10_1063_4_0000540
crossref_primary_10_1093_mam_ozaf048_103
crossref_primary_10_1093_mam_ozae044_940
crossref_primary_10_1103_PhysRevD_111_042005
crossref_primary_10_1093_micmic_ozad067_774
crossref_primary_10_1038_s41699_025_00524_w
crossref_primary_10_1017_S1431927622012259
crossref_primary_10_1016_j_ultramic_2025_114203
crossref_primary_10_1017_S143192762200232X
crossref_primary_10_1016_j_ultramic_2025_114205
crossref_primary_10_1088_1361_6528_acf938
crossref_primary_10_1017_S1431927620014701
crossref_primary_10_1093_micmic_ozad089
crossref_primary_10_1038_s41524_024_01265_y
crossref_primary_10_1016_j_ultramic_2019_112890
crossref_primary_10_1016_j_xcrp_2025_102653
crossref_primary_10_1038_s41467_023_43634_z
crossref_primary_10_1093_mam_ozaf048_673
crossref_primary_10_1063_4_0000430
crossref_primary_10_1107_S1600576724001614
crossref_primary_10_1017_S1431927622011497
crossref_primary_10_1186_s42649_025_00113_7
crossref_primary_10_26599_NR_2025_94907286
crossref_primary_10_1016_j_micron_2022_103304
crossref_primary_10_1016_j_micron_2021_103141
crossref_primary_10_1016_j_apsusc_2022_152844
crossref_primary_10_1063_5_0206814
crossref_primary_10_1016_j_matchar_2023_113032
crossref_primary_10_1016_j_jallcom_2025_179694
crossref_primary_10_1038_s41699_021_00258_5
crossref_primary_10_1016_j_cemconres_2025_107840
crossref_primary_10_1017_S1431927622002434
crossref_primary_10_1103_PhysRevApplied_15_044025
crossref_primary_10_1021_acs_nanolett_5c04031
crossref_primary_10_1038_s41467_022_30923_2
crossref_primary_10_26599_NR_2025_94907398
crossref_primary_10_1017_S1431927620024873
crossref_primary_10_1073_pnas_2309240120
crossref_primary_10_1038_s41467_020_18408_6
crossref_primary_10_1038_s41563_019_0387_3
crossref_primary_10_1017_S1431927621012125
crossref_primary_10_3390_ma16031123
crossref_primary_10_1093_micmic_ozad070
crossref_primary_10_1038_s41598_024_54661_1
crossref_primary_10_1039_D0NR06660E
crossref_primary_10_1093_mam_ozaf048_536
crossref_primary_10_1017_S1431927622000101
crossref_primary_10_1017_S1431927620014725
crossref_primary_10_1093_micmic_ozad067_341
crossref_primary_10_1002_smtd_202500590
crossref_primary_10_1038_s41598_024_63060_5
crossref_primary_10_1051_bioconf_202412904027
crossref_primary_10_1093_mam_ozae044_912
crossref_primary_10_1093_mam_ozaf048_891
crossref_primary_10_1093_mam_ozaf048_777
crossref_primary_10_1111_jace_19099
crossref_primary_10_1002_ange_202105772
crossref_primary_10_1093_jbmrpl_ziae176
crossref_primary_10_1017_S1431927622002409
crossref_primary_10_1007_s11837_025_07242_0
crossref_primary_10_1038_s41467_024_54169_2
crossref_primary_10_1021_acs_jcim_5c00223
crossref_primary_10_1021_jacs_3c11523
crossref_primary_10_3390_nano11040962
crossref_primary_10_1038_s41467_025_62264_1
crossref_primary_10_1063_5_0085844
crossref_primary_10_3390_dj11040098
crossref_primary_10_1088_1742_6596_1730_1_012039
crossref_primary_10_1038_s41467_023_44093_2
crossref_primary_10_1063_5_0233167
crossref_primary_10_1002_inf2_12425
crossref_primary_10_1017_S1431927620024411
crossref_primary_10_1038_s41467_025_61211_4
crossref_primary_10_3390_nano13111742
crossref_primary_10_1017_S1431927621012587
crossref_primary_10_1002_anie_202216898
crossref_primary_10_1017_S1431927620024770
crossref_primary_10_1038_s41563_022_01381_4
crossref_primary_10_1038_s44160_025_00871_y
crossref_primary_10_1111_ijag_16644
crossref_primary_10_1063_5_0101908
crossref_primary_10_1093_micmic_ozad067_122
crossref_primary_10_1017_S1431927622000320
crossref_primary_10_1093_mam_ozae044_939
crossref_primary_10_1088_2515_7639_acf524
crossref_primary_10_1017_S1431927622011217
crossref_primary_10_1093_mam_ozae044_933
crossref_primary_10_1093_mam_ozae044_811
crossref_primary_10_1093_mam_ozae044_931
crossref_primary_10_1051_bioconf_202412904043
crossref_primary_10_1017_S1431927621001446
crossref_primary_10_1017_S143192762200839X
crossref_primary_10_1002_smtd_202400801
crossref_primary_10_1017_S1431927621000477
crossref_primary_10_1038_s41467_023_36950_x
crossref_primary_10_1017_S1431927620024307
crossref_primary_10_1103_PhysRevResearch_4_033052
crossref_primary_10_1002_crat_202200211
crossref_primary_10_1002_adfm_202401361
crossref_primary_10_3390_sym15071459
crossref_primary_10_1017_S1431927620015603
crossref_primary_10_1093_mam_ozae044_928
crossref_primary_10_1364_AO_510143
crossref_primary_10_1093_mam_ozae044_924
crossref_primary_10_1016_j_micron_2024_103703
crossref_primary_10_1093_mam_ozae044_922
crossref_primary_10_3390_bios15060371
crossref_primary_10_22201_ceiich_24485691e_2020_25_69617
crossref_primary_10_1557_s43577_023_00643_z
crossref_primary_10_1002_ange_202201837
crossref_primary_10_1093_micmic_ozad067_145
crossref_primary_10_1016_j_micron_2023_103576
crossref_primary_10_1063_5_0146713
crossref_primary_10_1093_mam_ozaf019
crossref_primary_10_1002_smll_202304781
crossref_primary_10_1093_micmic_ozad021
crossref_primary_10_1016_j_nantod_2025_102766
crossref_primary_10_1017_S1431927620014762
crossref_primary_10_1017_S143192762100533X
crossref_primary_10_1103_PhysRevResearch_3_023159
crossref_primary_10_1093_micmic_ozad067_147
crossref_primary_10_1038_s41563_024_02016_6
crossref_primary_10_1093_jmicro_dfad006
crossref_primary_10_1002_aisy_202200428
crossref_primary_10_1021_acsnano_5c05548
crossref_primary_10_1017_S143192762002334X
crossref_primary_10_1021_acsnano_5c03369
crossref_primary_10_1093_micmic_ozac050
crossref_primary_10_1017_S1431927622002604
crossref_primary_10_1039_D2NH00377E
crossref_primary_10_1002_smll_202303697
crossref_primary_10_1002_adma_202406914
crossref_primary_10_1002_aenm_202302830
crossref_primary_10_1017_S1431927621007753
crossref_primary_10_3390_nano10020384
crossref_primary_10_1093_micmic_ozad067_134
crossref_primary_10_1093_micmic_ozad067_138
crossref_primary_10_1093_mam_ozaf048_865
crossref_primary_10_1088_2515_7639_ac1ab8
crossref_primary_10_1093_jmicro_dfab057
crossref_primary_10_1093_mam_ozae050
crossref_primary_10_1038_s43586_022_00095_w
crossref_primary_10_1103_p6qm_hpvk
crossref_primary_10_1038_s41589_025_02020_0
crossref_primary_10_1038_s41467_020_20694_z
crossref_primary_10_1038_s41524_024_01428_x
crossref_primary_10_1002_adma_202413691
crossref_primary_10_1016_j_msea_2025_147951
crossref_primary_10_1002_smll_202208162
crossref_primary_10_1126_science_ado8579
crossref_primary_10_1007_s40830_025_00554_9
crossref_primary_10_1111_jmi_13407
crossref_primary_10_1111_jmi_13409
crossref_primary_10_3390_cryst14030275
crossref_primary_10_1016_j_nantod_2025_102784
crossref_primary_10_1038_s41467_023_41780_y
crossref_primary_10_1007_s40242_022_2245_0
crossref_primary_10_1038_s41565_024_01787_y
crossref_primary_10_1093_mam_ozae027
crossref_primary_10_1038_s41524_022_00884_7
crossref_primary_10_1021_jacs_2c12673
crossref_primary_10_1038_s41524_024_01414_3
crossref_primary_10_1017_S1431927621005687
crossref_primary_10_1093_mam_ozaf048_711
crossref_primary_10_1051_bioconf_202412910013
crossref_primary_10_1016_j_polymer_2025_128335
crossref_primary_10_1038_s41929_025_01361_2
crossref_primary_10_1016_j_enchem_2023_100105
crossref_primary_10_1038_s41524_023_01133_1
crossref_primary_10_1038_s41524_022_00960_y
crossref_primary_10_1038_s41565_025_01934_z
crossref_primary_10_1038_s41578_023_00638_x
crossref_primary_10_1039_D5MA00337G
crossref_primary_10_1016_j_actamat_2023_119495
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1016_j_jsb_2022_107843
crossref_primary_10_26599_JAC_2023_9220757
crossref_primary_10_1016_j_scriptamat_2022_115159
crossref_primary_10_1063_5_0222102
crossref_primary_10_1093_micmic_ozac027
crossref_primary_10_1017_S1431927621012083
crossref_primary_10_1002_smll_202005447
crossref_primary_10_1016_j_mtnano_2025_100675
crossref_primary_10_1103_PhysRevMaterials_9_044405
crossref_primary_10_1063_5_0143684
crossref_primary_10_1038_s41565_022_01224_y
crossref_primary_10_1146_annurev_matsci_080921_092646
crossref_primary_10_1016_j_mattod_2021_05_006
crossref_primary_10_1016_j_actamat_2023_119243
crossref_primary_10_1093_jmicro_dfab032
crossref_primary_10_1126_science_adk5947
crossref_primary_10_1093_micmic_ozad068
crossref_primary_10_1038_s41563_020_00833_z
crossref_primary_10_1002_pssa_202300148
crossref_primary_10_1093_micmic_ozad064
crossref_primary_10_1016_j_ultramic_2021_113419
crossref_primary_10_1364_OE_551986
crossref_primary_10_1016_j_micron_2025_103819
crossref_primary_10_1038_s41467_025_56521_6
crossref_primary_10_1109_ACCESS_2023_3326074
crossref_primary_10_3390_nano12030337
crossref_primary_10_1093_jmicro_dfaa055
crossref_primary_10_1016_j_ultramic_2021_113423
crossref_primary_10_1051_bioconf_202412907023
crossref_primary_10_1111_jace_19252
crossref_primary_10_1038_s41467_023_39302_x
crossref_primary_10_1051_bioconf_202412907025
crossref_primary_10_1073_pnas_2402129121
crossref_primary_10_3390_cryst11080878
crossref_primary_10_1002_marc_202500450
crossref_primary_10_1017_S1431927620016517
crossref_primary_10_1017_S1431927621005894
crossref_primary_10_1088_2053_1583_acf3f9
crossref_primary_10_1093_micmic_ozad056
crossref_primary_10_1038_s41598_025_97183_0
crossref_primary_10_1038_s41598_022_26877_6
crossref_primary_10_1016_j_ultramic_2020_113134
crossref_primary_10_1103_RevModPhys_97_025006
crossref_primary_10_1016_j_ultramic_2020_113132
crossref_primary_10_1017_S1431927622011400
crossref_primary_10_1093_micmic_ozad052
crossref_primary_10_1017_S1431927622001726
crossref_primary_10_1017_S1431927622000757
crossref_primary_10_1016_j_coelec_2022_101052
crossref_primary_10_1016_j_ultramic_2020_113137
crossref_primary_10_1016_j_ultramic_2020_113015
crossref_primary_10_1093_mam_ozae109
crossref_primary_10_1093_micmic_ozad045
crossref_primary_10_1038_s41524_023_01142_0
crossref_primary_10_1038_s41598_023_32454_2
crossref_primary_10_1002_smtd_202501065
crossref_primary_10_1016_j_micron_2024_103678
crossref_primary_10_1038_s41524_024_01285_8
crossref_primary_10_3390_sym17081288
crossref_primary_10_1017_S1431927621007947
crossref_primary_10_1107_S1600576723005927
crossref_primary_10_3390_sym17081287
crossref_primary_10_1017_S1431927621004797
crossref_primary_10_1111_jmi_12876
crossref_primary_10_1021_jacs_4c01688
crossref_primary_10_1016_j_ultramic_2020_113123
crossref_primary_10_1039_D2NR03614B
crossref_primary_10_1007_s11467_019_0942_z
crossref_primary_10_1038_s41524_021_00601_w
crossref_primary_10_1016_j_ultramic_2021_113405
crossref_primary_10_1038_s41524_022_00777_9
crossref_primary_10_1038_s43586_025_00413_y
crossref_primary_10_1021_acsnano_4c14988
crossref_primary_10_1016_j_jconrel_2022_11_056
crossref_primary_10_1039_D1NR01442K
crossref_primary_10_1093_mam_ozae116
crossref_primary_10_1038_s41563_021_00973_w
crossref_primary_10_1017_S1431927620016414
crossref_primary_10_1017_S1431927621007935
crossref_primary_10_1017_S1431927621004785
crossref_primary_10_1126_science_adl2029
crossref_primary_10_1051_bioconf_202412907034
crossref_primary_10_1146_annurev_physchem_083122_105226
crossref_primary_10_1016_j_msea_2024_147357
crossref_primary_10_1016_j_actamat_2024_120206
crossref_primary_10_1017_S1431927620024277
crossref_primary_10_1107_S2052252522007904
crossref_primary_10_1093_mam_ozae044_1071
crossref_primary_10_1002_adma_202302543
crossref_primary_10_1021_jacs_5c05117
crossref_primary_10_1017_S1431927621000611
crossref_primary_10_1017_S1431927620015330
crossref_primary_10_1038_s42004_023_00891_9
crossref_primary_10_1038_s42256_022_00555_8
crossref_primary_10_1021_acsnanoscienceau_5c00033
crossref_primary_10_1038_s41586_024_07615_6
crossref_primary_10_1016_j_ultramic_2022_113626
crossref_primary_10_1038_s41524_021_00600_x
crossref_primary_10_1088_2515_7639_ac0ff9
crossref_primary_10_1557_s43577_022_00441_z
crossref_primary_10_1557_s43577_024_00846_y
crossref_primary_10_1002_adfm_202307625
crossref_primary_10_1016_j_ultramic_2022_113627
crossref_primary_10_1063_5_0101895
crossref_primary_10_1063_PT_3_5018
crossref_primary_10_1038_s41598_024_66382_6
crossref_primary_10_1016_j_micron_2025_103868
crossref_primary_10_1093_mam_ozae044_149
crossref_primary_10_1038_s41467_025_58022_y
crossref_primary_10_1016_j_ccr_2019_213116
crossref_primary_10_1017_S1431927620001713
crossref_primary_10_1016_j_ultramic_2020_113175
crossref_primary_10_1016_j_ultramic_2023_113913
crossref_primary_10_1016_j_xinn_2025_101043
crossref_primary_10_1111_jmi_70010
crossref_primary_10_1111_jmi_70011
crossref_primary_10_5194_ejm_37_279_2025
crossref_primary_10_1038_s43246_022_00244_4
crossref_primary_10_1111_jace_20309
crossref_primary_10_1063_5_0035958
crossref_primary_10_1039_D2FD00062H
crossref_primary_10_1021_jacs_0c04468
crossref_primary_10_1038_s41467_024_54482_w
crossref_primary_10_1103_PhysRevApplied_19_054062
crossref_primary_10_1093_mam_ozaf072
crossref_primary_10_1021_acsami_5c08538
crossref_primary_10_35848_1882_0786_ade41b
crossref_primary_10_1038_s41467_023_39304_9
crossref_primary_10_1016_j_ultramic_2020_113160
crossref_primary_10_1021_jacs_2c05989
crossref_primary_10_1016_j_scriptamat_2024_116288
crossref_primary_10_1016_j_msea_2023_145005
crossref_primary_10_1038_s41467_023_40009_2
crossref_primary_10_1002_admi_202500218
crossref_primary_10_1016_j_ultramic_2021_113321
crossref_primary_10_1063_5_0169788
crossref_primary_10_1038_s41467_024_45642_z
crossref_primary_10_1126_science_abf9645
crossref_primary_10_1017_S1431927621007212
crossref_primary_10_1038_s41467_025_61386_w
crossref_primary_10_1073_pnas_2114740119
crossref_primary_10_1002_smll_202411415
crossref_primary_10_1016_j_ultramic_2022_113513
crossref_primary_10_1016_j_ultramic_2022_113517
crossref_primary_10_1088_3050_287X_ae05b6
crossref_primary_10_1016_j_micron_2024_103594
crossref_primary_10_1063_5_0200724
crossref_primary_10_1007_s00216_025_05887_z
crossref_primary_10_1017_S1431927621011946
crossref_primary_10_1021_acs_jpcc_4c08042
crossref_primary_10_1002_anie_202201837
crossref_primary_10_1111_jace_17599
crossref_primary_10_1093_mam_ozae044_119
crossref_primary_10_1016_j_ultramic_2023_113818
crossref_primary_10_1016_j_ultramic_2024_113939
crossref_primary_10_1093_micmic_ozac018
crossref_primary_10_1016_j_ultramic_2023_113702
crossref_primary_10_1093_mam_ozae044_123
crossref_primary_10_1016_j_ultramic_2022_113665
crossref_primary_10_1017_S1431927621001902
crossref_primary_10_1016_j_ultramic_2023_113700
crossref_primary_10_1093_jmicro_dfae018
crossref_primary_10_1007_s11244_022_01577_7
crossref_primary_10_1038_s41467_020_14793_0
crossref_primary_10_1093_mam_ozae044_120
crossref_primary_10_5006_4014
crossref_primary_10_1107_S1600576725005606
crossref_primary_10_1093_mam_ozae088
crossref_primary_10_1016_j_ultramic_2024_113941
crossref_primary_10_1093_mam_ozae086
crossref_primary_10_1016_j_ultramic_2021_113387
crossref_primary_10_1063_5_0055611
crossref_primary_10_1016_j_micron_2025_103785
crossref_primary_10_1016_j_cossms_2023_101108
crossref_primary_10_1002_adfm_202422601
crossref_primary_10_1111_jmi_13315
crossref_primary_10_1038_s41570_023_00469_y
crossref_primary_10_1107_S2053273322000845
crossref_primary_10_1016_j_actamat_2021_116955
crossref_primary_10_1016_j_ultramic_2020_113095
crossref_primary_10_1016_j_ultramic_2023_113715
crossref_primary_10_1038_s41563_021_01191_0
crossref_primary_10_1002_solr_202200127
crossref_primary_10_1007_s11837_024_06475_9
crossref_primary_10_1016_j_ultramic_2021_113395
crossref_primary_10_1038_s41467_024_45696_z
crossref_primary_10_1039_D3QI01998E
crossref_primary_10_2138_am_2020_7479CCBY
crossref_primary_10_1021_acs_nanolett_5c02741
crossref_primary_10_1017_S1431927621006577
crossref_primary_10_1017_S1431927620018309
crossref_primary_10_1088_2515_7639_aba820
crossref_primary_10_1002_adfm_202301026
crossref_primary_10_1093_mam_ozaf048_079
crossref_primary_10_1016_j_ultramic_2023_113718
crossref_primary_10_1016_j_pmatsci_2023_101165
crossref_primary_10_1016_j_pmatsci_2023_101163
crossref_primary_10_1016_j_jallcom_2025_182099
crossref_primary_10_1017_S1431927622007991
crossref_primary_10_1016_j_ultramic_2023_113844
crossref_primary_10_1093_mam_ozaf048_081
crossref_primary_10_1002_ange_202216898
crossref_primary_10_1016_j_ultramic_2020_113088
crossref_primary_10_1016_j_ultramic_2023_113842
crossref_primary_10_1016_j_ultramic_2024_113927
crossref_primary_10_1038_s42256_024_00978_5
crossref_primary_10_1093_mam_ozae044_021
crossref_primary_10_1557_s43577_022_00377_4
crossref_primary_10_1093_mam_ozaf048_085
crossref_primary_10_1111_jmi_13321
crossref_primary_10_1016_j_msea_2023_145287
crossref_primary_10_1021_acs_nanolett_5c02506
crossref_primary_10_1093_mam_ozae064
crossref_primary_10_1093_jmicro_dfad021
crossref_primary_10_1107_S2052252520004030
crossref_primary_10_1039_D5CS00159E
crossref_primary_10_1109_MSP_2021_3120981
crossref_primary_10_1093_mam_ozaf049
crossref_primary_10_1126_science_adg3183
crossref_primary_10_1093_mam_ozaf048_089
crossref_primary_10_1016_j_nantod_2025_102732
crossref_primary_10_1038_s41467_023_40875_w
crossref_primary_10_1088_2515_7639_ad9ad2
crossref_primary_10_1016_j_ultramic_2020_113077
crossref_primary_10_1093_mam_ozaf048_094
crossref_primary_10_1002_anie_202105772
crossref_primary_10_1016_j_jechem_2025_07_037
crossref_primary_10_1016_j_ultramic_2020_113196
crossref_primary_10_1016_j_ultramic_2023_113859
crossref_primary_10_1007_s40242_025_5055_3
crossref_primary_10_1038_s41598_025_01337_z
crossref_primary_10_1039_D5FD00027K
crossref_primary_10_1007_s40242_025_4235_5
crossref_primary_10_1038_s41524_022_00939_9
crossref_primary_10_1093_mam_ozaf045
crossref_primary_10_1016_j_ultramic_2021_113252
crossref_primary_10_1016_j_ultramic_2022_113670
crossref_primary_10_1016_j_ultramic_2021_113253
crossref_primary_10_1002_ijch_202100058
crossref_primary_10_1016_j_ultramic_2021_113256
Cites_doi 10.3390/met8121085
10.1107/S0108767395012876
10.1016/j.ultramic.2016.09.002
10.1038/srep37624
10.1016/j.matchar.2014.08.010
10.1017/S1431927613005849
10.1103/PhysRevLett.108.073901
10.1088/1742-6596/644/1/012032
10.1017/S1431927616003329
10.1017/S1431927617001490
10.1016/S0304-3991(76)91538-2
10.1016/j.ultramic.2016.05.004
10.1063/1.3460106
10.1002/anie.201400625
10.1021/acs.jpcc.5b09524
10.1017/S1431927618003422
10.1063/1.1823034
10.1016/j.ultramic.2016.04.004
10.1016/j.micron.2016.05.008
10.1103/PhysRevB.82.121415
10.1088/0034-4885/42/11/002
10.1017/S143192760210064X
10.1107/S0021889899010894
10.1039/C7EE02443F
10.1093/oxfordjournals.jmicro.a023409
10.1016/j.actamat.2014.07.062
10.1149/1.3546851
10.1021/nn5047053
10.1038/nmat2897
10.1021/ja304079d
10.1063/1.5040496
10.1103/PhysRevLett.111.266101
10.1380/ejssnt.2018.247
10.1093/jmicro/dfy002
10.1103/PhysRevLett.93.023903
10.1016/0304-3991(94)90039-6
10.1016/j.ultramic.2018.06.003
10.1063/1.3225103
10.1016/0968-4328(95)00054-8
10.1016/j.ultramic.2018.09.012
10.1016/0022-3093(79)90033-4
10.1016/j.ultramic.2014.09.013
10.1017/S1431927618001320
10.1063/1.5025686
10.1063/1.4935238
10.1103/PhysRevB.89.064101
10.1016/j.ultramic.2012.10.002
10.1103/PhysRevLett.121.266102
10.1109/IPFA.2009.5232604
10.1017/S1431927607074004
10.1017/S1431927615006881
10.1186/s40679-017-0046-1
10.1107/S0567739469001045
10.1103/PhysRevB.98.121408
10.1088/1748-0221/11/04/P04006
10.1002/crat.201100125
10.1107/S0365110X57002194
10.1107/S0909049505028529
10.1364/JOSAA.29.001606
10.1111/jmi.12007
10.1002/jemt.1060110209
10.1016/j.ultramic.2014.10.013
10.1016/j.ultramic.2010.12.014
10.1017/S1551929512000818
10.1016/0168-9002(89)91111-X
10.1016/j.ultramic.2018.09.010
10.1063/1.1774275
10.1007/978-1-4757-5581-7_15
10.1038/s41467-019-08904-9
10.1098/rsta.1992.0050
10.1107/S010876739700874X
10.1107/S2052252514022283
10.1021/bk-1984-0248.ch017
10.1007/BF01326780
10.1016/0304-3991(94)90091-4
10.1016/0304-3991(93)90105-7
10.1038/nmeth.2472
10.1038/ncomms16070
10.1103/PhysRevLett.121.056101
10.1063/1.3224886
10.1107/S0108767399014798
10.1016/j.micron.2019.01.005
10.1016/j.micron.2015.09.001
10.1016/j.ultramic.2005.03.006
10.1038/s41598-017-07488-y
10.1088/1361-6463/aabc47
10.1017/S1431927603440427
10.1080/01418618608242884
10.1103/PhysRevApplied.10.061001
10.1016/j.ultramic.2017.03.010
10.1038/374630a0
10.1557/mrs.2014.4
10.1016/S0304-3991(02)00155-9
10.1103/PhysRevLett.117.015501
10.1103/PhysRevLett.108.195505
10.1016/0304-3991(86)90214-7
10.1021/cm201783z
10.1017/S1431927616003500
10.1103/PhysRevLett.112.166101
10.4028/www.scientific.net/MSF.273-275.215
10.1103/PhysRevLett.103.097202
10.1021/acs.nanolett.5b02483
10.1017/S1431927617009576
10.1038/s41524-018-0139-y
10.1103/PhysRevLett.110.205505
10.1017/S1431927615015664
10.1038/ncomms6653
10.1021/acs.nanolett.8b00952
10.1016/j.scriptamat.2017.11.005
10.1021/acs.nanolett.8b03166
10.1016/0304-3991(92)90110-6
10.1016/j.ultramic.2018.12.018
10.1063/1.1506010
10.1109/4.551910
10.1016/j.ultramic.2016.12.021
10.1063/1.4975932
10.1007/s11837-018-2854-8
10.1016/j.ultramic.2012.06.004
10.1016/j.ultramic.2015.06.011
10.1021/nn1023126
10.1016/j.ultramic.2018.03.004
10.1038/ncomms5155
10.1016/0304-3991(95)00007-N
10.1017/S1431927611000055
10.1016/j.ultramic.2016.06.009
10.1109/20.104427
10.1063/1.4901435
10.1063/1.4767655
10.1016/j.matdes.2016.10.015
10.1016/j.ultramic.2009.05.012
10.1098/rspa.1977.0064
10.1016/0304-3991(89)90052-1
10.1038/nature11563
10.1016/j.ultramic.2017.02.006
10.1016/0304-3991(82)90225-X
10.1016/j.ultramic.2018.12.010
10.1016/S0304-3991(03)00003-2
10.1016/j.matlet.2005.09.052
10.1021/acs.nanolett.8b02718
10.1063/1.4829154
10.1107/S0567739469001069
10.1016/j.ultramic.2008.11.023
10.1016/j.ultramic.2010.04.004
10.1063/1.3040323
10.1103/PhysRevLett.121.146101
10.1107/S0108767311020708
10.1016/j.ultramic.2011.01.035
10.1107/S0108767311051592
10.1186/s40679-017-0048-z
10.1038/s41467-017-00150-1
10.1063/1.4922994
10.1016/j.ultramic.2019.02.023
10.1016/j.ultramic.2018.12.003
10.1103/PhysRevB.82.104103
10.1155/TSM.13.15
10.1107/S2053273315011845
10.1002/andp.19283921704
10.1063/1.2362978
10.1103/PhysRevB.79.214110
10.1063/1.5017537
10.1016/j.ultramic.2015.10.011
10.1016/j.ultramic.2018.09.005
10.1016/j.ultramic.2018.03.013
10.1038/s42003-018-0263-8
10.1016/j.ultramic.2011.01.029
10.1016/j.ultramic.2010.05.001
10.1149/1.3485694
10.1103/PhysRevA.91.023805
10.1016/j.ultramic.2015.03.015
10.1103/PhysRevB.93.134116
10.1038/ncomms12532
10.1017/S1431927612001274
10.1002/admi.201701258
10.1016/j.ultramic.2018.05.003
10.1038/ncomms8267
10.1038/ncomms10719
10.1016/j.ultramic.2017.04.015
10.1007/s10853-006-1302-2
10.1080/21663831.2018.1436609
10.1186/s40679-018-0059-4
10.1016/j.matdes.2016.06.001
10.1364/AO.3.000437
10.1016/j.ultramic.2014.08.002
10.1109/IPFA.2015.7224366
10.1016/j.apsusc.2003.11.058
10.1063/1.4989822
10.1103/PhysRevLett.106.160802
10.1016/j.ultramic.2009.10.001
10.1038/s41598-017-02778-x
10.1063/1.5066111
10.1038/nphys2337
10.1016/j.ultramic.2012.12.019
10.1016/0304-3991(93)90019-T
10.1038/nature11806
10.1524/zkri.2010.1205
10.1017/S1431927608081348
10.1038/ncomms1733
10.1017/S1431927614002037
10.1126/sciadv.1602427
10.1016/j.matchar.2018.05.031
10.1016/j.ultramic.2013.07.002
10.1007/978-1-4419-7200-2
10.1016/S0304-3991(03)00094-9
10.1016/j.ultramic.2008.12.012
10.1002/bbpc.19700741112
10.1016/j.ultramic.2016.03.006
10.1038/s41586-018-0855-y
10.1002/jemt.1060030105
10.1088/0034-4885/59/3/003
10.1016/j.ultramic.2013.08.008
10.1016/S0304-3991(02)00435-7
10.1063/1.2356699
10.1063/1.4927837
10.1063/1.5051380
10.1107/S0567739469001057
10.1016/0304-3991(93)90089-G
10.1063/1.4868124
10.1017/S1431927607075204
10.1038/s41586-018-0298-5
10.1107/S056773947400057X
ContentType Journal Article
Copyright Copyright © Microscopy Society of America 2019
Copyright_xml – notice: Copyright © Microscopy Society of America 2019
DBID IKXGN
AAYXX
CITATION
NPM
3V.
7QO
7RV
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1017/S1431927619000497
DatabaseName Cambridge Journals Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: IKXGN
  name: Cambridge Journals Open Access
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Colin Ophus
Microscopy and Microanalysis
EISSN 1435-8115
EndPage 582
ExternalDocumentID 31084643
10_1017_S1431927619000497
Genre Journal Article
GroupedDBID ---
-E.
.FH
0E1
0R~
123
29M
3V.
4.4
53G
5VS
74X
74Y
7RV
7X7
7~V
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AACJH
AAGFV
AAKTX
AAPXW
AARAB
AASVR
AAUAY
AAUKB
ABBXD
ABDFA
ABEFU
ABITZ
ABJNI
ABKKG
ABMWE
ABPTD
ABQTM
ABROB
ABTCQ
ABUWG
ABVKB
ABWCF
ABWST
ABZCX
ACBEK
ACBMC
ACFRR
ACGFS
ACIMK
ACIPB
ACIWK
ACPRK
ACUFI
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADCGK
ADFEC
ADIYS
ADKIL
ADOVH
ADQBN
ADRDM
ADVEK
AEBAK
AEHGV
AEMTW
AENEX
AEUYN
AEYYC
AFFUJ
AFGWE
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AHIPN
AHLTW
AHMBA
AISIE
AJ7
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALWZO
ANFBD
ANPSP
AQJOH
ARABE
ARAPS
ATGXG
ATUCA
AZGZS
BBLKV
BBNVY
BENPR
BGHMG
BGLVJ
BGNMA
BHPHI
BKEYQ
BLZWO
BMAJL
BPHCQ
BVXVI
C0O
CAG
CCPQU
CJCSC
COF
CS3
DC4
DOHLZ
DU5
EBS
EJD
EX3
F5P
FYUFA
H13
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
IH6
IKXGN
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
KOP
L98
LAS
LK8
LW7
M-V
M1P
M4Y
M7P
NAPCQ
NIKVX
NU-
NU0
O9-
OVD
OYBOY
P62
PQQKQ
PROAC
PSQYO
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S6-
S6U
SAAAG
SDH
SY4
T9M
TEORI
UKHRP
UT1
UU6
VUG
WFFJZ
WOW
WQ3
WXU
WYP
5WD
AAYXX
ABDTM
ABEJV
ABGNP
ABMNT
ABPQP
ABVGC
ABXVV
ABZEO
ACVCV
ACZBC
ADIPN
ADNBA
ADVOB
ADYJX
AEMTJ
AFFHD
AGMDO
AHGBF
AJBYB
AJDVS
AJNCP
BCRHZ
CITATION
OBOKY
OJZSN
OWPYF
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ROX
NPM
7QO
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c482t-a2f1963d4635c7ea204dfd96c8cc8465bf60d089be66188be217219d74fe7d823
IEDL.DBID M7P
ISICitedReferencesCount 622
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474798800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1431-9276
1435-8115
IngestDate Wed Oct 01 14:20:28 EDT 2025
Mon Oct 06 17:56:41 EDT 2025
Thu Apr 03 06:54:51 EDT 2025
Tue Nov 18 20:02:55 EST 2025
Sat Nov 29 05:37:37 EST 2025
Tue Jan 21 06:24:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords transmission electron microscopy (TEM)
nanobeam electron diffraction (NBED)
four dimensional-scanning transmission electron microscopy (4D-STEM)
scanning electron nanodiffraction (SEND)
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-a2f1963d4635c7ea204dfd96c8cc8465bf60d089be66188be217219d74fe7d823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2348-8558
OpenAccessLink https://www.cambridge.org/core/product/identifier/S1431927619000497/type/journal_article
PMID 31084643
PQID 2353072769
PQPubID 33692
PageCount 20
ParticipantIDs proquest_miscellaneous_2231847296
proquest_journals_2353072769
pubmed_primary_31084643
crossref_citationtrail_10_1017_S1431927619000497
crossref_primary_10_1017_S1431927619000497
cambridge_journals_10_1017_S1431927619000497
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: United States
– name: Oxford
PublicationTitle Microscopy and microanalysis
PublicationTitleAlternate Microsc Microanal
PublicationYear 2019
Publisher Cambridge University Press
Oxford University Press
Publisher_xml – name: Cambridge University Press
– name: Oxford University Press
References Gammer, Ozdol, Liebscher, Minor 2015; 155
Li, Mooney, Zheng, Booth, Braunfeld, Gubbens, Agard, Cheng 2013; 10
Brown, Chen, Weyland, Ophus, Ciston, Allen, Findlay 2018; 121
Barthel 2018; 193
Faulkner, Rodenburg 2004; 93
Ronchi 1964; 3
Putkunz, DAlfonso, Morgan, Weyland, Dwyer, Bourgeois, Etheridge, Roberts, Scholten, Nugent 2012; 108
Yang, Ercius, Nellist, Ophus 2016; 171
Izadi, Darbal, Sarkar, Rajagopalan 2017; 113
Lupini, Chi, Kalinin, Borisevich, Idrobo, Jesse 2015; 21
Pennycook, Lupini, Yang, Murfitt, Jones, Nellist 2015; 151
Webb 1996; 59
Zheng, Zhu, Lazar, Etheridge 2014; 112
Zhang, Istratov, Weber, Kisielowski, He, Nelson, Spence 2006; 89
Mahr, Müller-Caspary, Ritz, Simson, Grieb, Schowalter, Krause, Lackmann, Soltau, Wittstock 2019; 196
Spence 1998; 54
Haider, Epstein, Jarron, Boulin 1994; 54
Nord, Krajnak, Bali, Hlawacek, Liersch, Fassbender, McVitie, Paterson, Maclaren, McGrouther 2016; 22
Hwang, Zhang, DAlfonso, Allen, Stemmer 2013; 111
Uesugi, Hokazono, Takeno 2011; 111
Rauch, Portillo, Nicolopoulos, Bultreys, Rouvimov, Moeck 2010; 225
Müller-Caspary, Oelsner, Potapov 2015; 107
Johnson, Bustillo, Ciston, Draney, Ercius, Fong, Goldschmidt, Joseph, Lee, Minor 2018; 24
Yasin, Harada, Shindo, Shinada, McMorran, Tanigaki 2018; 113
Etheridge, Lazar, Dwyer, Botton 2011; 106
LeBeau, Findlay, Wang, Jacobson, Allen, Stemmer 2009; 79
Hÿtch, Minor 2014; 39
LeBeau, Findlay, Allen, Stemmer 2010; 110
Rodenburg, Faulkner 2004; 85
Yasin, Harvey, Chess, Pierce, Ophus, Ercius, McMorran 2018; 18
Hachtel, Idrobo, Chi 2018; 4
Tao, Sun, Yin, Wu, Xin, Wen, Luo, Pennycook, Tranquada, Zhu 2016; 6
Liu, Neish, Stokol, Buckley, Smillie, de Jonge, Ott, Kramer, Bourgeois 2013; 110
Pelz, Qiu, Bücker, Kassier, Miller 2017; 7
Schwarzhuber, Melzl, Pöllath, Zweck 2018; 192
Bogle, Nittala, Twesten, Voyles, Abelson 2010; 110
Allen, Faulkner, Leeb 2000; 56
Stevens, Yang, Hao, Jones, Ophus, Nellist, Browning 2018; 113
Tao, Niebieskikwiat, Varela, Luo, Schofield, Zhu, Salamon, Zuo, Pantelides, Pennycook 2009; 103
Brown, D'Alfonso, Chen, Morgan, Weyland, Zheng, Fuhrer, Findlay, Allen 2016; 93
Müller, Krause, Béché, Schowalter, Galioit, Löffler, Verbeeck, Zweck, Schattschneider, Rosenauer 2014; 5
Brown, Ishikawa, Shibata, Ikuhara, Allen, Findlay 2019; 197
Hoppe 1969; 25
Kimoto, Ishizuka 2011; 111
Ophus, Yang, dos Reis, Meng, Pryor, Miao, Pekin, Minor, Johnson, Denes 2017; 23
Egerton 2019; 119
Cowley 1996; 45
Gammer, Ophus, Pekin, Eckert, Minor 2018; 112
Im, Chen, Johnson, Zhao, Yoo, Park, Wang, Muller, Hwang 2018; 195
Maiden, Rodenburg 2009; 109
Kikuchi 1928; 5
Oelerich, Duschek, Belz, Beyer, Baranovskii, Volz 2017; 177
Hoppe, Strube 1969; 25
Grieb, Krause, Mahr, Zillmann, Müller-Caspary, Schowalter, Rosenauer 2017; 181
Jones, Rackham, Steeds 1977; 354
Thibault, Menzel 2013; 494
Cowley 2003; 96
Rottmann, Hemker 2018; 6
Hwang, Melgarejo, Kalay, Kalay, Kramer, Stone, Voyles 2012; 108
Cowley, Ou 1989; 11
Mendis, Kemeny, Gee, Pain, Staller, Kim, Fossum 1997; 32
Müller, Rosenauer, Schowalter, Zweck, Fritz, Volz 2012; 18
Clément, Pantel, Kwakman, Rouvière 2004; 85
Grieb, Krause, Schowalter, Zillmann, Sellin, Müller-Caspary, Mahr, Mehrtens, Bimberg, Rosenauer 2018; 190
Mohammadi, Zhao, Meng, Qu, Zhang, Zhao, Mei, Zuo, Shukla, Diao 2017; 8
Seyring, Song, Rettenmayr 2011; 5
Yang, MacLaren, Jones, Martinez, Simson, Huth, Ryll, Soltau, Sagawa, Kondo 2017; 180
Hawkes 1982; 9
Mahr, Müller-Caspary, Grieb, Schowalter, Mehrtens, Krause, Zillmann, Rosenauer 2015; 158
Goris, Turner, Bals, Van Tendeloo 2014; 8
Rouviere, Béché, Martin, Denneulin, Cooper 2013; 103
Haas, Rouvière, Boureau, Berthier, Cooper 2018; 198
Fang, Wen, Allen, Ophus, Han, Kirkland, Kaxiras, Warner 2019; 10
Möllenstedt, Düker 1956; 145
Ozdol, Gammer, Jin, Ercius, Ophus, Ciston, Minor 2015; 106
Shukla, Ophus, Gammer, Ramasse 2016; 22
Grimley, Schenk, Mikolajick, Schroeder, LeBeau 2018; 5
Maiden, Humphry, Rodenburg 2012; 29
Chen, Weyland, Ercius, Ciston, Zheng, Fuhrer, D'Alfonso, Allen, Findlay 2016; 169
Han, Nguyen, Cao, Cueva, Xie, Tate, Purohit, Gruner, Park, Muller 2018; 18
Ophus, Ciston, Pierce, Harvey, Chess, McMorran, Czarnik, Rose, Ercius 2016; 7
Zeng, Zhang, Bustillo, Niu, Gammer, Xu, Zheng 2015; 15
Song, Ding, Allen, Sawada, Zhang, Pan, Warner, Kirkland, Wang 2018; 121
Midgley, Thomas 2014; 53
Bustillo, Panova, Chen, Takacs, Ciston, Ophus, Balsara, Minor 2017; 23
McMullan, Faruqi, Clare, Henderson 2014; 147
Rauch, Véron 2014; 98
Rozeveld, Howe 1993; 50
Bates, Rodenburg 1989; 31
Zaluzec 2007; 13
Vigouroux, Delaye, Bernier, Cipro, Lafond, Audoit, Baron, Rouvière, Martin, Chenevier 2014; 105
Trimby 2012; 120
Zhang, Ning, Busbee, Shen, Kiggins, Hua, Eaves, Davis, Shi, Shao 2017; 3
De Ruijter 1995; 26
Phillips 1979; 34
Tian, Volkert 2018; 8
Hashimoto, Shimojo, Mitsuishi, Takeguchi 2009; 106
Hüe, Rodenburg, Maiden, Sweeney, Midgley 2010; 82
Rose 1974; 39
Zaefferer 2011; 46
Wright, Nowell, Field 2011; 17
Brodusch, Demers, Gauvin 2013; 250
Caswell, Ercius, Tate, Ercan, Gruner, Muller 2009; 109
Zaefferer 2000; 33
Voyles, Muller 2002; 93
Xu, LeBeau 2018; 188
Guo, Thompson 2018; 70
Favia, Gonzales, Simoen, Verheyen, Klenov, Bender 2011; 158
Bufford, Abdeljawad, Foiles, Hattar 2015; 107
Nellist, Behan, Kirkland, Hetherington 2006; 89
Schwarzer 1990; 13
Bethe 1928; 392
Müller-Caspary, Krause, Winkler, Béché, Verbeeck, VanAert, Rosenauer 2018; 203
Cowley 1984; 248
Krajnak, McGrouther, Maneuski, O'Shea, McVitie 2016; 165
Cooper, Denneulin, Bernier, Béché, Rouvière 2016; 80
Fatermans, den Dekker, Müller-Caspary, Lobato, OLeary, Nellist, Van Aert 2018; 121
Rodenburg, McCallum, Nellist 1993; 48
Watanabe, Williams 2007; 13
Reisinger, Zalesak, Daniel, Tomberger, Weiss, Darbal, Petrenec, Zechner, Daumiller, Ecker, Sartory, Keckes 2016; 106
D'alfonso, Morgan, Yan, Wang, Sawada, Kirkland, Allen 2014; 89
Humphry, Kraus, Hurst, Maiden, Rodenburg 2012; 3
Midgley, Eggeman 2015; 2
Favia, Popovici, Eneman, Wang, Bargallo-Gonzalez, Simoen, Menou, Bender 2010; 33
Shibata, Findlay, Kohno, Sawada, Kondo, Ikuhara 2012; 8
Fan, Ellisman 1993; 52
Möbus, Nufer 2003; 96
Harvey, Yasin, Chess, Pierce, dos Reis, Özdöl, Ercius, Ciston, Feng, Kotov, McMorran, Ophus 2018; 10
Müller-Caspary, Duchamp, Rösner, Migunov, Winkler, Yang, Huth, Ritz, Simson, Ihle 2018; 98
Tate, Purohit, Chamberlain, Nguyen, Hovden, Chang, Deb, Turgut, Heron, Schlom, Ralph, Fuchs, Shanks, Philipp, Muller, Gruner 2016; 22
Koch 2011; 111
Yankovich, Berkels, Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles 2014; 5
Sunde, Marioara, van Helvoort, Holmestad 2018; 142
MacLaren, Villaurrutia, Peláiz-Barranco 2010; 108
Pekin, Gammer, Ciston, Minor, Ophus 2017; 176
Ophus, Ercius, Sarahan, Czarnik, Ciston 2014; 20
Eggeman, Krakow, Midgley 2015; 6
Wang, Suyolcu, Salzberger, Hahn, Srot, Sigle, van Aken 2018; 67
Pekin, Gammer, Ciston, Ophus, Minor 2018; 146
Cowley, Moodie 1957; 10
Wehmeyer, Bustillo, Minor, Dames 2018; 113
Hammel, Rose 1995; 58
Zaluzec 2003; 9
Jiang, Chen, Han, Deb, Gao, Xie, Purohit, Tate, Park, Gruner 2018; 559
Yang, Pennycook, Nellist 2015; 151
Milazzo, Leblanc, Duttweiler, Jin, Bouwer, Peltier, Ellisman, Bieser, Matis, Wieman 2005; 104
Bruma, Santiago, Alducin, Plascencia Villa, Whetten, Ponce, Mariscal, José-Yacamán 2016; 120
Müller-Caspary, Krause, Grieb, Löffler, Schowalter, Béché, Galioit, Marquardt, Zweck, Schattschneider 2017; 178
Usuda, Mizuno, Tezuka, Sugiyama, Moriyama, Nakaharai, Takagi 2004; 224
Ophus 2017; 3
Goodman, Moodie 1974; 30
Wang, Zhang, Gao, Zhang, Kirkland 2017; 7
Cowley, Spence 1979; 2
Dey, Morawiec, Bouzy, Hazotte, Fundenberger 2006; 60
Vincent, Midgley 1994; 53
Yadav, Nguyen, Hong, Garcia-Fernandez, Aguado-Puente, Nelson, Das, Prasad, Kwon, Cheema, Khan, Hu, Iniguez, Junquera, Chen, Muller, Ramesh, Salahuddin 2019; 565
Jones, Nellist 2013; 19
Schwarzer, Sukkau 1998; 273
Koch, Özdöl, Ishizuka 2012; 26
Rose 1977; 2
Garner, Gholinia, Frankel, Gass, MacLaren, Preuss 2014; 80
Hilke, Kirschbaum, Hieronymus-Schmidt, Radek, Bracht, Wilde, Peterlechner 2019; 200
Lubk, Zweck 2015; 91
Rauch, Dupuy 2005; 50
Haas, Thomas, Jouneau, Bernier, Meunier, Ballet, Rouvière 2017; 110
Fundenberger, Morawiec, Bouzy, Lecomte 2003; 96
Dwyer, Lazar, Chang, Etheridge 2012; 68
Wang, Pennington, Koch 2016; 117
Humphreys 1979; 42
Hirata, Guan, Fujita, Hirotsu, Inoue, Yavari, Sakurai, Chen 2011; 10
Ånes, Andersen, van Helvoort 2018; 24
Lazar, Etheridge, Dwyer, Freitag, Botton 2011; 67
Lazić, Bosch, Lazar 2016; 160
Jarausch, Thomas, Leonard, Twesten, Booth 2009; 109
Waddell, Chapman 1979; 54
Ercan, Tate, Gruner 2006; 13
Frigo, Levine, Zaluzec 2002; 81
Gallagher-Jones, Ophus, Bustillo, Boyer, Panova, Glynn, Zee, Ciston, Mancia, Minor, Rodriguez 2019; 2
Schaffer, Gspan, Grogger, Kothleitner, Hofer 2008; 14
Li, Dyck, Oxley, Lupini, McInnes, Healy, Jesse, Kalinin 2019; 5
Ansari, Beuville, Borer, Cenci, Clark, Federspiel, Gildemeister, Gössling, Hara, Heijne, Jarron, Lariccia, Lisowski, Munday, Pal, Parker, Redaelli, Scampoli, Simak, Singh, Vallon-Hulth, Wells 1989; 279
Kobler, Kashiwar, Hahn, Kübel 2013; 128
Yang, Rutte, Jones, Simson, Sagawa, Ryll, Huth, Pennycook, Green, Soltau 2016; 7
Ophus, Ercius, Huijben, Ciston 2017; 110
Zuo 1992; 41
Treacy, Gibson 1996; 52
Forbes, Martin, Findlay, DAlfonso, Allen 2010; 82
Gao, Wang, Zhang, Martinez, Nellist, Pan, Kirkland 2017; 8
Cowley 1986; 3
Hamaoka, Hashimoto, Mitsuishi, Takeguchi 2018; 16
Kaufman, Pearson, Fraser 1986; 54
Yasin, Harvey, Chess, Pierce, McMorran 2018; 51
Panova, Chen, Bustillo, Ophus, Bhatt, Balsara, Minor 2016; 88
Zhu, Radtke, Botton 2012; 490
Hou, Ashling, Collins, Krajnc, Zhou, Longley, Johnstone, Chater, Li, Coudert, Keen, Midgley, Mali, Chen, Bennett 2018
Brunetti, Robert, Bayle-Guillemaud, Rouviere, Rauch, Martin, Colin, Bertin, Cayron 2011; 23
Müller, Ryll, Ordavo, Ihle, Strüder, Volz, Zweck, Soltau, Rosenauer 2012; 101
Ryll, Simson, Hartmann, Holl, Huth, Ihle, Kondo, Kotula, Liebel, Müller-Caspary 2016; 11
Liu, Lumpkin, Petersen, Etheridge, Bourgeois 2015; 71
MacArthur, Pennycook, Okunishi, D'Alfonso, Lugg, Allen, Nellist 2013; 133
Idrissi, Kobler, Amin-Ahmadi, Coulombier, Galceran, Raskin, Godet, Kübel, Pardoen, Schryvers 2014; 104
Morawiec, Bouzy, Paul, Fundenberger 2014; 136
S1431927619000497_ref54
S1431927619000497_ref53
S1431927619000497_ref56
S1431927619000497_ref55
S1431927619000497_ref58
S1431927619000497_ref57
S1431927619000497_ref59
S1431927619000497_ref50
S1431927619000497_ref51
S1431927619000497_ref65
S1431927619000497_ref64
S1431927619000497_ref67
S1431927619000497_ref66
S1431927619000497_ref69
S1431927619000497_ref68
S1431927619000497_ref61
S1431927619000497_ref60
S1431927619000497_ref63
S1431927619000497_ref62
Waddell (S1431927619000497_ref202) 1979; 54
Rose (S1431927619000497_ref170) 1974; 39
S1431927619000497_ref76
S1431927619000497_ref75
S1431927619000497_ref78
S1431927619000497_ref77
S1431927619000497_ref79
S1431927619000497_ref70
S1431927619000497_ref72
S1431927619000497_ref71
S1431927619000497_ref74
S1431927619000497_ref73
S1431927619000497_ref87
S1431927619000497_ref86
S1431927619000497_ref89
S1431927619000497_ref88
S1431927619000497_ref81
S1431927619000497_ref80
S1431927619000497_ref82
S1431927619000497_ref85
S1431927619000497_ref84
S1431927619000497_ref10
S1431927619000497_ref12
S1431927619000497_ref11
S1431927619000497_ref14
S1431927619000497_ref13
S1431927619000497_ref16
S1431927619000497_ref15
S1431927619000497_ref180
S1431927619000497_ref171
S1431927619000497_ref172
S1431927619000497_ref173
S1431927619000497_ref174
S1431927619000497_ref175
S1431927619000497_ref176
S1431927619000497_ref177
S1431927619000497_ref18
S1431927619000497_ref178
S1431927619000497_ref179
S1431927619000497_ref17
S1431927619000497_ref19
S1431927619000497_ref21
S1431927619000497_ref20
S1431927619000497_ref23
S1431927619000497_ref22
S1431927619000497_ref25
S1431927619000497_ref24
S1431927619000497_ref27
S1431927619000497_ref26
S1431927619000497_ref160
S1431927619000497_ref162
S1431927619000497_ref163
S1431927619000497_ref164
S1431927619000497_ref165
S1431927619000497_ref167
S1431927619000497_ref168
S1431927619000497_ref28
S1431927619000497_ref169
S1431927619000497_ref31
S1431927619000497_ref34
S1431927619000497_ref33
S1431927619000497_ref36
S1431927619000497_ref35
S1431927619000497_ref38
S1431927619000497_ref37
S1431927619000497_ref30
S1431927619000497_ref192
S1431927619000497_ref193
S1431927619000497_ref194
S1431927619000497_ref195
S1431927619000497_ref196
S1431927619000497_ref197
S1431927619000497_ref198
Kikuchi (S1431927619000497_ref99) 1928; 5
S1431927619000497_ref199
S1431927619000497_ref39
Jones (S1431927619000497_ref97) 1977; 354
S1431927619000497_ref43
S1431927619000497_ref42
S1431927619000497_ref45
S1431927619000497_ref44
S1431927619000497_ref47
S1431927619000497_ref46
S1431927619000497_ref49
S1431927619000497_ref48
Françon (S1431927619000497_ref52) 1954
S1431927619000497_ref190
S1431927619000497_ref41
Cowley (S1431927619000497_ref29) 1979; 2
S1431927619000497_ref40
S1431927619000497_ref191
S1431927619000497_ref181
Rauch (S1431927619000497_ref161) 2005; 50
S1431927619000497_ref182
S1431927619000497_ref183
S1431927619000497_ref184
S1431927619000497_ref185
S1431927619000497_ref186
S1431927619000497_ref187
S1431927619000497_ref188
S1431927619000497_ref189
S1431927619000497_ref1
S1431927619000497_ref6
S1431927619000497_ref7
S1431927619000497_ref8
S1431927619000497_ref9
S1431927619000497_ref2
S1431927619000497_ref3
S1431927619000497_ref4
S1431927619000497_ref5
S1431927619000497_ref130
S1431927619000497_ref131
S1431927619000497_ref132
S1431927619000497_ref133
S1431927619000497_ref134
S1431927619000497_ref135
S1431927619000497_ref136
S1431927619000497_ref137
S1431927619000497_ref138
S1431927619000497_ref139
S1431927619000497_ref120
S1431927619000497_ref121
S1431927619000497_ref122
S1431927619000497_ref123
S1431927619000497_ref124
S1431927619000497_ref125
S1431927619000497_ref126
S1431927619000497_ref127
S1431927619000497_ref128
S1431927619000497_ref129
S1431927619000497_ref150
S1431927619000497_ref151
S1431927619000497_ref152
S1431927619000497_ref153
S1431927619000497_ref154
S1431927619000497_ref155
Rodenburg (S1431927619000497_ref166) 1992; 339
S1431927619000497_ref156
S1431927619000497_ref157
S1431927619000497_ref158
S1431927619000497_ref159
MacArthur (S1431927619000497_ref119) 2013; 133
S1431927619000497_ref140
S1431927619000497_ref141
S1431927619000497_ref142
S1431927619000497_ref143
S1431927619000497_ref144
S1431927619000497_ref145
S1431927619000497_ref146
S1431927619000497_ref147
S1431927619000497_ref148
S1431927619000497_ref149
S1431927619000497_ref98
S1431927619000497_ref219
S1431927619000497_ref90
S1431927619000497_ref92
S1431927619000497_ref91
S1431927619000497_ref94
S1431927619000497_ref93
S1431927619000497_ref96
S1431927619000497_ref95
S1431927619000497_ref210
S1431927619000497_ref211
Koch (S1431927619000497_ref103) 2012; 26
S1431927619000497_ref212
S1431927619000497_ref213
S1431927619000497_ref214
S1431927619000497_ref215
S1431927619000497_ref216
S1431927619000497_ref217
S1431927619000497_ref218
S1431927619000497_ref208
S1431927619000497_ref209
Dekkers (S1431927619000497_ref32) 1974; 41
S1431927619000497_ref200
S1431927619000497_ref201
Hou (S1431927619000497_ref83) 2018
S1431927619000497_ref203
S1431927619000497_ref204
S1431927619000497_ref205
S1431927619000497_ref206
S1431927619000497_ref207
S1431927619000497_ref230
S1431927619000497_ref231
S1431927619000497_ref110
S1431927619000497_ref111
S1431927619000497_ref232
S1431927619000497_ref233
S1431927619000497_ref112
S1431927619000497_ref113
S1431927619000497_ref114
S1431927619000497_ref115
S1431927619000497_ref116
S1431927619000497_ref117
S1431927619000497_ref118
S1431927619000497_ref109
S1431927619000497_ref220
S1431927619000497_ref100
S1431927619000497_ref221
S1431927619000497_ref222
S1431927619000497_ref101
S1431927619000497_ref102
S1431927619000497_ref223
S1431927619000497_ref224
S1431927619000497_ref104
S1431927619000497_ref225
S1431927619000497_ref226
S1431927619000497_ref105
S1431927619000497_ref106
S1431927619000497_ref227
S1431927619000497_ref107
S1431927619000497_ref228
S1431927619000497_ref108
S1431927619000497_ref229
References_xml – volume: 45
  start-page: 3
  issue: 1
  year: 1996
  end-page: 10
  article-title: Electron nanodiffraction: Progress and prospects
  publication-title: Microscopy
– volume: 145
  start-page: 377
  issue: 3
  year: 1956
  end-page: 397
  article-title: Beobachtungen und messungen an biprisma-interferenzen mit elektronenwellen
  publication-title: Z Phys
– volume: 110
  start-page: 063102
  issue: 6
  year: 2017
  article-title: Non-spectroscopic composition measurements of SrTiO-LaSr0.3MnO multilayers using scanning convergent beam electron diffraction
  publication-title: Appl Phys Lett
– volume: 225
  start-page: 103
  issue: 2–3
  year: 2010
  end-page: 109
  article-title: Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction
  publication-title: Z Kristallogr
– volume: 104
  start-page: 152
  issue: 2
  year: 2005
  end-page: 159
  article-title: Active pixel sensor array as a detector for electron microscopy
  publication-title: Ultramicroscopy
– volume: 3
  start-page: e1602427
  issue: 5
  year: 2017
  article-title: Electroplating lithium transition metal oxides
  publication-title: Sci Adv
– volume: 80
  start-page: 159
  year: 2014
  end-page: 171
  article-title: The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy
  publication-title: Acta Mater
– volume: 250
  start-page: 1
  issue: 1
  year: 2013
  end-page: 14
  article-title: Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope
  publication-title: J Microsc
– volume: 197
  start-page: 112
  year: 2019
  end-page: 121
  article-title: Large angle illumination enabling accurate structure reconstruction from thick samples in scanning transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 198
  start-page: 58
  year: 2018
  end-page: 72
  article-title: Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 24
  start-page: 586
  issue: S1
  year: 2018
  end-page: 587
  article-title: Crystal phase mapping by scanning precession electron diffraction and machine learning decomposition
  publication-title: Microsc Microanal
– volume: 171
  start-page: 117
  year: 2016
  end-page: 125
  article-title: Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope
  publication-title: Ultramicroscopy
– volume: 108
  start-page: 034109
  issue: 3
  year: 2010
  article-title: Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3
  publication-title: J Appl Phys
– volume: 106
  start-page: 253107
  issue: 25
  year: 2015
  article-title: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction
  publication-title: Appl Phys Lett
– volume: 165
  start-page: 51
  year: 2016
  end-page: 58
  article-title: Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction
  publication-title: Ultramicroscopy
– volume: 20
  start-page: 62
  issue: S3
  year: 2014
  end-page: 63
  article-title: Recording and using 4D-STEM datasets in materials science
  publication-title: Microsc Microanal
– volume: 96
  start-page: 163
  issue: 2
  year: 2003
  end-page: 166
  article-title: Ultra-high resolution with off-axis STEM holography
  publication-title: Ultramicroscopy
– volume: 147
  start-page: 156
  year: 2014
  end-page: 163
  article-title: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy
  publication-title: Ultramicroscopy
– volume: 18
  start-page: 7118
  issue: 11
  year: 2018
  end-page: 7123
  article-title: Probing light atoms at subnanometer resolution: Realization of scanning transmission electron microscope holography
  publication-title: Nano Lett
– volume: 200
  start-page: 169
  year: 2019
  end-page: 179
  article-title: Analysis of medium-range order based on simulated segmented ring detector STEM-images: Amorphous Si
  publication-title: Ultramicroscopy
– volume: 74
  start-page: 1148
  issue: 11
  year: 1970
  end-page: 1154
  article-title: Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld
  publication-title: Berichte der Bunsengesellschaft für Physikalische Chemie
– volume: 22
  start-page: 237
  issue: 1
  year: 2016
  end-page: 249
  article-title: High dynamic range pixel array detector for scanning transmission electron microscopy
  publication-title: Microsc Microanal
– volume: 81
  start-page: 2112
  issue: 11
  year: 2002
  end-page: 2114
  article-title: Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy
  publication-title: Appl Phys Lett
– volume: 10
  start-page: 28
  issue: 1
  year: 2011
  article-title: Direct observation of local atomic order in a metallic glass
  publication-title: Nat Mater
– volume: 68
  start-page: 196
  issue: 2
  year: 2012
  end-page: 207
  article-title: Image formation in the scanning transmission electron microscope using object-conjugate detectors
  publication-title: Acta Crystallogr, Sect A
– volume: 169
  start-page: 107
  year: 2016
  end-page: 121
  article-title: Practical aspects of diffractive imaging using an atomic-scale coherent electron probe
  publication-title: Ultramicroscopy
– volume: 7
  start-page: 2857
  issue: 1
  year: 2017
  article-title: Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals
  publication-title: Sci Rep
– volume: 120
  start-page: 1902
  issue: 3
  year: 2016
  end-page: 1908
  article-title: Structure determination of superatom metallic clusters using rapid scanning electron diffraction
  publication-title: J Phys Chem C
– volume: 22
  start-page: 530
  issue: S3
  year: 2016
  end-page: 531
  article-title: Developing rapid and advanced visualisation of magnetic structures using 2-D pixelated STEM detectors
  publication-title: Microsc Microanal
– volume: 111
  start-page: 266101
  issue: 26
  year: 2013
  article-title: Three-dimensional imaging of individual dopant atoms in SrTiO3
  publication-title: Phys Rev Lett
– volume: 110
  start-page: 263102
  issue: 26
  year: 2017
  article-title: High precision strain mapping of topological insulator HgTe/CdTe
  publication-title: Appl Phys Lett
– volume: 196
  start-page: 74
  year: 2019
  end-page: 82
  article-title: Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction
  publication-title: Ultramicroscopy
– volume: 89
  start-page: 161907
  issue: 16
  year: 2006
  article-title: Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction
  publication-title: Appl Phys Lett
– volume: 160
  start-page: 265
  year: 2016
  end-page: 280
  article-title: Phase contrast STEM for thin samples: Integrated differential phase contrast
  publication-title: Ultramicroscopy
– volume: 30
  start-page: 280
  issue: 2
  year: 1974
  end-page: 290
  article-title: Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method
  publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr
– volume: 103
  start-page: 097202
  issue: 9
  year: 2009
  article-title: Direct imaging of nanoscale phase separation in La0.55Ca 0.45MnO3: Relationship to colossal magnetoresistance
  publication-title: Phys Rev Lett
– volume: 54
  start-page: 41
  issue: 1
  year: 1994
  end-page: 59
  article-title: A versatile, software configurable multichannel STEM detector for angle-resolved imaging
  publication-title: Ultramicroscopy
– volume: 32
  start-page: 187
  issue: 2
  year: 1997
  end-page: 197
  article-title: CMOS active pixel image sensors for highly integrated imaging systems
  publication-title: IEEE J Solid-State Circuits
– volume: 136
  start-page: 107
  year: 2014
  end-page: 118
  article-title: Orientation precision of TEM-based orientation mapping techniques
  publication-title: Ultramicroscopy
– volume: 54
  start-page: 7
  issue: 1
  year: 1998
  end-page: 18
  article-title: Direct inversion of dynamical electron diffraction patterns to structure factors
  publication-title: Acta Crystallogr, Sect A
– volume: 110
  start-page: 1273
  issue: 10
  year: 2010
  end-page: 1278
  article-title: Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy
  publication-title: Ultramicroscopy
– volume: 494
  start-page: 68
  issue: 7435
  year: 2013
  article-title: Reconstructing state mixtures from diffraction measurements
  publication-title: Nature
– volume: 26
  start-page: 1506
  issue: 5
  year: 1990
  end-page: 1511
  article-title: Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures
  publication-title: IEEE Trans Magn
– volume: 112
  start-page: 171905
  issue: 17
  year: 2018
  article-title: Local nanoscale strain mapping of a metallic glass during in situ testing
  publication-title: Appl Phys Lett
– volume: 17
  start-page: 316
  issue: 3
  year: 2011
  end-page: 329
  article-title: A review of strain analysis using electron backscatter diffraction
  publication-title: Microsc Microanal
– volume: 107
  start-page: 072110
  issue: 7
  year: 2015
  article-title: Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector
  publication-title: Appl Phys Lett
– volume: 5
  start-page: 2580
  issue: 4
  year: 2011
  end-page: 2586
  article-title: Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures
  publication-title: ACS Nano
– volume: 224
  start-page: 113
  year: 2004
  end-page: 116
  article-title: Strain relaxation of strained-Si layers on SiGe-on-insulator (SGOI) structures after mesa isolation
  publication-title: Appl Surf Sci
– volume: 2
  start-page: 433
  issue: 9
  year: 1979
  end-page: 438
  article-title: Innovative imaging and microdiffraction in stem
  publication-title: Ultramicroscopy
– volume: 151
  start-page: 160
  year: 2015
  end-page: 167
  article-title: Efficient phase contrast imaging in stem using a pixelated detector. Part 1: Experimental demonstration at atomic resolution
  publication-title: Ultramicroscopy
– volume: 110
  start-page: 903
  issue: 7
  year: 2010
  end-page: 923
  article-title: Dynamics of annular bright field imaging in scanning transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 26
  start-page: 247
  issue: 3
  year: 1995
  end-page: 275
  article-title: Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy
  publication-title: Micron
– volume: 7
  start-page: 10719
  year: 2016
  article-title: Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry
  publication-title: Nat Commun
– volume: 11
  start-page: P04006
  issue: 04
  year: 2016
  article-title: A pnCCD-based, fast direct single electron imaging camera for TEM and STEM
  publication-title: J Instrum
– volume: 29
  start-page: 1606
  issue: 8
  year: 2012
  end-page: 1614
  article-title: Ptychographic transmission microscopy in three dimensions using a multi-slice approach
  publication-title: JOSA A
– volume: 93
  start-page: 221912
  issue: 22
  year: 2008
  article-title: Strain relaxation in transistor channels with embedded epitaxial silicon germanium source/drain
  publication-title: Appl Phys Lett
– volume: 4
  start-page: 10
  issue: 1
  year: 2018
  article-title: Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope
  publication-title: Adv Struct Chemi Imaging
– volume: 117
  start-page: 015501
  issue: 1
  year: 2016
  article-title: Inversion of dynamical scattering from large-angle rocking-beam electron diffraction patterns
  publication-title: Phys Rev Lett
– volume: 31
  start-page: 303
  issue: 3
  year: 1989
  end-page: 307
  article-title: Sub-Ångström transmission microscopy: A Fourier transform algorithm for microdiffraction plane intensity information
  publication-title: Ultramicroscopy
– volume: 203
  start-page: 95
  year: 2018
  end-page: 104
  article-title: Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose
  publication-title: Ultramicroscopy
– volume: 59
  start-page: 427
  issue: 3
  year: 1996
  article-title: Confocal optical microscopy
  publication-title: Rep Prog Phys
– volume: 190
  start-page: 45
  year: 2018
  end-page: 57
  article-title: Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence
  publication-title: Ultramicroscopy
– volume: 13
  start-page: 110
  issue: 2
  year: 2006
  end-page: 119
  article-title: Analog pixel array detectors
  publication-title: J Synchrotron Radiat
– volume: 113
  start-page: 233102
  issue: 23
  year: 2018
  article-title: A tunable path-separated electron interferometer with an amplitude-dividing grating beamsplitter
  publication-title: Appl Phys Lett
– volume: 103
  start-page: 241913
  issue: 24
  year: 2013
  article-title: Improved strain precision with high spatial resolution using nanobeam precession electron diffraction
  publication-title: Appl Phys Lett
– volume: 5
  start-page: 5
  issue: 1
  year: 2019
  article-title: Manifold learning of four-dimensional scanning transmission electron microscopy
  publication-title: NPJ Comput Mater
– volume: 3
  start-page: 13
  issue: 1
  year: 2017
  article-title: A fast image simulation algorithm for scanning transmission electron microscopy
  publication-title: Adv Struct Chem Imaging
– volume: 9
  start-page: 27
  issue: 1–2
  year: 1982
  end-page: 30
  article-title: Is the STEM a ptychograph?
  publication-title: Ultramicroscopy
– volume: 339
  start-page: 521
  issue: 1655
  year: 1992
  end-page: 553
  article-title: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution
  publication-title: Phil Trans R Soc London, Ser A
– volume: 5
  start-page: 5653
  year: 2014
  article-title: Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
  publication-title: Nat Commun
– volume: 8
  start-page: 1085
  issue: 12
  year: 2018
  article-title: Measuring structural heterogeneities in metallic glasses using transmission electron microscopy
  publication-title: Metals (Basel)
– volume: 279
  start-page: 388
  issue: 1–2
  year: 1989
  end-page: 395
  article-title: The silicon detectors in the UA2 experiment
  publication-title: Nucl Instrum Methods Phys Res Sect A
– volume: 93
  start-page: 023903
  issue: 2
  year: 2004
  article-title: Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm
  publication-title: Phys Rev Lett
– volume: 146
  start-page: 87
  year: 2018
  end-page: 90
  article-title: In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel
  publication-title: Scr Mater
– volume: 18
  start-page: 995
  issue: 5
  year: 2012
  end-page: 1009
  article-title: Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy
  publication-title: Microsc Microanal
– volume: 93
  start-page: 134116
  issue: 13
  year: 2016
  article-title: Structure retrieval with fast electrons using segmented detectors
  publication-title: Phys Rev B
– volume: 392
  start-page: 55
  issue: 17
  year: 1928
  end-page: 129
  article-title: Theorie der beugung von elektronen an kristallen
  publication-title: Ann Phys
– volume: 20
  start-page: 38
  issue: 6
  year: 2012
  end-page: 42
  article-title: Nanoscale automated phase and orientation mapping in the TEM
  publication-title: Micros Today
– volume: 120
  start-page: 16
  year: 2012
  end-page: 24
  article-title: Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope
  publication-title: Ultramicroscopy
– volume: 180
  start-page: 173
  year: 2017
  end-page: 179
  article-title: Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution
  publication-title: Ultramicroscopy
– volume: 105
  start-page: 191906
  issue: 19
  year: 2014
  article-title: Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera
  publication-title: Appl Phys Lett
– volume: 121
  start-page: 266102
  issue: 26
  year: 2018
  article-title: Structure retrieval at atomic resolution in the presence of multiple scattering of the electron probe
  publication-title: Phys Rev Lett
– volume: 23
  start-page: 162
  issue: S1
  year: 2017
  end-page: 163
  article-title: Computational methods for large scale scanning transmission electron microscopy (STEM) experiments and simulations
  publication-title: Microsc Microanal
– volume: 5
  start-page: 1701258
  issue: 5
  year: 2018
  article-title: Atomic structure of domain and interphase boundaries in ferroelectric HfO
  publication-title: Adv Mater Interfaces
– volume: 85
  start-page: 651
  issue: 4
  year: 2004
  end-page: 653
  article-title: Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations
  publication-title: Appl Phys Lett
– volume: 6
  start-page: 249
  issue: 4
  year: 2018
  end-page: 254
  article-title: Nanoscale elastic strain mapping of polycrystalline materials
  publication-title: Mater Res Lett
– volume: 53
  start-page: 271
  issue: 3
  year: 1994
  end-page: 282
  article-title: Double conical beam-rocking system for measurement of integrated electron diffraction intensities
  publication-title: Ultramicroscopy
– volume: 10
  start-page: 584
  issue: 6
  year: 2013
  article-title: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
  publication-title: Nat Methods
– volume: 5
  start-page: 23
  year: 1928
  article-title: Elektronenbeugung an glimmerplättchen
  publication-title: Jpn J Phys
– volume: 6
  start-page: 7267
  year: 2015
  article-title: Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis
  publication-title: Nat Commun
– volume: 42
  start-page: 1825
  issue: 11
  year: 1979
  article-title: The scattering of fast electrons by crystals
  publication-title: Rep Prog Phys
– volume: 58
  start-page: 403
  issue: 3–4
  year: 1995
  end-page: 415
  article-title: Optimum rotationally symmetric detector configurations for phase-contrast imaging in scanning transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 53
  start-page: 8614
  issue: 33
  year: 2014
  end-page: 8617
  article-title: Multi-dimensional electron microscopy
  publication-title: Angew Chem, Int Ed
– volume: 95
  start-page: 123114
  issue: 12
  year: 2009
  article-title: Improved precision in strain measurement using nanobeam electron diffraction
  publication-title: Appl Phys Lett
– volume: 52
  start-page: 21
  issue: 1
  year: 1993
  end-page: 29
  article-title: High-sensitivity lens-coupled slow-scan CCD camera for transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 89
  start-page: 064101
  issue: 6
  year: 2014
  article-title: Deterministic electron ptychography at atomic resolution
  publication-title: Phys Rev B
– volume: 18
  start-page: 3746
  issue: 6
  year: 2018
  article-title: Strain mapping of two-dimensional heterostructures with subpicometer precision
  publication-title: Nano Lett
– volume: 10
  start-page: 609
  issue: 10
  year: 1957
  end-page: 619
  article-title: The scattering of electrons by atoms and crystals. I. a new theoretical approach
  publication-title: Acta Crystallogr
– volume: 155
  start-page: 1
  year: 2015
  end-page: 10
  article-title: Diffraction contrast imaging using virtual apertures
  publication-title: Ultramicroscopy
– volume: 25
  start-page: 508
  issue: 4
  year: 1969
  end-page: 514
  article-title: Beugung im inhomogenen primärstrahlwellenfeld. III. amplituden-und phasenbestimmung bei unperiodischen objekten
  publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr
– volume: 104
  start-page: 101903
  issue: 10
  year: 2014
  article-title: Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing
  publication-title: Appl Phys Lett
– volume: 22
  start-page: 494
  issue: S3
  year: 2016
  end-page: 495
  article-title: Study of structure of Li-and Mn-rich transition metal oxides using 4D-STEM
  publication-title: Microsc Microanal
– volume: 23
  start-page: 4515
  issue: 20
  year: 2011
  end-page: 4524
  article-title: Confirmation of the domino-cascade model by LiFePO/FePO precession electron diffraction
  publication-title: Chem Mater
– volume: 60
  start-page: 646
  issue: 5
  year: 2006
  end-page: 650
  article-title: A technique for determination of γ/γ interface relationships in a (α2 + γ) TiAl base alloy using TEM Kikuchi patterns
  publication-title: Mater Lett
– volume: 3
  start-page: 15
  issue: 1
  year: 2017
  article-title: A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy
  publication-title: Adv Struct Chem Imaging
– volume: 13
  start-page: 1560
  issue: S02
  year: 2007
  end-page: 1561
  article-title: Scanning confocal electron microscopy
  publication-title: Microsc Microanal
– volume: 70
  start-page: 1
  issue: (7)
  year: 2018
  end-page: 7
  article-title: In-situ indentation and correlated precession electron diffraction analysis of a polycrystalline Cu thin film
  publication-title: JOM
– volume: 106
  start-page: 160802
  issue: 16
  year: 2011
  article-title: Imaging high-energy electrons propagating in a crystal
  publication-title: Phys Rev Lett
– volume: 9
  start-page: 150
  issue: S02
  year: 2003
  end-page: 151
  article-title: Computationally mediated experimental science
  publication-title: Microsc Microanal
– volume: 248
  start-page: 353
  year: 1984
  end-page: 366
  article-title: The use of scanning transmission electron microscopes to study surfaces and small particles
  publication-title: ACS Symp Ser
– volume: 3
  start-page: 730
  year: 2012
  article-title: Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging
  publication-title: Nat Commun
– volume: 192
  start-page: 21
  year: 2018
  end-page: 28
  article-title: Introducing a non-pixelated and fast centre of mass detector for differential phase contrast microscopy
  publication-title: Ultramicroscopy
– year: 2018
  article-title: Metal-organic framework crystal-glass composites
  publication-title: ChemRxiv
– volume: 106
  start-page: 086101
  issue: 8
  year: 2009
  article-title: Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy
  publication-title: J Appl Phys
– volume: 39
  start-page: 416
  issue: 4
  year: 1974
  end-page: 436
  article-title: Phase contrast in scanning transmission electron microscopy
  publication-title: Optik
– volume: 93
  start-page: 147
  issue: 2
  year: 2002
  end-page: 159
  article-title: Fluctuation microscopy in the STEM
  publication-title: Ultramicroscopy
– volume: 7
  start-page: 12532
  year: 2016
  article-title: Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures
  publication-title: Nat Commun
– volume: 158
  start-page: H438
  issue: 4
  year: 2011
  end-page: H446
  article-title: Nanobeam diffraction: Technique evaluation and strain measurement on complementary metal oxide semiconductor devices
  publication-title: J Electrochem Soc
– volume: 13
  start-page: 15
  issue: 1
  year: 1990
  end-page: 30
  article-title: Measurement of local textures with transmission and scanning electron microscopes
  publication-title: Texture, Stress, Microstruct
– volume: 89
  start-page: 124105
  issue: 12
  year: 2006
  article-title: Confocal operation of a transmission electron microscope with two aberration correctors
  publication-title: Appl Phys Lett
– volume: 21
  start-page: 1219
  issue: S3
  year: 2015
  end-page: 1220
  article-title: Ptychographic imaging in an aberration corrected stem
  publication-title: Microsc Microanal
– volume: 5
  start-page: 4155
  year: 2014
  article-title: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts
  publication-title: Nat Commun
– volume: 109
  start-page: 304
  issue: 4
  year: 2009
  end-page: 311
  article-title: A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope
  publication-title: Ultramicroscopy
– volume: 82
  start-page: 104103
  issue: 10
  year: 2010
  article-title: Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation
  publication-title: Phys Rev B
– volume: 34
  start-page: 153
  issue: 2
  year: 1979
  end-page: 181
  article-title: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys
  publication-title: J Non-Cryst Solids
– volume: 101
  start-page: 212110
  issue: 21
  year: 2012
  article-title: Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device
  publication-title: Appl Phys Lett
– volume: 195
  start-page: 189
  year: 2018
  end-page: 193
  article-title: Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 107
  start-page: 191901
  issue: 19
  year: 2015
  article-title: Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling
  publication-title: Appl Phys Lett
– volume: 25
  start-page: 502
  issue: 4
  year: 1969
  end-page: 507
  article-title: Beugung in inhomogenen primärstrahlenwellenfeld. II. lichtoptische analogieversuche zur phasenmessung von gitterinterferenzen
  publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr
– volume: 26
  start-page: 5
  issue: (4)
  year: 2012
  end-page: 8
  article-title: Quantitative four-dimensional electron diffraction in the TEM
  publication-title: Microsc Anal
– volume: 56
  start-page: 119
  issue: 2
  year: 2000
  end-page: 126
  article-title: Inversion of dynamical electron diffraction data including absorption
  publication-title: Acta Crystallogr, Sect A: Found Crystallogr
– volume: 121
  start-page: 056101
  issue: 5
  year: 2018
  article-title: Single atom detection from low contrast-to-noise ratio electron microscopy images
  publication-title: Phys Rev Lett
– volume: 193
  start-page: 1
  year: 2018
  article-title: Dr. Probe: A software for high-resolution STEM image simulation
  publication-title: Ultramicroscopy
– volume: 13
  start-page: 962
  issue: S02
  year: 2007
  end-page: 963
  article-title: Development of diffraction imaging for orientation analysis of grains in scanning transmission electron microscopy
  publication-title: Microsc Microanal
– volume: 10
  start-page: 1127
  year: 2019
  article-title: Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy
  publication-title: Nat Commun
– volume: 50
  start-page: 87
  year: 2005
  end-page: 99
  article-title: Rapid spot diffraction patterns identification through template matching
  publication-title: Arch Metall Mater
– volume: 2
  start-page: 251
  issue: 0
  year: 1977
  end-page: 267
  article-title: Nonstandard imaging methods in electron microscopy
  publication-title: Ultramicroscopy
– volume: 8
  start-page: 163
  issue: 1
  year: 2017
  article-title: Electron ptychographic microscopy for three-dimensional imaging
  publication-title: Nat Commun
– volume: 113
  start-page: 253101
  issue: 25
  year: 2018
  article-title: Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy
  publication-title: Appl Phys Lett
– volume: 96
  start-page: 127
  issue: 2
  year: 2003
  end-page: 137
  article-title: Polycrystal orientation maps from TEM
  publication-title: Ultramicroscopy
– volume: 16
  start-page: 247
  year: 2018
  end-page: 252
  article-title: 4D-data acquisition in scanning confocal electron microscopy for depth-sectioned imaging
  publication-title: e-J Surf Sci Nanotechnol
– volume: 91
  start-page: 023805
  issue: 2
  year: 2015
  article-title: Differential phase contrast: An integral perspective
  publication-title: Phys Rev A
– volume: 125
  start-page: 49
  year: 2013
  end-page: 58
  article-title: Measurement of chromatic aberration in STEM and SCEM by coherent convergent beam electron diffraction
  publication-title: Ultramicroscopy
– volume: 96
  start-page: 285
  issue: 3–4
  year: 2003
  end-page: 298
  article-title: Nanobeam propagation and imaging in a FEGTEM/STEM
  publication-title: Ultramicroscopy
– volume: 374
  start-page: 630
  issue: 6523
  year: 1995
  article-title: Resolution beyond the “information limit” in transmission electron microscopy
  publication-title: Nature
– volume: 111
  start-page: 1111
  issue: 8
  year: 2011
  end-page: 1116
  article-title: Spatially resolved diffractometry with atomic-column resolution
  publication-title: Ultramicroscopy
– volume: 113
  start-page: 033104
  issue: 3
  year: 2018
  article-title: Subsampled STEM-ptychography
  publication-title: Appl Phys Lett
– volume: 11
  start-page: 830
  issue: 4
  year: 2018
  end-page: 840
  article-title: Effect of composition on the structure of lithium-and manganese-rich transition metal oxides
  publication-title: Energy Environ Sci
– volume: 54
  start-page: 79
  issue: 1
  year: 1986
  end-page: 92
  article-title: The use of convergent-beam electron diffraction to determine local lattice distortions in nickel-base superalloys
  publication-title: Philos Mag A
– volume: 490
  start-page: 384
  issue: 7420
  year: 2012
  article-title: Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM
  publication-title: Nature
– volume: 354
  start-page: 197
  issue: 1677
  year: 1977
  end-page: 222
  article-title: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination
  publication-title: Proc R Soc London, Ser A
– volume: 54
  start-page: 83
  issue: 2
  year: 1979
  end-page: 96
  article-title: Linear imaging of strong phase objects using asymmetrical detectors in stem
  publication-title: Optik
– volume: 106
  start-page: 476
  year: 2016
  end-page: 481
  article-title: Cross-sectional stress distribution in AlGaN heterostructure on Si (111) substrate characterized by ion beam layer removal method and precession electron diffraction
  publication-title: Mater Des
– volume: 18
  start-page: 6850
  issue: 11
  year: 2018
  end-page: 6855
  article-title: Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography
  publication-title: Nano Lett
– volume: 176
  start-page: 170
  year: 2017
  end-page: 176
  article-title: Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping
  publication-title: Ultramicroscopy
– volume: 2
  start-page: 26
  year: 2019
  article-title: Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction
  publication-title: Commun Biol
– volume: 142
  start-page: 458
  year: 2018
  end-page: 469
  article-title: The evolution of precipitate crystal structures in an Al-Mg-Si (-Cu) alloy studied by a combined HAADF-STEM and SPED approach
  publication-title: Mater Charact
– volume: 109
  start-page: 326
  issue: 4
  year: 2009
  end-page: 337
  article-title: Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography
  publication-title: Ultramicroscopy
– volume: 177
  start-page: 91
  year: 2017
  end-page: 96
  article-title: STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens
  publication-title: Ultramicroscopy
– volume: 41
  start-page: 211
  issue: 1–3
  year: 1992
  end-page: 223
  article-title: Automated lattice parameter measurement from HOLZ lines and their use for the measurement of oxygen content in YBa2Cu3O7−δ from nanometer-sized region
  publication-title: Ultramicroscopy
– volume: 42
  start-page: 2405
  issue: 7
  year: 2007
  end-page: 2416
  article-title: Microstructure and microtexture of highly cold-rolled commercially pure titanium
  publication-title: J Mater Sci
– volume: 23
  start-page: 1782
  issue: S1
  year: 2017
  end-page: 1783
  article-title: Nanobeam scanning diffraction for orientation mapping of polymers
  publication-title: Microsc Microanal
– volume: 128
  start-page: 68
  year: 2013
  end-page: 81
  article-title: Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals
  publication-title: Ultramicroscopy
– volume: 111
  start-page: 828
  issue: 7
  year: 2011
  end-page: 840
  article-title: Aberration-compensated large-angle rocking-beam electron diffraction
  publication-title: Ultramicroscopy
– volume: 134
  start-page: 9672
  issue: 23
  year: 2012
  end-page: 9680
  article-title: 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography
  publication-title: J Am Chem Soc
– volume: 111
  start-page: 995
  issue: 8
  year: 2011
  end-page: 998
  article-title: Evaluation of two-dimensional strain distribution by STEM/NBD
  publication-title: Ultramicroscopy
– volume: 181
  start-page: 50
  year: 2017
  end-page: 60
  article-title: Optimization of NBED simulations for disc-detection measurements
  publication-title: Ultramicroscopy
– volume: 14
  start-page: 70
  issue: S2
  year: 2008
  end-page: 71
  article-title: Hyperspectral imaging in TEM: New ways of information extraction and display
  publication-title: Microsc Microanal
– volume: 108
  start-page: 195505
  issue: 19
  year: 2012
  article-title: Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass
  publication-title: Phys Rev Lett
– volume: 112
  start-page: 166101
  issue: 16
  year: 2014
  article-title: Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy
  publication-title: Phys Rev Lett
– volume: 8
  start-page: 376
  issue: S02
  year: 2002
  end-page: 377
  article-title: Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM
  publication-title: Microsc Microanal
– volume: 80
  start-page: 145
  year: 2016
  end-page: 165
  article-title: Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope
  publication-title: Micron
– volume: 67
  start-page: 487
  issue: 5
  year: 2011
  end-page: 490
  article-title: Atomic resolution imaging using the real-space distribution of electrons scattered by a crystalline material
  publication-title: Acta Crystallogr, Sect A: Found Crystallogr
– volume: 19
  start-page: 770
  issue: S2
  year: 2013
  end-page: 771
  article-title: Advances in 2D, 3D and 4D STEM image data analysis
  publication-title: Microsc Microanal
– volume: 178
  start-page: 62
  year: 2017
  end-page: 80
  article-title: Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy
  publication-title: Ultramicroscopy
– volume: 85
  start-page: 4795
  issue: 20
  year: 2004
  end-page: 4797
  article-title: A phase retrieval algorithm for shifting illumination
  publication-title: Appl Phys Lett
– volume: 188
  start-page: 59
  year: 2018
  end-page: 69
  article-title: A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns
  publication-title: Ultramicroscopy
– volume: 88
  start-page: 30
  year: 2016
  end-page: 36
  article-title: Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction
  publication-title: Micron
– volume: 133
  start-page: 109
  year: 2013
  end-page: 119
  article-title: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images
  publication-title: Ultramicroscopy
– volume: 24
  start-page: 166
  issue: S1
  year: 2018
  end-page: 167
  article-title: A next generation electron microscopy detector aimed at enabling new scanning diffraction techniques and online data reconstruction
  publication-title: Microsc Microanal
– volume: 33
  start-page: 10
  issue: 1
  year: 2000
  end-page: 25
  article-title: New developments of computer-aided crystallographic analysis in transmission electron microscopy
  publication-title: J Appl Crystallogr
– volume: 121
  start-page: 146101
  issue: 14
  year: 2018
  article-title: Hollow electron ptychographic diffractive imaging
  publication-title: Phys Rev Lett
– volume: 109
  start-page: 1256
  issue: 10
  year: 2009
  end-page: 1262
  article-title: An improved ptychographical phase retrieval algorithm for diffractive imaging
  publication-title: Ultramicroscopy
– volume: 98
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Automated crystal orientation and phase mapping in TEM
  publication-title: Mater Charact
– volume: 67
  start-page: i114
  year: 2018
  end-page: i122
  article-title: Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging
  publication-title: Microscopy
– volume: 644
  start-page: 012032
  issue: 1
  year: 2015
  article-title: 4D STEM: High efficiency phase contrast imaging using a fast pixelated detector
  publication-title: J Phys Conf Ser
– volume: 3
  start-page: 25
  issue: 1
  year: 1986
  end-page: 44
  article-title: Electron diffraction phenomena observed with a high resolution stem instrument
  publication-title: J Electron Microsc Tech
– volume: 3
  start-page: 437
  issue: 4
  year: 1964
  end-page: 451
  article-title: Forty years of history of a grating interferometer
  publication-title: Appl Opt
– volume: 113
  start-page: 186
  year: 2017
  end-page: 194
  article-title: Grain rotations in ultrafine-grained aluminum films studied using in situ tem straining with automated crystal orientation mapping
  publication-title: Mater Des
– volume: 565
  start-page: 468
  year: 2019
  end-page: 471
  article-title: Spatially resolved steady-state negative capacitance
  publication-title: Nature
– volume: 79
  start-page: 214110
  issue: 21
  year: 2009
  article-title: High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment
  publication-title: Phys Rev B
– volume: 10
  start-page: 061001
  year: 2018
  article-title: Interpretable and efficient interferometric contrast in scanning transmission electron microscopy with a diffraction-grating beam splitter
  publication-title: Phys Rev Appl
– volume: 82
  start-page: 121415
  issue: 12
  year: 2010
  article-title: Wave-front phase retrieval in transmission electron microscopy via ptychography
  publication-title: Phys Rev B
– volume: 158
  start-page: 38
  year: 2015
  end-page: 48
  article-title: Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction
  publication-title: Ultramicroscopy
– volume: 19
  start-page: 267
  issue: 3
  year: 1986
  end-page: 277
  article-title: Image reconstruction using electron microdiffraction patterns from overlapping regions
  publication-title: Ultramicroscopy
– volume: 273
  start-page: 215
  year: 1998
  end-page: 222
  article-title: Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns
  publication-title: Mater Sci Forum
– volume: 15
  start-page: 5214
  issue: 8
  year: 2015
  end-page: 5220
  article-title: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy
  publication-title: Nano Lett
– volume: 7
  start-page: 9883
  issue: 1
  year: 2017
  article-title: Low-dose cryo electron ptychography via non-convex Bayesian optimization
  publication-title: Sci Rep
– volume: 559
  start-page: 343
  issue: 7714
  year: 2018
  article-title: Electron ptychography of 2D materials to deep sub-Ångström resolution
  publication-title: Nature
– volume: 151
  start-page: 232
  year: 2015
  end-page: 239
  article-title: Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions
  publication-title: Ultramicroscopy
– volume: 119
  start-page: 72
  year: 2019
  end-page: 87
  article-title: Radiation damage to organic and inorganic specimens in the TEM
  publication-title: Micron
– volume: 165
  start-page: 42
  year: 2016
  end-page: 50
  article-title: Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast
  publication-title: Ultramicroscopy
– volume: 41
  start-page: 452
  issue: 4
  year: 1974
  end-page: 456
  article-title: Differential phase contrast in a STEM
  publication-title: Optik
– volume: 8
  start-page: 611
  issue: 8
  year: 2012
  article-title: Differential phase-contrast microscopy at atomic resolution
  publication-title: Nat Phys
– volume: 11
  start-page: 143
  issue: 2
  year: 1989
  end-page: 154
  article-title: Observation of microdiffraction patterns with a dedicated STEM instrument
  publication-title: J Electron Microsc Tech
– volume: 46
  start-page: 607
  issue: 6
  year: 2011
  end-page: 628
  article-title: A critical review of orientation microscopy in SEM and TEM
  publication-title: Cryst Res Technol
– volume: 48
  start-page: 304
  issue: 3
  year: 1993
  end-page: 314
  article-title: Experimental tests on double-resolution coherent imaging via STEM
  publication-title: Ultramicroscopy
– volume: 51
  start-page: 205104
  issue: 20
  year: 2018
  article-title: Path-separated electron interferometry in a scanning transmission electron microscope
  publication-title: J Phys D: Appl Phys
– volume: 71
  start-page: 473
  issue: 5
  year: 2015
  end-page: 482
  article-title: Interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens
  publication-title: Acta Crystallogr, Sect A: Found Adv
– volume: 98
  start-page: 121408
  issue: 12
  year: 2018
  article-title: Atomic-scale quantification of charge densities in two-dimensional materials
  publication-title: Phys Rev B
– volume: 8
  start-page: 10878
  issue: 10
  year: 2014
  end-page: 10884
  article-title: Three-dimensional valency mapping in ceria nanocrystals
  publication-title: ACS Nano
– volume: 112
  start-page: 071901
  issue: 7
  year: 2018
  article-title: Determination of the structural phase and octahedral rotation angle in halide perovskites
  publication-title: Appl Phys Lett
– volume: 8
  start-page: 16070
  year: 2017
  article-title: Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films
  publication-title: Nat Commun
– volume: 39
  start-page: 138
  issue: 2
  year: 2014
  end-page: 146
  article-title: Observing and measuring strain in nanostructures and devices with transmission electron microscopy
  publication-title: MRS Bull
– volume: 110
  start-page: 118
  issue: 2
  year: 2010
  end-page: 125
  article-title: Position averaged convergent beam electron diffraction: Theory and applications
  publication-title: Ultramicroscopy
– volume: 110
  start-page: 205505
  issue: 20
  year: 2013
  article-title: Systematic mapping of icosahedral short-range order in a melt-spun ZrCu metallic glass
  publication-title: Phys Rev Lett
– volume: 2
  start-page: 126
  issue: 1
  year: 2015
  end-page: 136
  article-title: Precession electron diffraction–a topical review
  publication-title: IUCrJ
– volume: 25
  start-page: 495
  issue: 4
  year: 1969
  end-page: 501
  article-title: Beugung im inhomogenen primärstrahlwellenfeld. I. prinzip einer phasenmessung von elektronenbeungungsinterferenzen
  publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr
– volume: 196
  start-page: 58
  year: 2019
  end-page: 66
  article-title: Prospects of annular differential phase contrast applied for optical sectioning in STEM
  publication-title: Ultramicroscopy
– volume: 50
  start-page: 41
  issue: 1
  year: 1993
  end-page: 56
  article-title: Determination of multiple lattice parameters from convergent-beam electron diffraction patterns
  publication-title: Ultramicroscopy
– volume: 108
  start-page: 073901
  issue: 7
  year: 2012
  article-title: Atom-scale ptychographic electron diffractive imaging of boron nitride cones
  publication-title: Phys Rev Lett
– volume: 6
  start-page: 37624
  year: 2016
  article-title: Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3
  publication-title: Sci Rep
– volume: 33
  start-page: 205
  issue: 11
  year: 2010
  end-page: 219
  article-title: Nano-beam diffraction: Crystal structure and strain analysis at the nanoscale
  publication-title: ECS Trans
– volume: 52
  start-page: 212
  issue: 2
  year: 1996
  end-page: 220
  article-title: Variable coherence microscopy: A rich source of structural information from disordered materials
  publication-title: Acta Crystallogr, Sect A
– ident: S1431927619000497_ref194
  doi: 10.3390/met8121085
– ident: S1431927619000497_ref195
  doi: 10.1107/S0108767395012876
– ident: S1431927619000497_ref215
  doi: 10.1016/j.ultramic.2016.09.002
– ident: S1431927619000497_ref66
– ident: S1431927619000497_ref191
  doi: 10.1038/srep37624
– ident: S1431927619000497_ref162
  doi: 10.1016/j.matchar.2014.08.010
– ident: S1431927619000497_ref96
  doi: 10.1017/S1431927613005849
– ident: S1431927619000497_ref160
  doi: 10.1103/PhysRevLett.108.073901
– ident: S1431927619000497_ref213
  doi: 10.1088/1742-6596/644/1/012032
– ident: S1431927619000497_ref182
  doi: 10.1017/S1431927616003329
– ident: S1431927619000497_ref150
  doi: 10.1017/S1431927617001490
– ident: S1431927619000497_ref171
  doi: 10.1016/S0304-3991(76)91538-2
– ident: S1431927619000497_ref138
  doi: 10.1016/j.ultramic.2016.05.004
– ident: S1431927619000497_ref120
  doi: 10.1063/1.3460106
– ident: S1431927619000497_ref128
  doi: 10.1002/anie.201400625
– ident: S1431927619000497_ref14
  doi: 10.1021/acs.jpcc.5b09524
– ident: S1431927619000497_ref2
  doi: 10.1017/S1431927618003422
– ident: S1431927619000497_ref167
  doi: 10.1063/1.1823034
– ident: S1431927619000497_ref38
  doi: 10.1016/j.ultramic.2016.04.004
– ident: S1431927619000497_ref152
  doi: 10.1016/j.micron.2016.05.008
– ident: S1431927619000497_ref84
  doi: 10.1103/PhysRevB.82.121415
– ident: S1431927619000497_ref85
  doi: 10.1088/0034-4885/42/11/002
– ident: S1431927619000497_ref224
  doi: 10.1017/S143192760210064X
– ident: S1431927619000497_ref222
  doi: 10.1107/S0021889899010894
– ident: S1431927619000497_ref183
  doi: 10.1039/C7EE02443F
– ident: S1431927619000497_ref25
  doi: 10.1093/oxfordjournals.jmicro.a023409
– ident: S1431927619000497_ref59
  doi: 10.1016/j.actamat.2014.07.062
– ident: S1431927619000497_ref48
  doi: 10.1149/1.3546851
– ident: S1431927619000497_ref61
  doi: 10.1021/nn5047053
– ident: S1431927619000497_ref79
  doi: 10.1038/nmat2897
– ident: S1431927619000497_ref50
  doi: 10.1021/ja304079d
– ident: S1431927619000497_ref188
  doi: 10.1063/1.5040496
– ident: S1431927619000497_ref88
  doi: 10.1103/PhysRevLett.111.266101
– ident: S1431927619000497_ref71
  doi: 10.1380/ejssnt.2018.247
– ident: S1431927619000497_ref205
  doi: 10.1093/jmicro/dfy002
– ident: S1431927619000497_ref46
  doi: 10.1103/PhysRevLett.93.023903
– ident: S1431927619000497_ref200
  doi: 10.1016/0304-3991(94)90039-6
– ident: S1431927619000497_ref4
  doi: 10.1016/j.ultramic.2018.06.003
– ident: S1431927619000497_ref75
  doi: 10.1063/1.3225103
– ident: S1431927619000497_ref33
  doi: 10.1016/0968-4328(95)00054-8
– ident: S1431927619000497_ref110
  doi: 10.1016/j.ultramic.2018.09.012
– ident: S1431927619000497_ref158
  doi: 10.1016/0022-3093(79)90033-4
– ident: S1431927619000497_ref157
  doi: 10.1016/j.ultramic.2014.09.013
– ident: S1431927619000497_ref95
  doi: 10.1017/S1431927618001320
– ident: S1431927619000497_ref57
  doi: 10.1063/1.5025686
– ident: S1431927619000497_ref16
  doi: 10.1063/1.4935238
– ident: S1431927619000497_ref30
  doi: 10.1103/PhysRevB.89.064101
– ident: S1431927619000497_ref230
  doi: 10.1016/j.ultramic.2012.10.002
– ident: S1431927619000497_ref12
  doi: 10.1103/PhysRevLett.121.266102
– ident: S1431927619000497_ref185
  doi: 10.1109/IPFA.2009.5232604
– ident: S1431927619000497_ref226
  doi: 10.1017/S1431927607074004
– ident: S1431927619000497_ref118
  doi: 10.1017/S1431927615006881
– ident: S1431927619000497_ref146
  doi: 10.1186/s40679-017-0046-1
– ident: S1431927619000497_ref80
  doi: 10.1107/S0567739469001045
– ident: S1431927619000497_ref139
  doi: 10.1103/PhysRevB.98.121408
– ident: S1431927619000497_ref175
  doi: 10.1088/1748-0221/11/04/P04006
– ident: S1431927619000497_ref223
  doi: 10.1002/crat.201100125
– ident: S1431927619000497_ref27
  doi: 10.1107/S0365110X57002194
– ident: S1431927619000497_ref41
  doi: 10.1107/S0909049505028529
– ident: S1431927619000497_ref124
  doi: 10.1364/JOSAA.29.001606
– volume: 5
  start-page: 23
  year: 1928
  ident: S1431927619000497_ref99
  article-title: Elektronenbeugung an glimmerplättchen
  publication-title: Jpn J Phys
– ident: S1431927619000497_ref10
  doi: 10.1111/jmi.12007
– ident: S1431927619000497_ref28
  doi: 10.1002/jemt.1060110209
– ident: S1431927619000497_ref214
  doi: 10.1016/j.ultramic.2014.10.013
– ident: S1431927619000497_ref102
  doi: 10.1016/j.ultramic.2010.12.014
– ident: S1431927619000497_ref31
  doi: 10.1017/S1551929512000818
– ident: S1431927619000497_ref3
  doi: 10.1016/0168-9002(89)91111-X
– ident: S1431927619000497_ref122
  doi: 10.1016/j.ultramic.2018.09.010
– ident: S1431927619000497_ref21
  doi: 10.1063/1.1774275
– ident: S1431927619000497_ref187
  doi: 10.1007/978-1-4757-5581-7_15
– ident: S1431927619000497_ref44
  doi: 10.1038/s41467-019-08904-9
– volume: 339
  start-page: 521
  year: 1992
  ident: S1431927619000497_ref166
  article-title: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution
  publication-title: Phil Trans R Soc London, Ser A
  doi: 10.1098/rsta.1992.0050
– ident: S1431927619000497_ref186
  doi: 10.1107/S010876739700874X
– ident: S1431927619000497_ref127
  doi: 10.1107/S2052252514022283
– ident: S1431927619000497_ref23
  doi: 10.1021/bk-1984-0248.ch017
– ident: S1431927619000497_ref132
  doi: 10.1007/BF01326780
– ident: S1431927619000497_ref70
  doi: 10.1016/0304-3991(94)90091-4
– ident: S1431927619000497_ref165
– ident: S1431927619000497_ref168
  doi: 10.1016/0304-3991(93)90105-7
– ident: S1431927619000497_ref111
  doi: 10.1038/nmeth.2472
– ident: S1431927619000497_ref131
  doi: 10.1038/ncomms16070
– ident: S1431927619000497_ref45
  doi: 10.1103/PhysRevLett.121.056101
– ident: S1431927619000497_ref6
  doi: 10.1063/1.3224886
– ident: S1431927619000497_ref1
  doi: 10.1107/S0108767399014798
– ident: S1431927619000497_ref39
  doi: 10.1016/j.micron.2019.01.005
– ident: S1431927619000497_ref22
  doi: 10.1016/j.micron.2015.09.001
– ident: S1431927619000497_ref129
  doi: 10.1016/j.ultramic.2005.03.006
– ident: S1431927619000497_ref155
  doi: 10.1038/s41598-017-07488-y
– ident: S1431927619000497_ref220
  doi: 10.1088/1361-6463/aabc47
– ident: S1431927619000497_ref225
  doi: 10.1017/S1431927603440427
– ident: S1431927619000497_ref98
  doi: 10.1080/01418618608242884
– ident: S1431927619000497_ref74
  doi: 10.1103/PhysRevApplied.10.061001
– ident: S1431927619000497_ref145
  doi: 10.1016/j.ultramic.2017.03.010
– ident: S1431927619000497_ref141
  doi: 10.1038/374630a0
– ident: S1431927619000497_ref89
  doi: 10.1557/mrs.2014.4
– ident: S1431927619000497_ref201
  doi: 10.1016/S0304-3991(02)00155-9
– ident: S1431927619000497_ref203
  doi: 10.1103/PhysRevLett.117.015501
– ident: S1431927619000497_ref87
  doi: 10.1103/PhysRevLett.108.195505
– ident: S1431927619000497_ref104
  doi: 10.1016/0304-3991(86)90214-7
– ident: S1431927619000497_ref15
  doi: 10.1021/cm201783z
– ident: S1431927619000497_ref143
  doi: 10.1017/S1431927616003500
– ident: S1431927619000497_ref231
  doi: 10.1103/PhysRevLett.112.166101
– ident: S1431927619000497_ref178
  doi: 10.4028/www.scientific.net/MSF.273-275.215
– ident: S1431927619000497_ref190
  doi: 10.1103/PhysRevLett.103.097202
– ident: S1431927619000497_ref227
  doi: 10.1021/acs.nanolett.5b02483
– ident: S1431927619000497_ref17
  doi: 10.1017/S1431927617009576
– ident: S1431927619000497_ref112
  doi: 10.1038/s41524-018-0139-y
– ident: S1431927619000497_ref114
  doi: 10.1103/PhysRevLett.110.205505
– ident: S1431927619000497_ref192
  doi: 10.1017/S1431927615015664
– ident: S1431927619000497_ref136
  doi: 10.1038/ncomms6653
– ident: S1431927619000497_ref73
  doi: 10.1021/acs.nanolett.8b00952
– ident: S1431927619000497_ref154
  doi: 10.1016/j.scriptamat.2017.11.005
– ident: S1431927619000497_ref221
  doi: 10.1021/acs.nanolett.8b03166
– ident: S1431927619000497_ref233
  doi: 10.1016/0304-3991(92)90110-6
– ident: S1431927619000497_ref140
  doi: 10.1016/j.ultramic.2018.12.018
– ident: S1431927619000497_ref53
  doi: 10.1063/1.1506010
– ident: S1431927619000497_ref126
  doi: 10.1109/4.551910
– ident: S1431927619000497_ref153
  doi: 10.1016/j.ultramic.2016.12.021
– ident: S1431927619000497_ref149
  doi: 10.1063/1.4975932
– ident: S1431927619000497_ref65
  doi: 10.1007/s11837-018-2854-8
– ident: S1431927619000497_ref196
  doi: 10.1016/j.ultramic.2012.06.004
– ident: S1431927619000497_ref121
  doi: 10.1016/j.ultramic.2015.06.011
– ident: S1431927619000497_ref180
  doi: 10.1021/nn1023126
– ident: S1431927619000497_ref211
  doi: 10.1016/j.ultramic.2018.03.004
– ident: S1431927619000497_ref218
  doi: 10.1038/ncomms5155
– ident: S1431927619000497_ref72
  doi: 10.1016/0304-3991(95)00007-N
– ident: S1431927619000497_ref210
  doi: 10.1017/S1431927611000055
– ident: S1431927619000497_ref20
  doi: 10.1016/j.ultramic.2016.06.009
– ident: S1431927619000497_ref19
  doi: 10.1109/20.104427
– ident: S1431927619000497_ref199
  doi: 10.1063/1.4901435
– ident: S1431927619000497_ref135
  doi: 10.1063/1.4767655
– ident: S1431927619000497_ref92
  doi: 10.1016/j.matdes.2016.10.015
– ident: S1431927619000497_ref123
  doi: 10.1016/j.ultramic.2009.05.012
– volume: 354
  start-page: 197
  year: 1977
  ident: S1431927619000497_ref97
  article-title: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination
  publication-title: Proc R Soc London, Ser A
  doi: 10.1098/rspa.1977.0064
– ident: S1431927619000497_ref5
  doi: 10.1016/0304-3991(89)90052-1
– ident: S1431927619000497_ref232
  doi: 10.1038/nature11563
– ident: S1431927619000497_ref217
  doi: 10.1016/j.ultramic.2017.02.006
– ident: S1431927619000497_ref76
  doi: 10.1016/0304-3991(82)90225-X
– ident: S1431927619000497_ref13
  doi: 10.1016/j.ultramic.2018.12.010
– ident: S1431927619000497_ref26
  doi: 10.1016/S0304-3991(03)00003-2
– ident: S1431927619000497_ref34
  doi: 10.1016/j.matlet.2005.09.052
– volume-title: Le Microscope à Contraste de Phase et le Microscope Interférentiel
  year: 1954
  ident: S1431927619000497_ref52
– ident: S1431927619000497_ref116
  doi: 10.1021/acs.nanolett.8b02718
– ident: S1431927619000497_ref173
  doi: 10.1063/1.4829154
– ident: S1431927619000497_ref81
  doi: 10.1107/S0567739469001069
– ident: S1431927619000497_ref18
  doi: 10.1016/j.ultramic.2008.11.023
– ident: S1431927619000497_ref49
  doi: 10.1016/j.ultramic.2010.04.004
– ident: S1431927619000497_ref113
  doi: 10.1063/1.3040323
– ident: S1431927619000497_ref184
  doi: 10.1103/PhysRevLett.121.146101
– ident: S1431927619000497_ref106
  doi: 10.1107/S0108767311020708
– ident: S1431927619000497_ref197
  doi: 10.1016/j.ultramic.2011.01.035
– ident: S1431927619000497_ref37
  doi: 10.1107/S0108767311051592
– ident: S1431927619000497_ref159
  doi: 10.1186/s40679-017-0048-z
– ident: S1431927619000497_ref58
  doi: 10.1038/s41467-017-00150-1
– ident: S1431927619000497_ref151
  doi: 10.1063/1.4922994
– ident: S1431927619000497_ref78
  doi: 10.1016/j.ultramic.2019.02.023
– ident: S1431927619000497_ref68
  doi: 10.1016/j.ultramic.2018.12.003
– ident: S1431927619000497_ref51
  doi: 10.1103/PhysRevB.82.104103
– ident: S1431927619000497_ref177
  doi: 10.1155/TSM.13.15
– ident: S1431927619000497_ref115
  doi: 10.1107/S2053273315011845
– ident: S1431927619000497_ref7
  doi: 10.1002/andp.19283921704
– volume: 26
  start-page: 5
  year: 2012
  ident: S1431927619000497_ref103
  article-title: Quantitative four-dimensional electron diffraction in the TEM
  publication-title: Microsc Anal
– ident: S1431927619000497_ref228
  doi: 10.1063/1.2362978
– ident: S1431927619000497_ref108
  doi: 10.1103/PhysRevB.79.214110
– ident: S1431927619000497_ref36
  doi: 10.1063/1.5017537
– ident: S1431927619000497_ref107
  doi: 10.1016/j.ultramic.2015.10.011
– ident: S1431927619000497_ref91
  doi: 10.1016/j.ultramic.2018.09.005
– ident: S1431927619000497_ref63
  doi: 10.1016/j.ultramic.2018.03.013
– volume: 41
  start-page: 452
  year: 1974
  ident: S1431927619000497_ref32
  article-title: Differential phase contrast in a STEM
  publication-title: Optik
– volume: 39
  start-page: 416
  year: 1974
  ident: S1431927619000497_ref170
  article-title: Phase contrast in scanning transmission electron microscopy
  publication-title: Optik
– volume: 54
  start-page: 83
  year: 1979
  ident: S1431927619000497_ref202
  article-title: Linear imaging of strong phase objects using asymmetrical detectors in stem
  publication-title: Optik
– ident: S1431927619000497_ref55
  doi: 10.1038/s42003-018-0263-8
– ident: S1431927619000497_ref100
  doi: 10.1016/j.ultramic.2011.01.029
– ident: S1431927619000497_ref8
  doi: 10.1016/j.ultramic.2010.05.001
– ident: S1431927619000497_ref47
  doi: 10.1149/1.3485694
– ident: S1431927619000497_ref117
  doi: 10.1103/PhysRevA.91.023805
– ident: S1431927619000497_ref56
  doi: 10.1016/j.ultramic.2015.03.015
– ident: S1431927619000497_ref11
  doi: 10.1103/PhysRevB.93.134116
– ident: S1431927619000497_ref216
  doi: 10.1038/ncomms12532
– ident: S1431927619000497_ref134
  doi: 10.1017/S1431927612001274
– ident: S1431927619000497_ref64
  doi: 10.1002/admi.201701258
– ident: S1431927619000497_ref179
  doi: 10.1016/j.ultramic.2018.05.003
– ident: S1431927619000497_ref40
  doi: 10.1038/ncomms8267
– ident: S1431927619000497_ref148
  doi: 10.1038/ncomms10719
– ident: S1431927619000497_ref62
  doi: 10.1016/j.ultramic.2017.04.015
– ident: S1431927619000497_ref9
  doi: 10.1007/s10853-006-1302-2
– ident: S1431927619000497_ref172
  doi: 10.1080/21663831.2018.1436609
– ident: S1431927619000497_ref69
  doi: 10.1186/s40679-018-0059-4
– ident: S1431927619000497_ref164
  doi: 10.1016/j.matdes.2016.06.001
– ident: S1431927619000497_ref169
  doi: 10.1364/AO.3.000437
– ident: S1431927619000497_ref125
  doi: 10.1016/j.ultramic.2014.08.002
– ident: S1431927619000497_ref209
  doi: 10.1109/IPFA.2015.7224366
– ident: S1431927619000497_ref198
  doi: 10.1016/j.apsusc.2003.11.058
– ident: S1431927619000497_ref67
  doi: 10.1063/1.4989822
– ident: S1431927619000497_ref42
  doi: 10.1103/PhysRevLett.106.160802
– ident: S1431927619000497_ref144
– ident: S1431927619000497_ref109
  doi: 10.1016/j.ultramic.2009.10.001
– ident: S1431927619000497_ref204
  doi: 10.1038/s41598-017-02778-x
– ident: S1431927619000497_ref208
  doi: 10.1063/1.5066111
– ident: S1431927619000497_ref181
  doi: 10.1038/nphys2337
– ident: S1431927619000497_ref101
  doi: 10.1016/j.ultramic.2012.12.019
– volume: 50
  start-page: 87
  year: 2005
  ident: S1431927619000497_ref161
  article-title: Rapid spot diffraction patterns identification through template matching
  publication-title: Arch Metall Mater
– ident: S1431927619000497_ref43
  doi: 10.1016/0304-3991(93)90019-T
– ident: S1431927619000497_ref193
  doi: 10.1038/nature11806
– ident: S1431927619000497_ref163
  doi: 10.1524/zkri.2010.1205
– year: 2018
  ident: S1431927619000497_ref83
  article-title: Metal-organic framework crystal-glass composites
  publication-title: ChemRxiv
– ident: S1431927619000497_ref176
  doi: 10.1017/S1431927608081348
– ident: S1431927619000497_ref86
  doi: 10.1038/ncomms1733
– volume: 2
  start-page: 433
  year: 1979
  ident: S1431927619000497_ref29
  article-title: Innovative imaging and microdiffraction in stem
  publication-title: Ultramicroscopy
– ident: S1431927619000497_ref147
  doi: 10.1017/S1431927614002037
– ident: S1431927619000497_ref35
– ident: S1431927619000497_ref229
  doi: 10.1126/sciadv.1602427
– ident: S1431927619000497_ref189
  doi: 10.1016/j.matchar.2018.05.031
– volume: 133
  start-page: 109
  year: 2013
  ident: S1431927619000497_ref119
  article-title: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.07.002
– ident: S1431927619000497_ref156
  doi: 10.1007/978-1-4419-7200-2
– ident: S1431927619000497_ref130
  doi: 10.1016/S0304-3991(03)00094-9
– ident: S1431927619000497_ref93
  doi: 10.1016/j.ultramic.2008.12.012
– ident: S1431927619000497_ref77
  doi: 10.1002/bbpc.19700741112
– ident: S1431927619000497_ref105
  doi: 10.1016/j.ultramic.2016.03.006
– ident: S1431927619000497_ref212
  doi: 10.1038/s41586-018-0855-y
– ident: S1431927619000497_ref24
  doi: 10.1002/jemt.1060030105
– ident: S1431927619000497_ref207
  doi: 10.1088/0034-4885/59/3/003
– ident: S1431927619000497_ref133
  doi: 10.1016/j.ultramic.2013.08.008
– ident: S1431927619000497_ref54
  doi: 10.1016/S0304-3991(02)00435-7
– ident: S1431927619000497_ref142
  doi: 10.1063/1.2356699
– ident: S1431927619000497_ref137
  doi: 10.1063/1.4927837
– ident: S1431927619000497_ref219
  doi: 10.1063/1.5051380
– ident: S1431927619000497_ref82
  doi: 10.1107/S0567739469001057
– ident: S1431927619000497_ref174
  doi: 10.1016/0304-3991(93)90089-G
– ident: S1431927619000497_ref90
  doi: 10.1063/1.4868124
– ident: S1431927619000497_ref206
  doi: 10.1017/S1431927607075204
– ident: S1431927619000497_ref94
  doi: 10.1038/s41586-018-0298-5
– ident: S1431927619000497_ref60
  doi: 10.1107/S056773947400057X
SSID ssj0003076
Score 2.6741018
SecondaryResourceType review_article
Snippet Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent...
SourceID proquest
pubmed
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 563
SubjectTerms Computer applications
Datasets
Diffraction
Experiments
Imaging
Mapping
Materials Applications
Names
Nanodiffraction
Phase contrast
Scanning electron microscopy
Scanning transmission electron microscopy
Sensors
Spectroscopy
Transmission electron microscopy
SummonAdditionalLinks – databaseName: Cambridge Journals Open Access
  dbid: IKXGN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS-QwFH-46oIXdb90_FiysAd32TBtmmkSb6IzuyIOwijMrbRJCsLaSq2CF_92X5pOXRWFPXhtk7R5ecn7te_jB_BdiDQQWkZ0gACfcs0tVTKMqbGhMANpc5N5sgkxHsvpVJ3MwXSWC-PCKrsaB40nv-FHu_TlT_vnxsfQ2Ko_QUuP8MR9hjc4V_TdT8t-uwRJK_h3sIAIhuGWXTg8mv4ed6c06rbPPIpC6kaZeTxdOemnI_9bd-Gx_XoBlDbGabTydtNaheUWsJI9f-UDzNniI7z3FJa3n-BuhA3ogeMI8PU9yER7GiTSmEFUI3edDFu6HXLsIgBdLswt2eEHdHI6PP6xS0ZVefHQE4_80jG3VD7rgtQlOandQe3La5O0MMSn3nyGs9HwdP8PbTkdqOaS1TRludvzhiPQ0cKmLOAmNyrWUmuEQoMsjwMTSJVZBA5SZtYRaIXKCJ5bYSSLvsB8URZ2HYiJszzlMjXKeXctyxhP0Q4rK0IbcxX24Fcn8qSV31Xio9pE8kzOPQhmC5votj66o-n4-1qXn12XS18c5LXGWzNteXgbFg1QEbGV6sG37jYujXPbpIUtr7ENKjBiCKbiHqx5LeuehuAcpcajjf-b6yYsIfBTPuRtC-br6tpuw6K-qc-vqq_tVrkHuVIdkg
  priority: 102
  providerName: Cambridge University Press
Title Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond
URI https://www.cambridge.org/core/product/identifier/S1431927619000497/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/31084643
https://www.proquest.com/docview/2353072769
https://www.proquest.com/docview/2231847296
Volume 25
WOSCitedRecordID wos000474798800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: P5Z
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: M7P
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7X7
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7RV
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: BENPR
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8OwVf_P5YPZcIPqgYbNO0SXwR9XZV5JZyd8riy9ImKQjanrs94V78251pul1F3BdfUkgzbelMZn4kk_kBPFKqiJTVCU8R4HNppedGxxl3PlYu1b5yZSCbULOZns9N3i-4rfq0yrVP7By1ayytkT8XSYrmKFRmXp5-58QaRburPYXGDuxRlQTRpe7lgydGgXC6KIm5QdH1riaVjKZO6otNh5LV77UV_oxR_wCeXQCaXv3fT78GV3royV4FW7kOF3x9Ay4FMsrzm_BzigP4AVX7D5U62LENhEasC2hoENTPJj1xDjukXD461XLOHssDfnwyOXzygk2XzbeNJDrvhjhYluH8BGsblrfkckOhbFbUjoVDNLfg43Ry8uYd79kZuJVatLwQFc1eJxGyWOULEUlXOZNZbS2CmrSssshF2pQeIYDWpScqrNg4JSuvnBbJbditm9rfBeaysiqkLpyhfVovSiELjKjGq9hn0sQjeDboZtHPsdUi5KepxV-qHEG0Vt_C9pXOiXDj6zaRp4PIaSjzsW3w_lrPm6_ZKHkED4fbqBragClq35zhGATTiAaEyUZwJ9jS8DaE2fjXZHJv-8Pvw2WEbCYkq-3Dbrs88w_gov3Rflktx7Cjjj5RO1ddq8ew93oyy4_w-v7D_O1s3E0QbPP08y_HSw4Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAWIv3DcKA4wEEqBZS1wntpEQQrTVpq1VpRVp4iVLbEdCgmS0Gagv_CR-I-fESQpC9G0PvDp24jifzznOuXyEPJMyDaRRfRaBgc-EEY5pFcbMulDaSLncZp5sQk4m6vRUTzfIzzYXBsMqW5lYC2pbGvxHvs_7EcCRy1i_Pf_KkDUKvasthYaHxZFbfocj2-LN4QC-73POR8PZ-wPWsAowIxSvWMpzRJ0VoGqNdCkPhM2tjo0yBpRxlOVxYAOlMweqS6nMIYVTqK0UuZNWYaEDEPlXhOAB7qJp9LGT_DBBn83UD5mGqbZeVCxRjY3YFuraKpe_13L4Uyf-w9CtFd7o5v-2VLfIjca0pu_8XrhNNlxxh1zzZJvLu-THCDqwAbIZ-Eok9MR4wiZaK2wAPLbTYUMMRMcYq4hZO0v6QgzYyWw4fvmajubll9VIUE4lcszMfX4IrUo6rVCl-ELgNC0s9UlC98iHS3n5bbJZlIW7T6iNszwVKrUa_dCOZ1ykYDFoJ0MXCx32yF6HhaSRIYvEx9_J5C_o9EjQwiUxTSV3JBT5vG7Iq27IuS9jsq7zbour1WxWoOqRp91l-DToYEoLV15AHzgsgLXDddwjOx673dPgGAGrJvoP1t_8Cbl-MBsfJ8eHk6OHZAvMU-0D83bJZjW_cI_IVfOt-rSYP663HiVnlw3gX1H-Y4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-Dimensional+Scanning+Transmission+Electron+Microscopy+%284D-STEM%29%3A+From+Scanning+Nanodiffraction+to+Ptychography+and+Beyond&rft.jtitle=Microscopy+and+microanalysis&rft.au=Ophus%2C+Colin&rft.date=2019-06-01&rft.pub=Oxford+University+Press&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=25&rft.issue=3&rft.spage=563&rft.epage=582&rft_id=info:doi/10.1017%2FS1431927619000497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon