Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond
Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe...
Saved in:
| Published in: | Microscopy and microanalysis Vol. 25; no. 3; pp. 563 - 582 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, USA
Cambridge University Press
01.06.2019
Oxford University Press |
| Subjects: | |
| ISSN: | 1431-9276, 1435-8115, 1435-8115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others. |
|---|---|
| AbstractList | Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others. Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others. |
| Author | Ophus, Colin |
| Author_xml | – sequence: 1 givenname: Colin orcidid: 0000-0003-2348-8558 surname: Ophus fullname: Ophus, Colin email: cophus@gmail.com organization: National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31084643$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFvFCEUx4mpse3qB_BiJvFSD6M8YIDxpu1uNWnVZNfzhAFmSzMDK8we5uJnl2m3aVKjJ17g9wfe752iIx-8Reg14PeAQXxYA6NQE8GhxhizWjxDJ3mrKiVAdXRXQzmfH6PTlG4zQ7HgL9AxBSwZZ_QE_V6FfSwv3GB9csGrvlhr5b3z22ITlU-DS_N-seytHmMurp2OIemwm4ozdlGuN8vrdx-LVQzDY_Kb8sG4rotKj3N4DMWPcdI3YRvV7mYqlDfFZzsFb16i553qk311WBfo52q5Of9SXn2__Hr-6arUTJKxVKSDmlPDOK20sIpgZjpTcy21zo1UbcexwbJuLecgZWsJCAK1EayzwkhCF-js_t5dDL_2No1Nbkzbvlfehn1qCKEgmSD5kQV6-wS9zYqymUzRKgvMPutMvTlQ-3awptlFN6g4NQ9mMyDugVlXirZrtBvVrGOMyvUN4GaeYfPXDHMSniQfLv9fhh4yamijM1v7-Ot_p_4AxTCroA |
| CitedBy_id | crossref_primary_10_3390_sym16030301 crossref_primary_10_1103_PhysRevApplied_19_034036 crossref_primary_10_1002_smtd_202300258 crossref_primary_10_1017_S1431927622012090 crossref_primary_10_1038_s41563_023_01783_y crossref_primary_10_1051_bioconf_202412926011 crossref_primary_10_1093_mam_ozae044_315 crossref_primary_10_1093_mam_ozaf048_059 crossref_primary_10_1007_s41871_023_00193_7 crossref_primary_10_1002_jemt_23556 crossref_primary_10_1002_aenm_202404057 crossref_primary_10_1017_S1431927620016384 crossref_primary_10_1126_science_adz7157 crossref_primary_10_1016_j_matt_2021_05_005 crossref_primary_10_1017_S1431927621001306 crossref_primary_10_1016_j_matdes_2025_114282 crossref_primary_10_1016_j_actamat_2022_118426 crossref_primary_10_1093_mam_ozaf048_065 crossref_primary_10_1002_admi_202201189 crossref_primary_10_1109_JSEN_2023_3315357 crossref_primary_10_1093_mam_ozaf048_1113 crossref_primary_10_1093_mam_ozaf048_1115 crossref_primary_10_1016_j_matchar_2023_113559 crossref_primary_10_1017_S1431927622010911 crossref_primary_10_1002_aenm_202404280 crossref_primary_10_1038_s41427_024_00577_1 crossref_primary_10_1093_mam_ozaf048_067 crossref_primary_10_1017_S1431927621000441 crossref_primary_10_1111_maps_14124 crossref_primary_10_1007_s12274_023_6392_5 crossref_primary_10_1093_mam_ozaf048_073 crossref_primary_10_1038_s41467_022_30413_5 crossref_primary_10_1038_s41467_023_42947_3 crossref_primary_10_1038_s41586_024_08278_z crossref_primary_10_1093_mam_ozaf048_197 crossref_primary_10_59717_j_xinn_mater_2024_100068 crossref_primary_10_1093_mam_ozaf048_1127 crossref_primary_10_1007_s40820_023_01180_9 crossref_primary_10_1002_advs_202508554 crossref_primary_10_1021_acs_nanolett_4c06697 crossref_primary_10_1002_adts_202300247 crossref_primary_10_1017_S1431927621012538 crossref_primary_10_1017_S143192762200201X crossref_primary_10_1038_s41467_022_34335_0 crossref_primary_10_1017_S1431927622002148 crossref_primary_10_1002_advs_202500706 crossref_primary_10_1017_S1431927621000799 crossref_primary_10_1021_acscentsci_2c01137 crossref_primary_10_1038_s41563_022_01412_0 crossref_primary_10_1063_5_0266507 crossref_primary_10_1002_ppsc_202100087 crossref_primary_10_1016_j_ccr_2022_214826 crossref_primary_10_1016_j_actamat_2023_118721 crossref_primary_10_1017_S1431927622002276 crossref_primary_10_1007_s11837_021_05034_w crossref_primary_10_1093_mam_ozae044_329 crossref_primary_10_1002_adem_202500716 crossref_primary_10_1017_S1431927622002392 crossref_primary_10_1039_D3NH00494E crossref_primary_10_1093_micmic_ozad067_714 crossref_primary_10_1093_mam_ozaf048_288 crossref_primary_10_1093_mam_ozaf048_289 crossref_primary_10_1002_sstr_202400691 crossref_primary_10_1093_mam_ozae044_204 crossref_primary_10_1093_mam_ozaf048_049 crossref_primary_10_1002_adfm_202214390 crossref_primary_10_1016_j_ultramic_2023_113777 crossref_primary_10_1093_mam_ozaf048_292 crossref_primary_10_1364_AO_487694 crossref_primary_10_1107_S2053273325000142 crossref_primary_10_1002_adma_202308832 crossref_primary_10_1088_1674_1056_ad8a4a crossref_primary_10_1109_TII_2025_3528550 crossref_primary_10_1016_j_pmatsci_2022_100947 crossref_primary_10_1038_s41467_024_48082_x crossref_primary_10_3390_sym17020239 crossref_primary_10_1038_s41467_021_21363_5 crossref_primary_10_1038_s42004_025_01513_2 crossref_primary_10_1557_mrs_2019_288 crossref_primary_10_1088_1361_6463_ad8a6b crossref_primary_10_1557_mrs_2019_284 crossref_primary_10_1093_mam_ozae044_879 crossref_primary_10_1093_micmic_ozad067_988 crossref_primary_10_1021_jacs_0c08773 crossref_primary_10_1073_pnas_2019068118 crossref_primary_10_1038_s41586_022_05540_0 crossref_primary_10_1017_S1431927622002240 crossref_primary_10_1038_s41427_021_00336_6 crossref_primary_10_1093_micmic_ozad067_1090 crossref_primary_10_1038_s41467_024_52403_5 crossref_primary_10_1146_annurev_matsci_080222_030535 crossref_primary_10_1002_smtd_202301304 crossref_primary_10_1016_j_ultramic_2025_114118 crossref_primary_10_1038_s41524_022_00793_9 crossref_primary_10_1017_S1431927622002136 crossref_primary_10_1038_s44160_025_00787_7 crossref_primary_10_1063_1_5114706 crossref_primary_10_1017_S1431927622002495 crossref_primary_10_1116_6_0001451 crossref_primary_10_1016_j_sbi_2023_102730 crossref_primary_10_1016_j_commatsci_2022_111527 crossref_primary_10_1016_j_ssi_2024_116572 crossref_primary_10_1111_jmi_13275 crossref_primary_10_1002_admi_201901944 crossref_primary_10_1093_mam_ozaf048_273 crossref_primary_10_1111_jmi_13276 crossref_primary_10_1017_S1431927621012861 crossref_primary_10_1088_2053_1583_adfa31 crossref_primary_10_1016_j_commatsci_2022_111642 crossref_primary_10_1116_6_0003518 crossref_primary_10_1002_adfm_202207406 crossref_primary_10_1002_aisy_202400986 crossref_primary_10_1016_j_ultramic_2024_114066 crossref_primary_10_1002_admi_202201039 crossref_primary_10_1016_j_jcrysgro_2022_126972 crossref_primary_10_1016_j_ultramic_2025_114122 crossref_primary_10_1557_mrs_2020_230 crossref_primary_10_1002_smtd_202400081 crossref_primary_10_1017_S1431927622002586 crossref_primary_10_3390_ma14247550 crossref_primary_10_1017_S1431927622002343 crossref_primary_10_1016_j_matchar_2025_115165 crossref_primary_10_1093_mam_ozaf048_598 crossref_primary_10_1016_j_scriptamat_2025_116719 crossref_primary_10_1093_mam_ozae044_531 crossref_primary_10_1038_s41467_023_38504_7 crossref_primary_10_1016_j_matchar_2021_111512 crossref_primary_10_1002_smll_202107620 crossref_primary_10_1017_S1431927621000635 crossref_primary_10_1021_acsaenm_5c00343 crossref_primary_10_1016_j_ultramic_2024_114059 crossref_primary_10_1039_D2NR03791B crossref_primary_10_1038_s41524_025_01766_4 crossref_primary_10_1016_j_ultramic_2024_114040 crossref_primary_10_1017_S143192762001911X crossref_primary_10_1093_mam_ozae044_889 crossref_primary_10_1038_s41467_024_53346_7 crossref_primary_10_1017_S1431927622002471 crossref_primary_10_1093_mam_ozae044_883 crossref_primary_10_1073_pnas_2006975117 crossref_primary_10_1038_s41467_025_56215_z crossref_primary_10_1557_s43578_023_01216_1 crossref_primary_10_1093_micmic_ozad067_1088 crossref_primary_10_1093_micmic_ozad067_1089 crossref_primary_10_1002_smtd_202301539 crossref_primary_10_1016_j_ultramic_2023_113696 crossref_primary_10_1107_S2052252523009661 crossref_primary_10_1093_micmic_ozad067_782 crossref_primary_10_1039_D1RA09152B crossref_primary_10_1002_smll_202504839 crossref_primary_10_1017_S1431927621002117 crossref_primary_10_1016_j_jcat_2024_115480 crossref_primary_10_1017_S1431927621007923 crossref_primary_10_1007_s10853_022_07331_4 crossref_primary_10_1038_s41565_023_01595_w crossref_primary_10_1093_mam_ozae044_950 crossref_primary_10_1088_1361_6463_abc77d crossref_primary_10_1051_bioconf_202412930004 crossref_primary_10_1016_j_jnoncrysol_2023_122197 crossref_primary_10_1063_5_0015532 crossref_primary_10_1016_j_ultramic_2024_114036 crossref_primary_10_1017_S1431927622011394 crossref_primary_10_1038_s41467_023_41138_4 crossref_primary_10_1016_j_actamat_2025_121028 crossref_primary_10_1017_S1431927622002331 crossref_primary_10_1002_adfm_202401365 crossref_primary_10_1039_D2NH00567K crossref_primary_10_1063_4_0000540 crossref_primary_10_1093_mam_ozaf048_103 crossref_primary_10_1093_mam_ozae044_940 crossref_primary_10_1103_PhysRevD_111_042005 crossref_primary_10_1093_micmic_ozad067_774 crossref_primary_10_1038_s41699_025_00524_w crossref_primary_10_1017_S1431927622012259 crossref_primary_10_1016_j_ultramic_2025_114203 crossref_primary_10_1017_S143192762200232X crossref_primary_10_1016_j_ultramic_2025_114205 crossref_primary_10_1088_1361_6528_acf938 crossref_primary_10_1017_S1431927620014701 crossref_primary_10_1093_micmic_ozad089 crossref_primary_10_1038_s41524_024_01265_y crossref_primary_10_1016_j_ultramic_2019_112890 crossref_primary_10_1016_j_xcrp_2025_102653 crossref_primary_10_1038_s41467_023_43634_z crossref_primary_10_1093_mam_ozaf048_673 crossref_primary_10_1063_4_0000430 crossref_primary_10_1107_S1600576724001614 crossref_primary_10_1017_S1431927622011497 crossref_primary_10_1186_s42649_025_00113_7 crossref_primary_10_26599_NR_2025_94907286 crossref_primary_10_1016_j_micron_2022_103304 crossref_primary_10_1016_j_micron_2021_103141 crossref_primary_10_1016_j_apsusc_2022_152844 crossref_primary_10_1063_5_0206814 crossref_primary_10_1016_j_matchar_2023_113032 crossref_primary_10_1016_j_jallcom_2025_179694 crossref_primary_10_1038_s41699_021_00258_5 crossref_primary_10_1016_j_cemconres_2025_107840 crossref_primary_10_1017_S1431927622002434 crossref_primary_10_1103_PhysRevApplied_15_044025 crossref_primary_10_1021_acs_nanolett_5c04031 crossref_primary_10_1038_s41467_022_30923_2 crossref_primary_10_26599_NR_2025_94907398 crossref_primary_10_1017_S1431927620024873 crossref_primary_10_1073_pnas_2309240120 crossref_primary_10_1038_s41467_020_18408_6 crossref_primary_10_1038_s41563_019_0387_3 crossref_primary_10_1017_S1431927621012125 crossref_primary_10_3390_ma16031123 crossref_primary_10_1093_micmic_ozad070 crossref_primary_10_1038_s41598_024_54661_1 crossref_primary_10_1039_D0NR06660E crossref_primary_10_1093_mam_ozaf048_536 crossref_primary_10_1017_S1431927622000101 crossref_primary_10_1017_S1431927620014725 crossref_primary_10_1093_micmic_ozad067_341 crossref_primary_10_1002_smtd_202500590 crossref_primary_10_1038_s41598_024_63060_5 crossref_primary_10_1051_bioconf_202412904027 crossref_primary_10_1093_mam_ozae044_912 crossref_primary_10_1093_mam_ozaf048_891 crossref_primary_10_1093_mam_ozaf048_777 crossref_primary_10_1111_jace_19099 crossref_primary_10_1002_ange_202105772 crossref_primary_10_1093_jbmrpl_ziae176 crossref_primary_10_1017_S1431927622002409 crossref_primary_10_1007_s11837_025_07242_0 crossref_primary_10_1038_s41467_024_54169_2 crossref_primary_10_1021_acs_jcim_5c00223 crossref_primary_10_1021_jacs_3c11523 crossref_primary_10_3390_nano11040962 crossref_primary_10_1038_s41467_025_62264_1 crossref_primary_10_1063_5_0085844 crossref_primary_10_3390_dj11040098 crossref_primary_10_1088_1742_6596_1730_1_012039 crossref_primary_10_1038_s41467_023_44093_2 crossref_primary_10_1063_5_0233167 crossref_primary_10_1002_inf2_12425 crossref_primary_10_1017_S1431927620024411 crossref_primary_10_1038_s41467_025_61211_4 crossref_primary_10_3390_nano13111742 crossref_primary_10_1017_S1431927621012587 crossref_primary_10_1002_anie_202216898 crossref_primary_10_1017_S1431927620024770 crossref_primary_10_1038_s41563_022_01381_4 crossref_primary_10_1038_s44160_025_00871_y crossref_primary_10_1111_ijag_16644 crossref_primary_10_1063_5_0101908 crossref_primary_10_1093_micmic_ozad067_122 crossref_primary_10_1017_S1431927622000320 crossref_primary_10_1093_mam_ozae044_939 crossref_primary_10_1088_2515_7639_acf524 crossref_primary_10_1017_S1431927622011217 crossref_primary_10_1093_mam_ozae044_933 crossref_primary_10_1093_mam_ozae044_811 crossref_primary_10_1093_mam_ozae044_931 crossref_primary_10_1051_bioconf_202412904043 crossref_primary_10_1017_S1431927621001446 crossref_primary_10_1017_S143192762200839X crossref_primary_10_1002_smtd_202400801 crossref_primary_10_1017_S1431927621000477 crossref_primary_10_1038_s41467_023_36950_x crossref_primary_10_1017_S1431927620024307 crossref_primary_10_1103_PhysRevResearch_4_033052 crossref_primary_10_1002_crat_202200211 crossref_primary_10_1002_adfm_202401361 crossref_primary_10_3390_sym15071459 crossref_primary_10_1017_S1431927620015603 crossref_primary_10_1093_mam_ozae044_928 crossref_primary_10_1364_AO_510143 crossref_primary_10_1093_mam_ozae044_924 crossref_primary_10_1016_j_micron_2024_103703 crossref_primary_10_1093_mam_ozae044_922 crossref_primary_10_3390_bios15060371 crossref_primary_10_22201_ceiich_24485691e_2020_25_69617 crossref_primary_10_1557_s43577_023_00643_z crossref_primary_10_1002_ange_202201837 crossref_primary_10_1093_micmic_ozad067_145 crossref_primary_10_1016_j_micron_2023_103576 crossref_primary_10_1063_5_0146713 crossref_primary_10_1093_mam_ozaf019 crossref_primary_10_1002_smll_202304781 crossref_primary_10_1093_micmic_ozad021 crossref_primary_10_1016_j_nantod_2025_102766 crossref_primary_10_1017_S1431927620014762 crossref_primary_10_1017_S143192762100533X crossref_primary_10_1103_PhysRevResearch_3_023159 crossref_primary_10_1093_micmic_ozad067_147 crossref_primary_10_1038_s41563_024_02016_6 crossref_primary_10_1093_jmicro_dfad006 crossref_primary_10_1002_aisy_202200428 crossref_primary_10_1021_acsnano_5c05548 crossref_primary_10_1017_S143192762002334X crossref_primary_10_1021_acsnano_5c03369 crossref_primary_10_1093_micmic_ozac050 crossref_primary_10_1017_S1431927622002604 crossref_primary_10_1039_D2NH00377E crossref_primary_10_1002_smll_202303697 crossref_primary_10_1002_adma_202406914 crossref_primary_10_1002_aenm_202302830 crossref_primary_10_1017_S1431927621007753 crossref_primary_10_3390_nano10020384 crossref_primary_10_1093_micmic_ozad067_134 crossref_primary_10_1093_micmic_ozad067_138 crossref_primary_10_1093_mam_ozaf048_865 crossref_primary_10_1088_2515_7639_ac1ab8 crossref_primary_10_1093_jmicro_dfab057 crossref_primary_10_1093_mam_ozae050 crossref_primary_10_1038_s43586_022_00095_w crossref_primary_10_1103_p6qm_hpvk crossref_primary_10_1038_s41589_025_02020_0 crossref_primary_10_1038_s41467_020_20694_z crossref_primary_10_1038_s41524_024_01428_x crossref_primary_10_1002_adma_202413691 crossref_primary_10_1016_j_msea_2025_147951 crossref_primary_10_1002_smll_202208162 crossref_primary_10_1126_science_ado8579 crossref_primary_10_1007_s40830_025_00554_9 crossref_primary_10_1111_jmi_13407 crossref_primary_10_1111_jmi_13409 crossref_primary_10_3390_cryst14030275 crossref_primary_10_1016_j_nantod_2025_102784 crossref_primary_10_1038_s41467_023_41780_y crossref_primary_10_1007_s40242_022_2245_0 crossref_primary_10_1038_s41565_024_01787_y crossref_primary_10_1093_mam_ozae027 crossref_primary_10_1038_s41524_022_00884_7 crossref_primary_10_1021_jacs_2c12673 crossref_primary_10_1038_s41524_024_01414_3 crossref_primary_10_1017_S1431927621005687 crossref_primary_10_1093_mam_ozaf048_711 crossref_primary_10_1051_bioconf_202412910013 crossref_primary_10_1016_j_polymer_2025_128335 crossref_primary_10_1038_s41929_025_01361_2 crossref_primary_10_1016_j_enchem_2023_100105 crossref_primary_10_1038_s41524_023_01133_1 crossref_primary_10_1038_s41524_022_00960_y crossref_primary_10_1038_s41565_025_01934_z crossref_primary_10_1038_s41578_023_00638_x crossref_primary_10_1039_D5MA00337G crossref_primary_10_1016_j_actamat_2023_119495 crossref_primary_10_3389_fdata_2022_787421 crossref_primary_10_1016_j_jsb_2022_107843 crossref_primary_10_26599_JAC_2023_9220757 crossref_primary_10_1016_j_scriptamat_2022_115159 crossref_primary_10_1063_5_0222102 crossref_primary_10_1093_micmic_ozac027 crossref_primary_10_1017_S1431927621012083 crossref_primary_10_1002_smll_202005447 crossref_primary_10_1016_j_mtnano_2025_100675 crossref_primary_10_1103_PhysRevMaterials_9_044405 crossref_primary_10_1063_5_0143684 crossref_primary_10_1038_s41565_022_01224_y crossref_primary_10_1146_annurev_matsci_080921_092646 crossref_primary_10_1016_j_mattod_2021_05_006 crossref_primary_10_1016_j_actamat_2023_119243 crossref_primary_10_1093_jmicro_dfab032 crossref_primary_10_1126_science_adk5947 crossref_primary_10_1093_micmic_ozad068 crossref_primary_10_1038_s41563_020_00833_z crossref_primary_10_1002_pssa_202300148 crossref_primary_10_1093_micmic_ozad064 crossref_primary_10_1016_j_ultramic_2021_113419 crossref_primary_10_1364_OE_551986 crossref_primary_10_1016_j_micron_2025_103819 crossref_primary_10_1038_s41467_025_56521_6 crossref_primary_10_1109_ACCESS_2023_3326074 crossref_primary_10_3390_nano12030337 crossref_primary_10_1093_jmicro_dfaa055 crossref_primary_10_1016_j_ultramic_2021_113423 crossref_primary_10_1051_bioconf_202412907023 crossref_primary_10_1111_jace_19252 crossref_primary_10_1038_s41467_023_39302_x crossref_primary_10_1051_bioconf_202412907025 crossref_primary_10_1073_pnas_2402129121 crossref_primary_10_3390_cryst11080878 crossref_primary_10_1002_marc_202500450 crossref_primary_10_1017_S1431927620016517 crossref_primary_10_1017_S1431927621005894 crossref_primary_10_1088_2053_1583_acf3f9 crossref_primary_10_1093_micmic_ozad056 crossref_primary_10_1038_s41598_025_97183_0 crossref_primary_10_1038_s41598_022_26877_6 crossref_primary_10_1016_j_ultramic_2020_113134 crossref_primary_10_1103_RevModPhys_97_025006 crossref_primary_10_1016_j_ultramic_2020_113132 crossref_primary_10_1017_S1431927622011400 crossref_primary_10_1093_micmic_ozad052 crossref_primary_10_1017_S1431927622001726 crossref_primary_10_1017_S1431927622000757 crossref_primary_10_1016_j_coelec_2022_101052 crossref_primary_10_1016_j_ultramic_2020_113137 crossref_primary_10_1016_j_ultramic_2020_113015 crossref_primary_10_1093_mam_ozae109 crossref_primary_10_1093_micmic_ozad045 crossref_primary_10_1038_s41524_023_01142_0 crossref_primary_10_1038_s41598_023_32454_2 crossref_primary_10_1002_smtd_202501065 crossref_primary_10_1016_j_micron_2024_103678 crossref_primary_10_1038_s41524_024_01285_8 crossref_primary_10_3390_sym17081288 crossref_primary_10_1017_S1431927621007947 crossref_primary_10_1107_S1600576723005927 crossref_primary_10_3390_sym17081287 crossref_primary_10_1017_S1431927621004797 crossref_primary_10_1111_jmi_12876 crossref_primary_10_1021_jacs_4c01688 crossref_primary_10_1016_j_ultramic_2020_113123 crossref_primary_10_1039_D2NR03614B crossref_primary_10_1007_s11467_019_0942_z crossref_primary_10_1038_s41524_021_00601_w crossref_primary_10_1016_j_ultramic_2021_113405 crossref_primary_10_1038_s41524_022_00777_9 crossref_primary_10_1038_s43586_025_00413_y crossref_primary_10_1021_acsnano_4c14988 crossref_primary_10_1016_j_jconrel_2022_11_056 crossref_primary_10_1039_D1NR01442K crossref_primary_10_1093_mam_ozae116 crossref_primary_10_1038_s41563_021_00973_w crossref_primary_10_1017_S1431927620016414 crossref_primary_10_1017_S1431927621007935 crossref_primary_10_1017_S1431927621004785 crossref_primary_10_1126_science_adl2029 crossref_primary_10_1051_bioconf_202412907034 crossref_primary_10_1146_annurev_physchem_083122_105226 crossref_primary_10_1016_j_msea_2024_147357 crossref_primary_10_1016_j_actamat_2024_120206 crossref_primary_10_1017_S1431927620024277 crossref_primary_10_1107_S2052252522007904 crossref_primary_10_1093_mam_ozae044_1071 crossref_primary_10_1002_adma_202302543 crossref_primary_10_1021_jacs_5c05117 crossref_primary_10_1017_S1431927621000611 crossref_primary_10_1017_S1431927620015330 crossref_primary_10_1038_s42004_023_00891_9 crossref_primary_10_1038_s42256_022_00555_8 crossref_primary_10_1021_acsnanoscienceau_5c00033 crossref_primary_10_1038_s41586_024_07615_6 crossref_primary_10_1016_j_ultramic_2022_113626 crossref_primary_10_1038_s41524_021_00600_x crossref_primary_10_1088_2515_7639_ac0ff9 crossref_primary_10_1557_s43577_022_00441_z crossref_primary_10_1557_s43577_024_00846_y crossref_primary_10_1002_adfm_202307625 crossref_primary_10_1016_j_ultramic_2022_113627 crossref_primary_10_1063_5_0101895 crossref_primary_10_1063_PT_3_5018 crossref_primary_10_1038_s41598_024_66382_6 crossref_primary_10_1016_j_micron_2025_103868 crossref_primary_10_1093_mam_ozae044_149 crossref_primary_10_1038_s41467_025_58022_y crossref_primary_10_1016_j_ccr_2019_213116 crossref_primary_10_1017_S1431927620001713 crossref_primary_10_1016_j_ultramic_2020_113175 crossref_primary_10_1016_j_ultramic_2023_113913 crossref_primary_10_1016_j_xinn_2025_101043 crossref_primary_10_1111_jmi_70010 crossref_primary_10_1111_jmi_70011 crossref_primary_10_5194_ejm_37_279_2025 crossref_primary_10_1038_s43246_022_00244_4 crossref_primary_10_1111_jace_20309 crossref_primary_10_1063_5_0035958 crossref_primary_10_1039_D2FD00062H crossref_primary_10_1021_jacs_0c04468 crossref_primary_10_1038_s41467_024_54482_w crossref_primary_10_1103_PhysRevApplied_19_054062 crossref_primary_10_1093_mam_ozaf072 crossref_primary_10_1021_acsami_5c08538 crossref_primary_10_35848_1882_0786_ade41b crossref_primary_10_1038_s41467_023_39304_9 crossref_primary_10_1016_j_ultramic_2020_113160 crossref_primary_10_1021_jacs_2c05989 crossref_primary_10_1016_j_scriptamat_2024_116288 crossref_primary_10_1016_j_msea_2023_145005 crossref_primary_10_1038_s41467_023_40009_2 crossref_primary_10_1002_admi_202500218 crossref_primary_10_1016_j_ultramic_2021_113321 crossref_primary_10_1063_5_0169788 crossref_primary_10_1038_s41467_024_45642_z crossref_primary_10_1126_science_abf9645 crossref_primary_10_1017_S1431927621007212 crossref_primary_10_1038_s41467_025_61386_w crossref_primary_10_1073_pnas_2114740119 crossref_primary_10_1002_smll_202411415 crossref_primary_10_1016_j_ultramic_2022_113513 crossref_primary_10_1016_j_ultramic_2022_113517 crossref_primary_10_1088_3050_287X_ae05b6 crossref_primary_10_1016_j_micron_2024_103594 crossref_primary_10_1063_5_0200724 crossref_primary_10_1007_s00216_025_05887_z crossref_primary_10_1017_S1431927621011946 crossref_primary_10_1021_acs_jpcc_4c08042 crossref_primary_10_1002_anie_202201837 crossref_primary_10_1111_jace_17599 crossref_primary_10_1093_mam_ozae044_119 crossref_primary_10_1016_j_ultramic_2023_113818 crossref_primary_10_1016_j_ultramic_2024_113939 crossref_primary_10_1093_micmic_ozac018 crossref_primary_10_1016_j_ultramic_2023_113702 crossref_primary_10_1093_mam_ozae044_123 crossref_primary_10_1016_j_ultramic_2022_113665 crossref_primary_10_1017_S1431927621001902 crossref_primary_10_1016_j_ultramic_2023_113700 crossref_primary_10_1093_jmicro_dfae018 crossref_primary_10_1007_s11244_022_01577_7 crossref_primary_10_1038_s41467_020_14793_0 crossref_primary_10_1093_mam_ozae044_120 crossref_primary_10_5006_4014 crossref_primary_10_1107_S1600576725005606 crossref_primary_10_1093_mam_ozae088 crossref_primary_10_1016_j_ultramic_2024_113941 crossref_primary_10_1093_mam_ozae086 crossref_primary_10_1016_j_ultramic_2021_113387 crossref_primary_10_1063_5_0055611 crossref_primary_10_1016_j_micron_2025_103785 crossref_primary_10_1016_j_cossms_2023_101108 crossref_primary_10_1002_adfm_202422601 crossref_primary_10_1111_jmi_13315 crossref_primary_10_1038_s41570_023_00469_y crossref_primary_10_1107_S2053273322000845 crossref_primary_10_1016_j_actamat_2021_116955 crossref_primary_10_1016_j_ultramic_2020_113095 crossref_primary_10_1016_j_ultramic_2023_113715 crossref_primary_10_1038_s41563_021_01191_0 crossref_primary_10_1002_solr_202200127 crossref_primary_10_1007_s11837_024_06475_9 crossref_primary_10_1016_j_ultramic_2021_113395 crossref_primary_10_1038_s41467_024_45696_z crossref_primary_10_1039_D3QI01998E crossref_primary_10_2138_am_2020_7479CCBY crossref_primary_10_1021_acs_nanolett_5c02741 crossref_primary_10_1017_S1431927621006577 crossref_primary_10_1017_S1431927620018309 crossref_primary_10_1088_2515_7639_aba820 crossref_primary_10_1002_adfm_202301026 crossref_primary_10_1093_mam_ozaf048_079 crossref_primary_10_1016_j_ultramic_2023_113718 crossref_primary_10_1016_j_pmatsci_2023_101165 crossref_primary_10_1016_j_pmatsci_2023_101163 crossref_primary_10_1016_j_jallcom_2025_182099 crossref_primary_10_1017_S1431927622007991 crossref_primary_10_1016_j_ultramic_2023_113844 crossref_primary_10_1093_mam_ozaf048_081 crossref_primary_10_1002_ange_202216898 crossref_primary_10_1016_j_ultramic_2020_113088 crossref_primary_10_1016_j_ultramic_2023_113842 crossref_primary_10_1016_j_ultramic_2024_113927 crossref_primary_10_1038_s42256_024_00978_5 crossref_primary_10_1093_mam_ozae044_021 crossref_primary_10_1557_s43577_022_00377_4 crossref_primary_10_1093_mam_ozaf048_085 crossref_primary_10_1111_jmi_13321 crossref_primary_10_1016_j_msea_2023_145287 crossref_primary_10_1021_acs_nanolett_5c02506 crossref_primary_10_1093_mam_ozae064 crossref_primary_10_1093_jmicro_dfad021 crossref_primary_10_1107_S2052252520004030 crossref_primary_10_1039_D5CS00159E crossref_primary_10_1109_MSP_2021_3120981 crossref_primary_10_1093_mam_ozaf049 crossref_primary_10_1126_science_adg3183 crossref_primary_10_1093_mam_ozaf048_089 crossref_primary_10_1016_j_nantod_2025_102732 crossref_primary_10_1038_s41467_023_40875_w crossref_primary_10_1088_2515_7639_ad9ad2 crossref_primary_10_1016_j_ultramic_2020_113077 crossref_primary_10_1093_mam_ozaf048_094 crossref_primary_10_1002_anie_202105772 crossref_primary_10_1016_j_jechem_2025_07_037 crossref_primary_10_1016_j_ultramic_2020_113196 crossref_primary_10_1016_j_ultramic_2023_113859 crossref_primary_10_1007_s40242_025_5055_3 crossref_primary_10_1038_s41598_025_01337_z crossref_primary_10_1039_D5FD00027K crossref_primary_10_1007_s40242_025_4235_5 crossref_primary_10_1038_s41524_022_00939_9 crossref_primary_10_1093_mam_ozaf045 crossref_primary_10_1016_j_ultramic_2021_113252 crossref_primary_10_1016_j_ultramic_2022_113670 crossref_primary_10_1016_j_ultramic_2021_113253 crossref_primary_10_1002_ijch_202100058 crossref_primary_10_1016_j_ultramic_2021_113256 |
| Cites_doi | 10.3390/met8121085 10.1107/S0108767395012876 10.1016/j.ultramic.2016.09.002 10.1038/srep37624 10.1016/j.matchar.2014.08.010 10.1017/S1431927613005849 10.1103/PhysRevLett.108.073901 10.1088/1742-6596/644/1/012032 10.1017/S1431927616003329 10.1017/S1431927617001490 10.1016/S0304-3991(76)91538-2 10.1016/j.ultramic.2016.05.004 10.1063/1.3460106 10.1002/anie.201400625 10.1021/acs.jpcc.5b09524 10.1017/S1431927618003422 10.1063/1.1823034 10.1016/j.ultramic.2016.04.004 10.1016/j.micron.2016.05.008 10.1103/PhysRevB.82.121415 10.1088/0034-4885/42/11/002 10.1017/S143192760210064X 10.1107/S0021889899010894 10.1039/C7EE02443F 10.1093/oxfordjournals.jmicro.a023409 10.1016/j.actamat.2014.07.062 10.1149/1.3546851 10.1021/nn5047053 10.1038/nmat2897 10.1021/ja304079d 10.1063/1.5040496 10.1103/PhysRevLett.111.266101 10.1380/ejssnt.2018.247 10.1093/jmicro/dfy002 10.1103/PhysRevLett.93.023903 10.1016/0304-3991(94)90039-6 10.1016/j.ultramic.2018.06.003 10.1063/1.3225103 10.1016/0968-4328(95)00054-8 10.1016/j.ultramic.2018.09.012 10.1016/0022-3093(79)90033-4 10.1016/j.ultramic.2014.09.013 10.1017/S1431927618001320 10.1063/1.5025686 10.1063/1.4935238 10.1103/PhysRevB.89.064101 10.1016/j.ultramic.2012.10.002 10.1103/PhysRevLett.121.266102 10.1109/IPFA.2009.5232604 10.1017/S1431927607074004 10.1017/S1431927615006881 10.1186/s40679-017-0046-1 10.1107/S0567739469001045 10.1103/PhysRevB.98.121408 10.1088/1748-0221/11/04/P04006 10.1002/crat.201100125 10.1107/S0365110X57002194 10.1107/S0909049505028529 10.1364/JOSAA.29.001606 10.1111/jmi.12007 10.1002/jemt.1060110209 10.1016/j.ultramic.2014.10.013 10.1016/j.ultramic.2010.12.014 10.1017/S1551929512000818 10.1016/0168-9002(89)91111-X 10.1016/j.ultramic.2018.09.010 10.1063/1.1774275 10.1007/978-1-4757-5581-7_15 10.1038/s41467-019-08904-9 10.1098/rsta.1992.0050 10.1107/S010876739700874X 10.1107/S2052252514022283 10.1021/bk-1984-0248.ch017 10.1007/BF01326780 10.1016/0304-3991(94)90091-4 10.1016/0304-3991(93)90105-7 10.1038/nmeth.2472 10.1038/ncomms16070 10.1103/PhysRevLett.121.056101 10.1063/1.3224886 10.1107/S0108767399014798 10.1016/j.micron.2019.01.005 10.1016/j.micron.2015.09.001 10.1016/j.ultramic.2005.03.006 10.1038/s41598-017-07488-y 10.1088/1361-6463/aabc47 10.1017/S1431927603440427 10.1080/01418618608242884 10.1103/PhysRevApplied.10.061001 10.1016/j.ultramic.2017.03.010 10.1038/374630a0 10.1557/mrs.2014.4 10.1016/S0304-3991(02)00155-9 10.1103/PhysRevLett.117.015501 10.1103/PhysRevLett.108.195505 10.1016/0304-3991(86)90214-7 10.1021/cm201783z 10.1017/S1431927616003500 10.1103/PhysRevLett.112.166101 10.4028/www.scientific.net/MSF.273-275.215 10.1103/PhysRevLett.103.097202 10.1021/acs.nanolett.5b02483 10.1017/S1431927617009576 10.1038/s41524-018-0139-y 10.1103/PhysRevLett.110.205505 10.1017/S1431927615015664 10.1038/ncomms6653 10.1021/acs.nanolett.8b00952 10.1016/j.scriptamat.2017.11.005 10.1021/acs.nanolett.8b03166 10.1016/0304-3991(92)90110-6 10.1016/j.ultramic.2018.12.018 10.1063/1.1506010 10.1109/4.551910 10.1016/j.ultramic.2016.12.021 10.1063/1.4975932 10.1007/s11837-018-2854-8 10.1016/j.ultramic.2012.06.004 10.1016/j.ultramic.2015.06.011 10.1021/nn1023126 10.1016/j.ultramic.2018.03.004 10.1038/ncomms5155 10.1016/0304-3991(95)00007-N 10.1017/S1431927611000055 10.1016/j.ultramic.2016.06.009 10.1109/20.104427 10.1063/1.4901435 10.1063/1.4767655 10.1016/j.matdes.2016.10.015 10.1016/j.ultramic.2009.05.012 10.1098/rspa.1977.0064 10.1016/0304-3991(89)90052-1 10.1038/nature11563 10.1016/j.ultramic.2017.02.006 10.1016/0304-3991(82)90225-X 10.1016/j.ultramic.2018.12.010 10.1016/S0304-3991(03)00003-2 10.1016/j.matlet.2005.09.052 10.1021/acs.nanolett.8b02718 10.1063/1.4829154 10.1107/S0567739469001069 10.1016/j.ultramic.2008.11.023 10.1016/j.ultramic.2010.04.004 10.1063/1.3040323 10.1103/PhysRevLett.121.146101 10.1107/S0108767311020708 10.1016/j.ultramic.2011.01.035 10.1107/S0108767311051592 10.1186/s40679-017-0048-z 10.1038/s41467-017-00150-1 10.1063/1.4922994 10.1016/j.ultramic.2019.02.023 10.1016/j.ultramic.2018.12.003 10.1103/PhysRevB.82.104103 10.1155/TSM.13.15 10.1107/S2053273315011845 10.1002/andp.19283921704 10.1063/1.2362978 10.1103/PhysRevB.79.214110 10.1063/1.5017537 10.1016/j.ultramic.2015.10.011 10.1016/j.ultramic.2018.09.005 10.1016/j.ultramic.2018.03.013 10.1038/s42003-018-0263-8 10.1016/j.ultramic.2011.01.029 10.1016/j.ultramic.2010.05.001 10.1149/1.3485694 10.1103/PhysRevA.91.023805 10.1016/j.ultramic.2015.03.015 10.1103/PhysRevB.93.134116 10.1038/ncomms12532 10.1017/S1431927612001274 10.1002/admi.201701258 10.1016/j.ultramic.2018.05.003 10.1038/ncomms8267 10.1038/ncomms10719 10.1016/j.ultramic.2017.04.015 10.1007/s10853-006-1302-2 10.1080/21663831.2018.1436609 10.1186/s40679-018-0059-4 10.1016/j.matdes.2016.06.001 10.1364/AO.3.000437 10.1016/j.ultramic.2014.08.002 10.1109/IPFA.2015.7224366 10.1016/j.apsusc.2003.11.058 10.1063/1.4989822 10.1103/PhysRevLett.106.160802 10.1016/j.ultramic.2009.10.001 10.1038/s41598-017-02778-x 10.1063/1.5066111 10.1038/nphys2337 10.1016/j.ultramic.2012.12.019 10.1016/0304-3991(93)90019-T 10.1038/nature11806 10.1524/zkri.2010.1205 10.1017/S1431927608081348 10.1038/ncomms1733 10.1017/S1431927614002037 10.1126/sciadv.1602427 10.1016/j.matchar.2018.05.031 10.1016/j.ultramic.2013.07.002 10.1007/978-1-4419-7200-2 10.1016/S0304-3991(03)00094-9 10.1016/j.ultramic.2008.12.012 10.1002/bbpc.19700741112 10.1016/j.ultramic.2016.03.006 10.1038/s41586-018-0855-y 10.1002/jemt.1060030105 10.1088/0034-4885/59/3/003 10.1016/j.ultramic.2013.08.008 10.1016/S0304-3991(02)00435-7 10.1063/1.2356699 10.1063/1.4927837 10.1063/1.5051380 10.1107/S0567739469001057 10.1016/0304-3991(93)90089-G 10.1063/1.4868124 10.1017/S1431927607075204 10.1038/s41586-018-0298-5 10.1107/S056773947400057X |
| ContentType | Journal Article |
| Copyright | Copyright © Microscopy Society of America 2019 |
| Copyright_xml | – notice: Copyright © Microscopy Society of America 2019 |
| DBID | IKXGN AAYXX CITATION NPM 3V. 7QO 7RV 7TK 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1017/S1431927619000497 |
| DatabaseName | Cambridge Journals Open Access CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: IKXGN name: Cambridge Journals Open Access url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Colin Ophus Microscopy and Microanalysis |
| EISSN | 1435-8115 |
| EndPage | 582 |
| ExternalDocumentID | 31084643 10_1017_S1431927619000497 |
| Genre | Journal Article |
| GroupedDBID | --- -E. .FH 0E1 0R~ 123 29M 3V. 4.4 53G 5VS 74X 74Y 7RV 7X7 7~V 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 9M5 AAAZR AABES AACJH AAGFV AAKTX AAPXW AARAB AASVR AAUAY AAUKB ABBXD ABDFA ABEFU ABITZ ABJNI ABKKG ABMWE ABPTD ABQTM ABROB ABTCQ ABUWG ABVKB ABWCF ABWST ABZCX ACBEK ACBMC ACFRR ACGFS ACIMK ACIPB ACIWK ACPRK ACUFI ACUIJ ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADCGK ADFEC ADIYS ADKIL ADOVH ADQBN ADRDM ADVEK AEBAK AEHGV AEMTW AENEX AEUYN AEYYC AFFUJ AFGWE AFKRA AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AHIPN AHLTW AHMBA AISIE AJ7 AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALWZO ANFBD ANPSP AQJOH ARABE ARAPS ATGXG ATUCA AZGZS BBLKV BBNVY BENPR BGHMG BGLVJ BGNMA BHPHI BKEYQ BLZWO BMAJL BPHCQ BVXVI C0O CAG CCPQU CJCSC COF CS3 DC4 DOHLZ DU5 EBS EJD EX3 F5P FYUFA H13 HCIFZ HG- HMCUK HST HZ~ I.6 IH6 IKXGN IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU KOP L98 LAS LK8 LW7 M-V M1P M4Y M7P NAPCQ NIKVX NU- NU0 O9- OVD OYBOY P62 PQQKQ PROAC PSQYO PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S6- S6U SAAAG SDH SY4 T9M TEORI UKHRP UT1 UU6 VUG WFFJZ WOW WQ3 WXU WYP 5WD AAYXX ABDTM ABEJV ABGNP ABMNT ABPQP ABVGC ABXVV ABZEO ACVCV ACZBC ADIPN ADNBA ADVOB ADYJX AEMTJ AFFHD AGMDO AHGBF AJBYB AJDVS AJNCP BCRHZ CITATION OBOKY OJZSN OWPYF PHGZM PHGZT PJZUB PPXIY PQGLB ROX NPM 7QO 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c482t-a2f1963d4635c7ea204dfd96c8cc8465bf60d089be66188be217219d74fe7d823 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 622 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474798800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1431-9276 1435-8115 |
| IngestDate | Wed Oct 01 14:20:28 EDT 2025 Mon Oct 06 17:56:41 EDT 2025 Thu Apr 03 06:54:51 EDT 2025 Tue Nov 18 20:02:55 EST 2025 Sat Nov 29 05:37:37 EST 2025 Tue Jan 21 06:24:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | transmission electron microscopy (TEM) nanobeam electron diffraction (NBED) four dimensional-scanning transmission electron microscopy (4D-STEM) scanning electron nanodiffraction (SEND) |
| Language | English |
| License | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-a2f1963d4635c7ea204dfd96c8cc8465bf60d089be66188be217219d74fe7d823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2348-8558 |
| OpenAccessLink | https://www.cambridge.org/core/product/identifier/S1431927619000497/type/journal_article |
| PMID | 31084643 |
| PQID | 2353072769 |
| PQPubID | 33692 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2231847296 proquest_journals_2353072769 pubmed_primary_31084643 crossref_citationtrail_10_1017_S1431927619000497 crossref_primary_10_1017_S1431927619000497 cambridge_journals_10_1017_S1431927619000497 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA – name: United States – name: Oxford |
| PublicationTitle | Microscopy and microanalysis |
| PublicationTitleAlternate | Microsc Microanal |
| PublicationYear | 2019 |
| Publisher | Cambridge University Press Oxford University Press |
| Publisher_xml | – name: Cambridge University Press – name: Oxford University Press |
| References | Gammer, Ozdol, Liebscher, Minor 2015; 155 Li, Mooney, Zheng, Booth, Braunfeld, Gubbens, Agard, Cheng 2013; 10 Brown, Chen, Weyland, Ophus, Ciston, Allen, Findlay 2018; 121 Barthel 2018; 193 Faulkner, Rodenburg 2004; 93 Ronchi 1964; 3 Putkunz, DAlfonso, Morgan, Weyland, Dwyer, Bourgeois, Etheridge, Roberts, Scholten, Nugent 2012; 108 Yang, Ercius, Nellist, Ophus 2016; 171 Izadi, Darbal, Sarkar, Rajagopalan 2017; 113 Lupini, Chi, Kalinin, Borisevich, Idrobo, Jesse 2015; 21 Pennycook, Lupini, Yang, Murfitt, Jones, Nellist 2015; 151 Webb 1996; 59 Zheng, Zhu, Lazar, Etheridge 2014; 112 Zhang, Istratov, Weber, Kisielowski, He, Nelson, Spence 2006; 89 Mahr, Müller-Caspary, Ritz, Simson, Grieb, Schowalter, Krause, Lackmann, Soltau, Wittstock 2019; 196 Spence 1998; 54 Haider, Epstein, Jarron, Boulin 1994; 54 Nord, Krajnak, Bali, Hlawacek, Liersch, Fassbender, McVitie, Paterson, Maclaren, McGrouther 2016; 22 Hwang, Zhang, DAlfonso, Allen, Stemmer 2013; 111 Uesugi, Hokazono, Takeno 2011; 111 Rauch, Portillo, Nicolopoulos, Bultreys, Rouvimov, Moeck 2010; 225 Müller-Caspary, Oelsner, Potapov 2015; 107 Johnson, Bustillo, Ciston, Draney, Ercius, Fong, Goldschmidt, Joseph, Lee, Minor 2018; 24 Yasin, Harada, Shindo, Shinada, McMorran, Tanigaki 2018; 113 Etheridge, Lazar, Dwyer, Botton 2011; 106 LeBeau, Findlay, Wang, Jacobson, Allen, Stemmer 2009; 79 Hÿtch, Minor 2014; 39 LeBeau, Findlay, Allen, Stemmer 2010; 110 Rodenburg, Faulkner 2004; 85 Yasin, Harvey, Chess, Pierce, Ophus, Ercius, McMorran 2018; 18 Hachtel, Idrobo, Chi 2018; 4 Tao, Sun, Yin, Wu, Xin, Wen, Luo, Pennycook, Tranquada, Zhu 2016; 6 Liu, Neish, Stokol, Buckley, Smillie, de Jonge, Ott, Kramer, Bourgeois 2013; 110 Pelz, Qiu, Bücker, Kassier, Miller 2017; 7 Schwarzhuber, Melzl, Pöllath, Zweck 2018; 192 Bogle, Nittala, Twesten, Voyles, Abelson 2010; 110 Allen, Faulkner, Leeb 2000; 56 Stevens, Yang, Hao, Jones, Ophus, Nellist, Browning 2018; 113 Tao, Niebieskikwiat, Varela, Luo, Schofield, Zhu, Salamon, Zuo, Pantelides, Pennycook 2009; 103 Brown, D'Alfonso, Chen, Morgan, Weyland, Zheng, Fuhrer, Findlay, Allen 2016; 93 Müller, Krause, Béché, Schowalter, Galioit, Löffler, Verbeeck, Zweck, Schattschneider, Rosenauer 2014; 5 Brown, Ishikawa, Shibata, Ikuhara, Allen, Findlay 2019; 197 Hoppe 1969; 25 Kimoto, Ishizuka 2011; 111 Ophus, Yang, dos Reis, Meng, Pryor, Miao, Pekin, Minor, Johnson, Denes 2017; 23 Egerton 2019; 119 Cowley 1996; 45 Gammer, Ophus, Pekin, Eckert, Minor 2018; 112 Im, Chen, Johnson, Zhao, Yoo, Park, Wang, Muller, Hwang 2018; 195 Maiden, Rodenburg 2009; 109 Kikuchi 1928; 5 Oelerich, Duschek, Belz, Beyer, Baranovskii, Volz 2017; 177 Hoppe, Strube 1969; 25 Grieb, Krause, Mahr, Zillmann, Müller-Caspary, Schowalter, Rosenauer 2017; 181 Jones, Rackham, Steeds 1977; 354 Thibault, Menzel 2013; 494 Cowley 2003; 96 Rottmann, Hemker 2018; 6 Hwang, Melgarejo, Kalay, Kalay, Kramer, Stone, Voyles 2012; 108 Cowley, Ou 1989; 11 Mendis, Kemeny, Gee, Pain, Staller, Kim, Fossum 1997; 32 Müller, Rosenauer, Schowalter, Zweck, Fritz, Volz 2012; 18 Clément, Pantel, Kwakman, Rouvière 2004; 85 Grieb, Krause, Schowalter, Zillmann, Sellin, Müller-Caspary, Mahr, Mehrtens, Bimberg, Rosenauer 2018; 190 Mohammadi, Zhao, Meng, Qu, Zhang, Zhao, Mei, Zuo, Shukla, Diao 2017; 8 Seyring, Song, Rettenmayr 2011; 5 Yang, MacLaren, Jones, Martinez, Simson, Huth, Ryll, Soltau, Sagawa, Kondo 2017; 180 Hawkes 1982; 9 Mahr, Müller-Caspary, Grieb, Schowalter, Mehrtens, Krause, Zillmann, Rosenauer 2015; 158 Goris, Turner, Bals, Van Tendeloo 2014; 8 Rouviere, Béché, Martin, Denneulin, Cooper 2013; 103 Haas, Rouvière, Boureau, Berthier, Cooper 2018; 198 Fang, Wen, Allen, Ophus, Han, Kirkland, Kaxiras, Warner 2019; 10 Möllenstedt, Düker 1956; 145 Ozdol, Gammer, Jin, Ercius, Ophus, Ciston, Minor 2015; 106 Shukla, Ophus, Gammer, Ramasse 2016; 22 Grimley, Schenk, Mikolajick, Schroeder, LeBeau 2018; 5 Maiden, Humphry, Rodenburg 2012; 29 Chen, Weyland, Ercius, Ciston, Zheng, Fuhrer, D'Alfonso, Allen, Findlay 2016; 169 Han, Nguyen, Cao, Cueva, Xie, Tate, Purohit, Gruner, Park, Muller 2018; 18 Ophus, Ciston, Pierce, Harvey, Chess, McMorran, Czarnik, Rose, Ercius 2016; 7 Zeng, Zhang, Bustillo, Niu, Gammer, Xu, Zheng 2015; 15 Song, Ding, Allen, Sawada, Zhang, Pan, Warner, Kirkland, Wang 2018; 121 Midgley, Thomas 2014; 53 Bustillo, Panova, Chen, Takacs, Ciston, Ophus, Balsara, Minor 2017; 23 McMullan, Faruqi, Clare, Henderson 2014; 147 Rauch, Véron 2014; 98 Rozeveld, Howe 1993; 50 Bates, Rodenburg 1989; 31 Zaluzec 2007; 13 Vigouroux, Delaye, Bernier, Cipro, Lafond, Audoit, Baron, Rouvière, Martin, Chenevier 2014; 105 Trimby 2012; 120 Zhang, Ning, Busbee, Shen, Kiggins, Hua, Eaves, Davis, Shi, Shao 2017; 3 De Ruijter 1995; 26 Phillips 1979; 34 Tian, Volkert 2018; 8 Hashimoto, Shimojo, Mitsuishi, Takeguchi 2009; 106 Hüe, Rodenburg, Maiden, Sweeney, Midgley 2010; 82 Rose 1974; 39 Zaefferer 2011; 46 Wright, Nowell, Field 2011; 17 Brodusch, Demers, Gauvin 2013; 250 Caswell, Ercius, Tate, Ercan, Gruner, Muller 2009; 109 Zaefferer 2000; 33 Voyles, Muller 2002; 93 Xu, LeBeau 2018; 188 Guo, Thompson 2018; 70 Favia, Gonzales, Simoen, Verheyen, Klenov, Bender 2011; 158 Bufford, Abdeljawad, Foiles, Hattar 2015; 107 Nellist, Behan, Kirkland, Hetherington 2006; 89 Schwarzer 1990; 13 Bethe 1928; 392 Müller-Caspary, Krause, Winkler, Béché, Verbeeck, VanAert, Rosenauer 2018; 203 Cowley 1984; 248 Krajnak, McGrouther, Maneuski, O'Shea, McVitie 2016; 165 Cooper, Denneulin, Bernier, Béché, Rouvière 2016; 80 Fatermans, den Dekker, Müller-Caspary, Lobato, OLeary, Nellist, Van Aert 2018; 121 Rodenburg, McCallum, Nellist 1993; 48 Watanabe, Williams 2007; 13 Reisinger, Zalesak, Daniel, Tomberger, Weiss, Darbal, Petrenec, Zechner, Daumiller, Ecker, Sartory, Keckes 2016; 106 D'alfonso, Morgan, Yan, Wang, Sawada, Kirkland, Allen 2014; 89 Humphry, Kraus, Hurst, Maiden, Rodenburg 2012; 3 Midgley, Eggeman 2015; 2 Favia, Popovici, Eneman, Wang, Bargallo-Gonzalez, Simoen, Menou, Bender 2010; 33 Shibata, Findlay, Kohno, Sawada, Kondo, Ikuhara 2012; 8 Fan, Ellisman 1993; 52 Möbus, Nufer 2003; 96 Harvey, Yasin, Chess, Pierce, dos Reis, Özdöl, Ercius, Ciston, Feng, Kotov, McMorran, Ophus 2018; 10 Müller-Caspary, Duchamp, Rösner, Migunov, Winkler, Yang, Huth, Ritz, Simson, Ihle 2018; 98 Tate, Purohit, Chamberlain, Nguyen, Hovden, Chang, Deb, Turgut, Heron, Schlom, Ralph, Fuchs, Shanks, Philipp, Muller, Gruner 2016; 22 Koch 2011; 111 Yankovich, Berkels, Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles 2014; 5 Sunde, Marioara, van Helvoort, Holmestad 2018; 142 MacLaren, Villaurrutia, Peláiz-Barranco 2010; 108 Pekin, Gammer, Ciston, Minor, Ophus 2017; 176 Ophus, Ercius, Sarahan, Czarnik, Ciston 2014; 20 Eggeman, Krakow, Midgley 2015; 6 Wang, Suyolcu, Salzberger, Hahn, Srot, Sigle, van Aken 2018; 67 Pekin, Gammer, Ciston, Ophus, Minor 2018; 146 Cowley, Moodie 1957; 10 Wehmeyer, Bustillo, Minor, Dames 2018; 113 Hammel, Rose 1995; 58 Zaluzec 2003; 9 Jiang, Chen, Han, Deb, Gao, Xie, Purohit, Tate, Park, Gruner 2018; 559 Yang, Pennycook, Nellist 2015; 151 Milazzo, Leblanc, Duttweiler, Jin, Bouwer, Peltier, Ellisman, Bieser, Matis, Wieman 2005; 104 Bruma, Santiago, Alducin, Plascencia Villa, Whetten, Ponce, Mariscal, José-Yacamán 2016; 120 Müller-Caspary, Krause, Grieb, Löffler, Schowalter, Béché, Galioit, Marquardt, Zweck, Schattschneider 2017; 178 Usuda, Mizuno, Tezuka, Sugiyama, Moriyama, Nakaharai, Takagi 2004; 224 Ophus 2017; 3 Goodman, Moodie 1974; 30 Wang, Zhang, Gao, Zhang, Kirkland 2017; 7 Cowley, Spence 1979; 2 Dey, Morawiec, Bouzy, Hazotte, Fundenberger 2006; 60 Vincent, Midgley 1994; 53 Yadav, Nguyen, Hong, Garcia-Fernandez, Aguado-Puente, Nelson, Das, Prasad, Kwon, Cheema, Khan, Hu, Iniguez, Junquera, Chen, Muller, Ramesh, Salahuddin 2019; 565 Jones, Nellist 2013; 19 Schwarzer, Sukkau 1998; 273 Koch, Özdöl, Ishizuka 2012; 26 Rose 1977; 2 Garner, Gholinia, Frankel, Gass, MacLaren, Preuss 2014; 80 Hilke, Kirschbaum, Hieronymus-Schmidt, Radek, Bracht, Wilde, Peterlechner 2019; 200 Lubk, Zweck 2015; 91 Rauch, Dupuy 2005; 50 Haas, Thomas, Jouneau, Bernier, Meunier, Ballet, Rouvière 2017; 110 Fundenberger, Morawiec, Bouzy, Lecomte 2003; 96 Dwyer, Lazar, Chang, Etheridge 2012; 68 Wang, Pennington, Koch 2016; 117 Humphreys 1979; 42 Hirata, Guan, Fujita, Hirotsu, Inoue, Yavari, Sakurai, Chen 2011; 10 Ånes, Andersen, van Helvoort 2018; 24 Lazar, Etheridge, Dwyer, Freitag, Botton 2011; 67 Lazić, Bosch, Lazar 2016; 160 Jarausch, Thomas, Leonard, Twesten, Booth 2009; 109 Waddell, Chapman 1979; 54 Ercan, Tate, Gruner 2006; 13 Frigo, Levine, Zaluzec 2002; 81 Gallagher-Jones, Ophus, Bustillo, Boyer, Panova, Glynn, Zee, Ciston, Mancia, Minor, Rodriguez 2019; 2 Schaffer, Gspan, Grogger, Kothleitner, Hofer 2008; 14 Li, Dyck, Oxley, Lupini, McInnes, Healy, Jesse, Kalinin 2019; 5 Ansari, Beuville, Borer, Cenci, Clark, Federspiel, Gildemeister, Gössling, Hara, Heijne, Jarron, Lariccia, Lisowski, Munday, Pal, Parker, Redaelli, Scampoli, Simak, Singh, Vallon-Hulth, Wells 1989; 279 Kobler, Kashiwar, Hahn, Kübel 2013; 128 Yang, Rutte, Jones, Simson, Sagawa, Ryll, Huth, Pennycook, Green, Soltau 2016; 7 Ophus, Ercius, Huijben, Ciston 2017; 110 Zuo 1992; 41 Treacy, Gibson 1996; 52 Forbes, Martin, Findlay, DAlfonso, Allen 2010; 82 Gao, Wang, Zhang, Martinez, Nellist, Pan, Kirkland 2017; 8 Cowley 1986; 3 Hamaoka, Hashimoto, Mitsuishi, Takeguchi 2018; 16 Kaufman, Pearson, Fraser 1986; 54 Yasin, Harvey, Chess, Pierce, McMorran 2018; 51 Panova, Chen, Bustillo, Ophus, Bhatt, Balsara, Minor 2016; 88 Zhu, Radtke, Botton 2012; 490 Hou, Ashling, Collins, Krajnc, Zhou, Longley, Johnstone, Chater, Li, Coudert, Keen, Midgley, Mali, Chen, Bennett 2018 Brunetti, Robert, Bayle-Guillemaud, Rouviere, Rauch, Martin, Colin, Bertin, Cayron 2011; 23 Müller, Ryll, Ordavo, Ihle, Strüder, Volz, Zweck, Soltau, Rosenauer 2012; 101 Ryll, Simson, Hartmann, Holl, Huth, Ihle, Kondo, Kotula, Liebel, Müller-Caspary 2016; 11 Liu, Lumpkin, Petersen, Etheridge, Bourgeois 2015; 71 MacArthur, Pennycook, Okunishi, D'Alfonso, Lugg, Allen, Nellist 2013; 133 Idrissi, Kobler, Amin-Ahmadi, Coulombier, Galceran, Raskin, Godet, Kübel, Pardoen, Schryvers 2014; 104 Morawiec, Bouzy, Paul, Fundenberger 2014; 136 S1431927619000497_ref54 S1431927619000497_ref53 S1431927619000497_ref56 S1431927619000497_ref55 S1431927619000497_ref58 S1431927619000497_ref57 S1431927619000497_ref59 S1431927619000497_ref50 S1431927619000497_ref51 S1431927619000497_ref65 S1431927619000497_ref64 S1431927619000497_ref67 S1431927619000497_ref66 S1431927619000497_ref69 S1431927619000497_ref68 S1431927619000497_ref61 S1431927619000497_ref60 S1431927619000497_ref63 S1431927619000497_ref62 Waddell (S1431927619000497_ref202) 1979; 54 Rose (S1431927619000497_ref170) 1974; 39 S1431927619000497_ref76 S1431927619000497_ref75 S1431927619000497_ref78 S1431927619000497_ref77 S1431927619000497_ref79 S1431927619000497_ref70 S1431927619000497_ref72 S1431927619000497_ref71 S1431927619000497_ref74 S1431927619000497_ref73 S1431927619000497_ref87 S1431927619000497_ref86 S1431927619000497_ref89 S1431927619000497_ref88 S1431927619000497_ref81 S1431927619000497_ref80 S1431927619000497_ref82 S1431927619000497_ref85 S1431927619000497_ref84 S1431927619000497_ref10 S1431927619000497_ref12 S1431927619000497_ref11 S1431927619000497_ref14 S1431927619000497_ref13 S1431927619000497_ref16 S1431927619000497_ref15 S1431927619000497_ref180 S1431927619000497_ref171 S1431927619000497_ref172 S1431927619000497_ref173 S1431927619000497_ref174 S1431927619000497_ref175 S1431927619000497_ref176 S1431927619000497_ref177 S1431927619000497_ref18 S1431927619000497_ref178 S1431927619000497_ref179 S1431927619000497_ref17 S1431927619000497_ref19 S1431927619000497_ref21 S1431927619000497_ref20 S1431927619000497_ref23 S1431927619000497_ref22 S1431927619000497_ref25 S1431927619000497_ref24 S1431927619000497_ref27 S1431927619000497_ref26 S1431927619000497_ref160 S1431927619000497_ref162 S1431927619000497_ref163 S1431927619000497_ref164 S1431927619000497_ref165 S1431927619000497_ref167 S1431927619000497_ref168 S1431927619000497_ref28 S1431927619000497_ref169 S1431927619000497_ref31 S1431927619000497_ref34 S1431927619000497_ref33 S1431927619000497_ref36 S1431927619000497_ref35 S1431927619000497_ref38 S1431927619000497_ref37 S1431927619000497_ref30 S1431927619000497_ref192 S1431927619000497_ref193 S1431927619000497_ref194 S1431927619000497_ref195 S1431927619000497_ref196 S1431927619000497_ref197 S1431927619000497_ref198 Kikuchi (S1431927619000497_ref99) 1928; 5 S1431927619000497_ref199 S1431927619000497_ref39 Jones (S1431927619000497_ref97) 1977; 354 S1431927619000497_ref43 S1431927619000497_ref42 S1431927619000497_ref45 S1431927619000497_ref44 S1431927619000497_ref47 S1431927619000497_ref46 S1431927619000497_ref49 S1431927619000497_ref48 Françon (S1431927619000497_ref52) 1954 S1431927619000497_ref190 S1431927619000497_ref41 Cowley (S1431927619000497_ref29) 1979; 2 S1431927619000497_ref40 S1431927619000497_ref191 S1431927619000497_ref181 Rauch (S1431927619000497_ref161) 2005; 50 S1431927619000497_ref182 S1431927619000497_ref183 S1431927619000497_ref184 S1431927619000497_ref185 S1431927619000497_ref186 S1431927619000497_ref187 S1431927619000497_ref188 S1431927619000497_ref189 S1431927619000497_ref1 S1431927619000497_ref6 S1431927619000497_ref7 S1431927619000497_ref8 S1431927619000497_ref9 S1431927619000497_ref2 S1431927619000497_ref3 S1431927619000497_ref4 S1431927619000497_ref5 S1431927619000497_ref130 S1431927619000497_ref131 S1431927619000497_ref132 S1431927619000497_ref133 S1431927619000497_ref134 S1431927619000497_ref135 S1431927619000497_ref136 S1431927619000497_ref137 S1431927619000497_ref138 S1431927619000497_ref139 S1431927619000497_ref120 S1431927619000497_ref121 S1431927619000497_ref122 S1431927619000497_ref123 S1431927619000497_ref124 S1431927619000497_ref125 S1431927619000497_ref126 S1431927619000497_ref127 S1431927619000497_ref128 S1431927619000497_ref129 S1431927619000497_ref150 S1431927619000497_ref151 S1431927619000497_ref152 S1431927619000497_ref153 S1431927619000497_ref154 S1431927619000497_ref155 Rodenburg (S1431927619000497_ref166) 1992; 339 S1431927619000497_ref156 S1431927619000497_ref157 S1431927619000497_ref158 S1431927619000497_ref159 MacArthur (S1431927619000497_ref119) 2013; 133 S1431927619000497_ref140 S1431927619000497_ref141 S1431927619000497_ref142 S1431927619000497_ref143 S1431927619000497_ref144 S1431927619000497_ref145 S1431927619000497_ref146 S1431927619000497_ref147 S1431927619000497_ref148 S1431927619000497_ref149 S1431927619000497_ref98 S1431927619000497_ref219 S1431927619000497_ref90 S1431927619000497_ref92 S1431927619000497_ref91 S1431927619000497_ref94 S1431927619000497_ref93 S1431927619000497_ref96 S1431927619000497_ref95 S1431927619000497_ref210 S1431927619000497_ref211 Koch (S1431927619000497_ref103) 2012; 26 S1431927619000497_ref212 S1431927619000497_ref213 S1431927619000497_ref214 S1431927619000497_ref215 S1431927619000497_ref216 S1431927619000497_ref217 S1431927619000497_ref218 S1431927619000497_ref208 S1431927619000497_ref209 Dekkers (S1431927619000497_ref32) 1974; 41 S1431927619000497_ref200 S1431927619000497_ref201 Hou (S1431927619000497_ref83) 2018 S1431927619000497_ref203 S1431927619000497_ref204 S1431927619000497_ref205 S1431927619000497_ref206 S1431927619000497_ref207 S1431927619000497_ref230 S1431927619000497_ref231 S1431927619000497_ref110 S1431927619000497_ref111 S1431927619000497_ref232 S1431927619000497_ref233 S1431927619000497_ref112 S1431927619000497_ref113 S1431927619000497_ref114 S1431927619000497_ref115 S1431927619000497_ref116 S1431927619000497_ref117 S1431927619000497_ref118 S1431927619000497_ref109 S1431927619000497_ref220 S1431927619000497_ref100 S1431927619000497_ref221 S1431927619000497_ref222 S1431927619000497_ref101 S1431927619000497_ref102 S1431927619000497_ref223 S1431927619000497_ref224 S1431927619000497_ref104 S1431927619000497_ref225 S1431927619000497_ref226 S1431927619000497_ref105 S1431927619000497_ref106 S1431927619000497_ref227 S1431927619000497_ref107 S1431927619000497_ref228 S1431927619000497_ref108 S1431927619000497_ref229 |
| References_xml | – volume: 45 start-page: 3 issue: 1 year: 1996 end-page: 10 article-title: Electron nanodiffraction: Progress and prospects publication-title: Microscopy – volume: 145 start-page: 377 issue: 3 year: 1956 end-page: 397 article-title: Beobachtungen und messungen an biprisma-interferenzen mit elektronenwellen publication-title: Z Phys – volume: 110 start-page: 063102 issue: 6 year: 2017 article-title: Non-spectroscopic composition measurements of SrTiO-LaSr0.3MnO multilayers using scanning convergent beam electron diffraction publication-title: Appl Phys Lett – volume: 225 start-page: 103 issue: 2–3 year: 2010 end-page: 109 article-title: Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction publication-title: Z Kristallogr – volume: 104 start-page: 152 issue: 2 year: 2005 end-page: 159 article-title: Active pixel sensor array as a detector for electron microscopy publication-title: Ultramicroscopy – volume: 3 start-page: e1602427 issue: 5 year: 2017 article-title: Electroplating lithium transition metal oxides publication-title: Sci Adv – volume: 80 start-page: 159 year: 2014 end-page: 171 article-title: The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy publication-title: Acta Mater – volume: 250 start-page: 1 issue: 1 year: 2013 end-page: 14 article-title: Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope publication-title: J Microsc – volume: 197 start-page: 112 year: 2019 end-page: 121 article-title: Large angle illumination enabling accurate structure reconstruction from thick samples in scanning transmission electron microscopy publication-title: Ultramicroscopy – volume: 198 start-page: 58 year: 2018 end-page: 72 article-title: Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy publication-title: Ultramicroscopy – volume: 24 start-page: 586 issue: S1 year: 2018 end-page: 587 article-title: Crystal phase mapping by scanning precession electron diffraction and machine learning decomposition publication-title: Microsc Microanal – volume: 171 start-page: 117 year: 2016 end-page: 125 article-title: Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope publication-title: Ultramicroscopy – volume: 108 start-page: 034109 issue: 3 year: 2010 article-title: Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3 publication-title: J Appl Phys – volume: 106 start-page: 253107 issue: 25 year: 2015 article-title: Strain mapping at nanometer resolution using advanced nano-beam electron diffraction publication-title: Appl Phys Lett – volume: 165 start-page: 51 year: 2016 end-page: 58 article-title: Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction publication-title: Ultramicroscopy – volume: 20 start-page: 62 issue: S3 year: 2014 end-page: 63 article-title: Recording and using 4D-STEM datasets in materials science publication-title: Microsc Microanal – volume: 96 start-page: 163 issue: 2 year: 2003 end-page: 166 article-title: Ultra-high resolution with off-axis STEM holography publication-title: Ultramicroscopy – volume: 147 start-page: 156 year: 2014 end-page: 163 article-title: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy publication-title: Ultramicroscopy – volume: 18 start-page: 7118 issue: 11 year: 2018 end-page: 7123 article-title: Probing light atoms at subnanometer resolution: Realization of scanning transmission electron microscope holography publication-title: Nano Lett – volume: 200 start-page: 169 year: 2019 end-page: 179 article-title: Analysis of medium-range order based on simulated segmented ring detector STEM-images: Amorphous Si publication-title: Ultramicroscopy – volume: 74 start-page: 1148 issue: 11 year: 1970 end-page: 1154 article-title: Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld publication-title: Berichte der Bunsengesellschaft für Physikalische Chemie – volume: 22 start-page: 237 issue: 1 year: 2016 end-page: 249 article-title: High dynamic range pixel array detector for scanning transmission electron microscopy publication-title: Microsc Microanal – volume: 81 start-page: 2112 issue: 11 year: 2002 end-page: 2114 article-title: Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy publication-title: Appl Phys Lett – volume: 10 start-page: 28 issue: 1 year: 2011 article-title: Direct observation of local atomic order in a metallic glass publication-title: Nat Mater – volume: 68 start-page: 196 issue: 2 year: 2012 end-page: 207 article-title: Image formation in the scanning transmission electron microscope using object-conjugate detectors publication-title: Acta Crystallogr, Sect A – volume: 169 start-page: 107 year: 2016 end-page: 121 article-title: Practical aspects of diffractive imaging using an atomic-scale coherent electron probe publication-title: Ultramicroscopy – volume: 7 start-page: 2857 issue: 1 year: 2017 article-title: Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals publication-title: Sci Rep – volume: 120 start-page: 1902 issue: 3 year: 2016 end-page: 1908 article-title: Structure determination of superatom metallic clusters using rapid scanning electron diffraction publication-title: J Phys Chem C – volume: 22 start-page: 530 issue: S3 year: 2016 end-page: 531 article-title: Developing rapid and advanced visualisation of magnetic structures using 2-D pixelated STEM detectors publication-title: Microsc Microanal – volume: 111 start-page: 266101 issue: 26 year: 2013 article-title: Three-dimensional imaging of individual dopant atoms in SrTiO3 publication-title: Phys Rev Lett – volume: 110 start-page: 263102 issue: 26 year: 2017 article-title: High precision strain mapping of topological insulator HgTe/CdTe publication-title: Appl Phys Lett – volume: 196 start-page: 74 year: 2019 end-page: 82 article-title: Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction publication-title: Ultramicroscopy – volume: 89 start-page: 161907 issue: 16 year: 2006 article-title: Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction publication-title: Appl Phys Lett – volume: 160 start-page: 265 year: 2016 end-page: 280 article-title: Phase contrast STEM for thin samples: Integrated differential phase contrast publication-title: Ultramicroscopy – volume: 30 start-page: 280 issue: 2 year: 1974 end-page: 290 article-title: Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr – volume: 103 start-page: 097202 issue: 9 year: 2009 article-title: Direct imaging of nanoscale phase separation in La0.55Ca 0.45MnO3: Relationship to colossal magnetoresistance publication-title: Phys Rev Lett – volume: 54 start-page: 41 issue: 1 year: 1994 end-page: 59 article-title: A versatile, software configurable multichannel STEM detector for angle-resolved imaging publication-title: Ultramicroscopy – volume: 32 start-page: 187 issue: 2 year: 1997 end-page: 197 article-title: CMOS active pixel image sensors for highly integrated imaging systems publication-title: IEEE J Solid-State Circuits – volume: 136 start-page: 107 year: 2014 end-page: 118 article-title: Orientation precision of TEM-based orientation mapping techniques publication-title: Ultramicroscopy – volume: 54 start-page: 7 issue: 1 year: 1998 end-page: 18 article-title: Direct inversion of dynamical electron diffraction patterns to structure factors publication-title: Acta Crystallogr, Sect A – volume: 110 start-page: 1273 issue: 10 year: 2010 end-page: 1278 article-title: Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy publication-title: Ultramicroscopy – volume: 494 start-page: 68 issue: 7435 year: 2013 article-title: Reconstructing state mixtures from diffraction measurements publication-title: Nature – volume: 26 start-page: 1506 issue: 5 year: 1990 end-page: 1511 article-title: Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures publication-title: IEEE Trans Magn – volume: 112 start-page: 171905 issue: 17 year: 2018 article-title: Local nanoscale strain mapping of a metallic glass during in situ testing publication-title: Appl Phys Lett – volume: 17 start-page: 316 issue: 3 year: 2011 end-page: 329 article-title: A review of strain analysis using electron backscatter diffraction publication-title: Microsc Microanal – volume: 107 start-page: 072110 issue: 7 year: 2015 article-title: Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector publication-title: Appl Phys Lett – volume: 5 start-page: 2580 issue: 4 year: 2011 end-page: 2586 article-title: Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures publication-title: ACS Nano – volume: 224 start-page: 113 year: 2004 end-page: 116 article-title: Strain relaxation of strained-Si layers on SiGe-on-insulator (SGOI) structures after mesa isolation publication-title: Appl Surf Sci – volume: 2 start-page: 433 issue: 9 year: 1979 end-page: 438 article-title: Innovative imaging and microdiffraction in stem publication-title: Ultramicroscopy – volume: 151 start-page: 160 year: 2015 end-page: 167 article-title: Efficient phase contrast imaging in stem using a pixelated detector. Part 1: Experimental demonstration at atomic resolution publication-title: Ultramicroscopy – volume: 110 start-page: 903 issue: 7 year: 2010 end-page: 923 article-title: Dynamics of annular bright field imaging in scanning transmission electron microscopy publication-title: Ultramicroscopy – volume: 26 start-page: 247 issue: 3 year: 1995 end-page: 275 article-title: Imaging properties and applications of slow-scan charge-coupled device cameras suitable for electron microscopy publication-title: Micron – volume: 7 start-page: 10719 year: 2016 article-title: Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry publication-title: Nat Commun – volume: 11 start-page: P04006 issue: 04 year: 2016 article-title: A pnCCD-based, fast direct single electron imaging camera for TEM and STEM publication-title: J Instrum – volume: 29 start-page: 1606 issue: 8 year: 2012 end-page: 1614 article-title: Ptychographic transmission microscopy in three dimensions using a multi-slice approach publication-title: JOSA A – volume: 93 start-page: 221912 issue: 22 year: 2008 article-title: Strain relaxation in transistor channels with embedded epitaxial silicon germanium source/drain publication-title: Appl Phys Lett – volume: 4 start-page: 10 issue: 1 year: 2018 article-title: Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope publication-title: Adv Struct Chemi Imaging – volume: 117 start-page: 015501 issue: 1 year: 2016 article-title: Inversion of dynamical scattering from large-angle rocking-beam electron diffraction patterns publication-title: Phys Rev Lett – volume: 31 start-page: 303 issue: 3 year: 1989 end-page: 307 article-title: Sub-Ångström transmission microscopy: A Fourier transform algorithm for microdiffraction plane intensity information publication-title: Ultramicroscopy – volume: 203 start-page: 95 year: 2018 end-page: 104 article-title: Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose publication-title: Ultramicroscopy – volume: 59 start-page: 427 issue: 3 year: 1996 article-title: Confocal optical microscopy publication-title: Rep Prog Phys – volume: 190 start-page: 45 year: 2018 end-page: 57 article-title: Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence publication-title: Ultramicroscopy – volume: 13 start-page: 110 issue: 2 year: 2006 end-page: 119 article-title: Analog pixel array detectors publication-title: J Synchrotron Radiat – volume: 113 start-page: 233102 issue: 23 year: 2018 article-title: A tunable path-separated electron interferometer with an amplitude-dividing grating beamsplitter publication-title: Appl Phys Lett – volume: 103 start-page: 241913 issue: 24 year: 2013 article-title: Improved strain precision with high spatial resolution using nanobeam precession electron diffraction publication-title: Appl Phys Lett – volume: 5 start-page: 5 issue: 1 year: 2019 article-title: Manifold learning of four-dimensional scanning transmission electron microscopy publication-title: NPJ Comput Mater – volume: 3 start-page: 13 issue: 1 year: 2017 article-title: A fast image simulation algorithm for scanning transmission electron microscopy publication-title: Adv Struct Chem Imaging – volume: 9 start-page: 27 issue: 1–2 year: 1982 end-page: 30 article-title: Is the STEM a ptychograph? publication-title: Ultramicroscopy – volume: 339 start-page: 521 issue: 1655 year: 1992 end-page: 553 article-title: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution publication-title: Phil Trans R Soc London, Ser A – volume: 5 start-page: 5653 year: 2014 article-title: Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction publication-title: Nat Commun – volume: 8 start-page: 1085 issue: 12 year: 2018 article-title: Measuring structural heterogeneities in metallic glasses using transmission electron microscopy publication-title: Metals (Basel) – volume: 279 start-page: 388 issue: 1–2 year: 1989 end-page: 395 article-title: The silicon detectors in the UA2 experiment publication-title: Nucl Instrum Methods Phys Res Sect A – volume: 93 start-page: 023903 issue: 2 year: 2004 article-title: Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm publication-title: Phys Rev Lett – volume: 146 start-page: 87 year: 2018 end-page: 90 article-title: In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel publication-title: Scr Mater – volume: 18 start-page: 995 issue: 5 year: 2012 end-page: 1009 article-title: Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy publication-title: Microsc Microanal – volume: 93 start-page: 134116 issue: 13 year: 2016 article-title: Structure retrieval with fast electrons using segmented detectors publication-title: Phys Rev B – volume: 392 start-page: 55 issue: 17 year: 1928 end-page: 129 article-title: Theorie der beugung von elektronen an kristallen publication-title: Ann Phys – volume: 20 start-page: 38 issue: 6 year: 2012 end-page: 42 article-title: Nanoscale automated phase and orientation mapping in the TEM publication-title: Micros Today – volume: 120 start-page: 16 year: 2012 end-page: 24 article-title: Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope publication-title: Ultramicroscopy – volume: 180 start-page: 173 year: 2017 end-page: 179 article-title: Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution publication-title: Ultramicroscopy – volume: 105 start-page: 191906 issue: 19 year: 2014 article-title: Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera publication-title: Appl Phys Lett – volume: 121 start-page: 266102 issue: 26 year: 2018 article-title: Structure retrieval at atomic resolution in the presence of multiple scattering of the electron probe publication-title: Phys Rev Lett – volume: 23 start-page: 162 issue: S1 year: 2017 end-page: 163 article-title: Computational methods for large scale scanning transmission electron microscopy (STEM) experiments and simulations publication-title: Microsc Microanal – volume: 5 start-page: 1701258 issue: 5 year: 2018 article-title: Atomic structure of domain and interphase boundaries in ferroelectric HfO publication-title: Adv Mater Interfaces – volume: 85 start-page: 651 issue: 4 year: 2004 end-page: 653 article-title: Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations publication-title: Appl Phys Lett – volume: 6 start-page: 249 issue: 4 year: 2018 end-page: 254 article-title: Nanoscale elastic strain mapping of polycrystalline materials publication-title: Mater Res Lett – volume: 53 start-page: 271 issue: 3 year: 1994 end-page: 282 article-title: Double conical beam-rocking system for measurement of integrated electron diffraction intensities publication-title: Ultramicroscopy – volume: 10 start-page: 584 issue: 6 year: 2013 article-title: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM publication-title: Nat Methods – volume: 5 start-page: 23 year: 1928 article-title: Elektronenbeugung an glimmerplättchen publication-title: Jpn J Phys – volume: 6 start-page: 7267 year: 2015 article-title: Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis publication-title: Nat Commun – volume: 42 start-page: 1825 issue: 11 year: 1979 article-title: The scattering of fast electrons by crystals publication-title: Rep Prog Phys – volume: 58 start-page: 403 issue: 3–4 year: 1995 end-page: 415 article-title: Optimum rotationally symmetric detector configurations for phase-contrast imaging in scanning transmission electron microscopy publication-title: Ultramicroscopy – volume: 53 start-page: 8614 issue: 33 year: 2014 end-page: 8617 article-title: Multi-dimensional electron microscopy publication-title: Angew Chem, Int Ed – volume: 95 start-page: 123114 issue: 12 year: 2009 article-title: Improved precision in strain measurement using nanobeam electron diffraction publication-title: Appl Phys Lett – volume: 52 start-page: 21 issue: 1 year: 1993 end-page: 29 article-title: High-sensitivity lens-coupled slow-scan CCD camera for transmission electron microscopy publication-title: Ultramicroscopy – volume: 89 start-page: 064101 issue: 6 year: 2014 article-title: Deterministic electron ptychography at atomic resolution publication-title: Phys Rev B – volume: 18 start-page: 3746 issue: 6 year: 2018 article-title: Strain mapping of two-dimensional heterostructures with subpicometer precision publication-title: Nano Lett – volume: 10 start-page: 609 issue: 10 year: 1957 end-page: 619 article-title: The scattering of electrons by atoms and crystals. I. a new theoretical approach publication-title: Acta Crystallogr – volume: 155 start-page: 1 year: 2015 end-page: 10 article-title: Diffraction contrast imaging using virtual apertures publication-title: Ultramicroscopy – volume: 25 start-page: 508 issue: 4 year: 1969 end-page: 514 article-title: Beugung im inhomogenen primärstrahlwellenfeld. III. amplituden-und phasenbestimmung bei unperiodischen objekten publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr – volume: 104 start-page: 101903 issue: 10 year: 2014 article-title: Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing publication-title: Appl Phys Lett – volume: 22 start-page: 494 issue: S3 year: 2016 end-page: 495 article-title: Study of structure of Li-and Mn-rich transition metal oxides using 4D-STEM publication-title: Microsc Microanal – volume: 23 start-page: 4515 issue: 20 year: 2011 end-page: 4524 article-title: Confirmation of the domino-cascade model by LiFePO/FePO precession electron diffraction publication-title: Chem Mater – volume: 60 start-page: 646 issue: 5 year: 2006 end-page: 650 article-title: A technique for determination of γ/γ interface relationships in a (α2 + γ) TiAl base alloy using TEM Kikuchi patterns publication-title: Mater Lett – volume: 3 start-page: 15 issue: 1 year: 2017 article-title: A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy publication-title: Adv Struct Chem Imaging – volume: 13 start-page: 1560 issue: S02 year: 2007 end-page: 1561 article-title: Scanning confocal electron microscopy publication-title: Microsc Microanal – volume: 70 start-page: 1 issue: (7) year: 2018 end-page: 7 article-title: In-situ indentation and correlated precession electron diffraction analysis of a polycrystalline Cu thin film publication-title: JOM – volume: 106 start-page: 160802 issue: 16 year: 2011 article-title: Imaging high-energy electrons propagating in a crystal publication-title: Phys Rev Lett – volume: 9 start-page: 150 issue: S02 year: 2003 end-page: 151 article-title: Computationally mediated experimental science publication-title: Microsc Microanal – volume: 248 start-page: 353 year: 1984 end-page: 366 article-title: The use of scanning transmission electron microscopes to study surfaces and small particles publication-title: ACS Symp Ser – volume: 3 start-page: 730 year: 2012 article-title: Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging publication-title: Nat Commun – volume: 192 start-page: 21 year: 2018 end-page: 28 article-title: Introducing a non-pixelated and fast centre of mass detector for differential phase contrast microscopy publication-title: Ultramicroscopy – year: 2018 article-title: Metal-organic framework crystal-glass composites publication-title: ChemRxiv – volume: 106 start-page: 086101 issue: 8 year: 2009 article-title: Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy publication-title: J Appl Phys – volume: 39 start-page: 416 issue: 4 year: 1974 end-page: 436 article-title: Phase contrast in scanning transmission electron microscopy publication-title: Optik – volume: 93 start-page: 147 issue: 2 year: 2002 end-page: 159 article-title: Fluctuation microscopy in the STEM publication-title: Ultramicroscopy – volume: 7 start-page: 12532 year: 2016 article-title: Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures publication-title: Nat Commun – volume: 158 start-page: H438 issue: 4 year: 2011 end-page: H446 article-title: Nanobeam diffraction: Technique evaluation and strain measurement on complementary metal oxide semiconductor devices publication-title: J Electrochem Soc – volume: 13 start-page: 15 issue: 1 year: 1990 end-page: 30 article-title: Measurement of local textures with transmission and scanning electron microscopes publication-title: Texture, Stress, Microstruct – volume: 89 start-page: 124105 issue: 12 year: 2006 article-title: Confocal operation of a transmission electron microscope with two aberration correctors publication-title: Appl Phys Lett – volume: 21 start-page: 1219 issue: S3 year: 2015 end-page: 1220 article-title: Ptychographic imaging in an aberration corrected stem publication-title: Microsc Microanal – volume: 5 start-page: 4155 year: 2014 article-title: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts publication-title: Nat Commun – volume: 109 start-page: 304 issue: 4 year: 2009 end-page: 311 article-title: A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope publication-title: Ultramicroscopy – volume: 82 start-page: 104103 issue: 10 year: 2010 article-title: Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation publication-title: Phys Rev B – volume: 34 start-page: 153 issue: 2 year: 1979 end-page: 181 article-title: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys publication-title: J Non-Cryst Solids – volume: 101 start-page: 212110 issue: 21 year: 2012 article-title: Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device publication-title: Appl Phys Lett – volume: 195 start-page: 189 year: 2018 end-page: 193 article-title: Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy publication-title: Ultramicroscopy – volume: 107 start-page: 191901 issue: 19 year: 2015 article-title: Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling publication-title: Appl Phys Lett – volume: 25 start-page: 502 issue: 4 year: 1969 end-page: 507 article-title: Beugung in inhomogenen primärstrahlenwellenfeld. II. lichtoptische analogieversuche zur phasenmessung von gitterinterferenzen publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr – volume: 26 start-page: 5 issue: (4) year: 2012 end-page: 8 article-title: Quantitative four-dimensional electron diffraction in the TEM publication-title: Microsc Anal – volume: 56 start-page: 119 issue: 2 year: 2000 end-page: 126 article-title: Inversion of dynamical electron diffraction data including absorption publication-title: Acta Crystallogr, Sect A: Found Crystallogr – volume: 121 start-page: 056101 issue: 5 year: 2018 article-title: Single atom detection from low contrast-to-noise ratio electron microscopy images publication-title: Phys Rev Lett – volume: 193 start-page: 1 year: 2018 article-title: Dr. Probe: A software for high-resolution STEM image simulation publication-title: Ultramicroscopy – volume: 13 start-page: 962 issue: S02 year: 2007 end-page: 963 article-title: Development of diffraction imaging for orientation analysis of grains in scanning transmission electron microscopy publication-title: Microsc Microanal – volume: 10 start-page: 1127 year: 2019 article-title: Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy publication-title: Nat Commun – volume: 50 start-page: 87 year: 2005 end-page: 99 article-title: Rapid spot diffraction patterns identification through template matching publication-title: Arch Metall Mater – volume: 2 start-page: 251 issue: 0 year: 1977 end-page: 267 article-title: Nonstandard imaging methods in electron microscopy publication-title: Ultramicroscopy – volume: 8 start-page: 163 issue: 1 year: 2017 article-title: Electron ptychographic microscopy for three-dimensional imaging publication-title: Nat Commun – volume: 113 start-page: 253101 issue: 25 year: 2018 article-title: Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy publication-title: Appl Phys Lett – volume: 96 start-page: 127 issue: 2 year: 2003 end-page: 137 article-title: Polycrystal orientation maps from TEM publication-title: Ultramicroscopy – volume: 16 start-page: 247 year: 2018 end-page: 252 article-title: 4D-data acquisition in scanning confocal electron microscopy for depth-sectioned imaging publication-title: e-J Surf Sci Nanotechnol – volume: 91 start-page: 023805 issue: 2 year: 2015 article-title: Differential phase contrast: An integral perspective publication-title: Phys Rev A – volume: 125 start-page: 49 year: 2013 end-page: 58 article-title: Measurement of chromatic aberration in STEM and SCEM by coherent convergent beam electron diffraction publication-title: Ultramicroscopy – volume: 96 start-page: 285 issue: 3–4 year: 2003 end-page: 298 article-title: Nanobeam propagation and imaging in a FEGTEM/STEM publication-title: Ultramicroscopy – volume: 374 start-page: 630 issue: 6523 year: 1995 article-title: Resolution beyond the “information limit” in transmission electron microscopy publication-title: Nature – volume: 111 start-page: 1111 issue: 8 year: 2011 end-page: 1116 article-title: Spatially resolved diffractometry with atomic-column resolution publication-title: Ultramicroscopy – volume: 113 start-page: 033104 issue: 3 year: 2018 article-title: Subsampled STEM-ptychography publication-title: Appl Phys Lett – volume: 11 start-page: 830 issue: 4 year: 2018 end-page: 840 article-title: Effect of composition on the structure of lithium-and manganese-rich transition metal oxides publication-title: Energy Environ Sci – volume: 54 start-page: 79 issue: 1 year: 1986 end-page: 92 article-title: The use of convergent-beam electron diffraction to determine local lattice distortions in nickel-base superalloys publication-title: Philos Mag A – volume: 490 start-page: 384 issue: 7420 year: 2012 article-title: Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM publication-title: Nature – volume: 354 start-page: 197 issue: 1677 year: 1977 end-page: 222 article-title: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination publication-title: Proc R Soc London, Ser A – volume: 54 start-page: 83 issue: 2 year: 1979 end-page: 96 article-title: Linear imaging of strong phase objects using asymmetrical detectors in stem publication-title: Optik – volume: 106 start-page: 476 year: 2016 end-page: 481 article-title: Cross-sectional stress distribution in AlGaN heterostructure on Si (111) substrate characterized by ion beam layer removal method and precession electron diffraction publication-title: Mater Des – volume: 18 start-page: 6850 issue: 11 year: 2018 end-page: 6855 article-title: Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography publication-title: Nano Lett – volume: 176 start-page: 170 year: 2017 end-page: 176 article-title: Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping publication-title: Ultramicroscopy – volume: 2 start-page: 26 year: 2019 article-title: Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction publication-title: Commun Biol – volume: 142 start-page: 458 year: 2018 end-page: 469 article-title: The evolution of precipitate crystal structures in an Al-Mg-Si (-Cu) alloy studied by a combined HAADF-STEM and SPED approach publication-title: Mater Charact – volume: 109 start-page: 326 issue: 4 year: 2009 end-page: 337 article-title: Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography publication-title: Ultramicroscopy – volume: 177 start-page: 91 year: 2017 end-page: 96 article-title: STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens publication-title: Ultramicroscopy – volume: 41 start-page: 211 issue: 1–3 year: 1992 end-page: 223 article-title: Automated lattice parameter measurement from HOLZ lines and their use for the measurement of oxygen content in YBa2Cu3O7−δ from nanometer-sized region publication-title: Ultramicroscopy – volume: 42 start-page: 2405 issue: 7 year: 2007 end-page: 2416 article-title: Microstructure and microtexture of highly cold-rolled commercially pure titanium publication-title: J Mater Sci – volume: 23 start-page: 1782 issue: S1 year: 2017 end-page: 1783 article-title: Nanobeam scanning diffraction for orientation mapping of polymers publication-title: Microsc Microanal – volume: 128 start-page: 68 year: 2013 end-page: 81 article-title: Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals publication-title: Ultramicroscopy – volume: 111 start-page: 828 issue: 7 year: 2011 end-page: 840 article-title: Aberration-compensated large-angle rocking-beam electron diffraction publication-title: Ultramicroscopy – volume: 134 start-page: 9672 issue: 23 year: 2012 end-page: 9680 article-title: 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography publication-title: J Am Chem Soc – volume: 111 start-page: 995 issue: 8 year: 2011 end-page: 998 article-title: Evaluation of two-dimensional strain distribution by STEM/NBD publication-title: Ultramicroscopy – volume: 181 start-page: 50 year: 2017 end-page: 60 article-title: Optimization of NBED simulations for disc-detection measurements publication-title: Ultramicroscopy – volume: 14 start-page: 70 issue: S2 year: 2008 end-page: 71 article-title: Hyperspectral imaging in TEM: New ways of information extraction and display publication-title: Microsc Microanal – volume: 108 start-page: 195505 issue: 19 year: 2012 article-title: Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass publication-title: Phys Rev Lett – volume: 112 start-page: 166101 issue: 16 year: 2014 article-title: Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy publication-title: Phys Rev Lett – volume: 8 start-page: 376 issue: S02 year: 2002 end-page: 377 article-title: Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM publication-title: Microsc Microanal – volume: 80 start-page: 145 year: 2016 end-page: 165 article-title: Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope publication-title: Micron – volume: 67 start-page: 487 issue: 5 year: 2011 end-page: 490 article-title: Atomic resolution imaging using the real-space distribution of electrons scattered by a crystalline material publication-title: Acta Crystallogr, Sect A: Found Crystallogr – volume: 19 start-page: 770 issue: S2 year: 2013 end-page: 771 article-title: Advances in 2D, 3D and 4D STEM image data analysis publication-title: Microsc Microanal – volume: 178 start-page: 62 year: 2017 end-page: 80 article-title: Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy publication-title: Ultramicroscopy – volume: 85 start-page: 4795 issue: 20 year: 2004 end-page: 4797 article-title: A phase retrieval algorithm for shifting illumination publication-title: Appl Phys Lett – volume: 188 start-page: 59 year: 2018 end-page: 69 article-title: A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns publication-title: Ultramicroscopy – volume: 88 start-page: 30 year: 2016 end-page: 36 article-title: Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction publication-title: Micron – volume: 133 start-page: 109 year: 2013 end-page: 119 article-title: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images publication-title: Ultramicroscopy – volume: 24 start-page: 166 issue: S1 year: 2018 end-page: 167 article-title: A next generation electron microscopy detector aimed at enabling new scanning diffraction techniques and online data reconstruction publication-title: Microsc Microanal – volume: 33 start-page: 10 issue: 1 year: 2000 end-page: 25 article-title: New developments of computer-aided crystallographic analysis in transmission electron microscopy publication-title: J Appl Crystallogr – volume: 121 start-page: 146101 issue: 14 year: 2018 article-title: Hollow electron ptychographic diffractive imaging publication-title: Phys Rev Lett – volume: 109 start-page: 1256 issue: 10 year: 2009 end-page: 1262 article-title: An improved ptychographical phase retrieval algorithm for diffractive imaging publication-title: Ultramicroscopy – volume: 98 start-page: 1 year: 2014 end-page: 9 article-title: Automated crystal orientation and phase mapping in TEM publication-title: Mater Charact – volume: 67 start-page: i114 year: 2018 end-page: i122 article-title: Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging publication-title: Microscopy – volume: 644 start-page: 012032 issue: 1 year: 2015 article-title: 4D STEM: High efficiency phase contrast imaging using a fast pixelated detector publication-title: J Phys Conf Ser – volume: 3 start-page: 25 issue: 1 year: 1986 end-page: 44 article-title: Electron diffraction phenomena observed with a high resolution stem instrument publication-title: J Electron Microsc Tech – volume: 3 start-page: 437 issue: 4 year: 1964 end-page: 451 article-title: Forty years of history of a grating interferometer publication-title: Appl Opt – volume: 113 start-page: 186 year: 2017 end-page: 194 article-title: Grain rotations in ultrafine-grained aluminum films studied using in situ tem straining with automated crystal orientation mapping publication-title: Mater Des – volume: 565 start-page: 468 year: 2019 end-page: 471 article-title: Spatially resolved steady-state negative capacitance publication-title: Nature – volume: 79 start-page: 214110 issue: 21 year: 2009 article-title: High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment publication-title: Phys Rev B – volume: 10 start-page: 061001 year: 2018 article-title: Interpretable and efficient interferometric contrast in scanning transmission electron microscopy with a diffraction-grating beam splitter publication-title: Phys Rev Appl – volume: 82 start-page: 121415 issue: 12 year: 2010 article-title: Wave-front phase retrieval in transmission electron microscopy via ptychography publication-title: Phys Rev B – volume: 158 start-page: 38 year: 2015 end-page: 48 article-title: Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction publication-title: Ultramicroscopy – volume: 19 start-page: 267 issue: 3 year: 1986 end-page: 277 article-title: Image reconstruction using electron microdiffraction patterns from overlapping regions publication-title: Ultramicroscopy – volume: 273 start-page: 215 year: 1998 end-page: 222 article-title: Automated crystal orientation mapping (ACOM) with a computer-controlled TEM by interpreting transmission Kikuchi patterns publication-title: Mater Sci Forum – volume: 15 start-page: 5214 issue: 8 year: 2015 end-page: 5220 article-title: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy publication-title: Nano Lett – volume: 7 start-page: 9883 issue: 1 year: 2017 article-title: Low-dose cryo electron ptychography via non-convex Bayesian optimization publication-title: Sci Rep – volume: 559 start-page: 343 issue: 7714 year: 2018 article-title: Electron ptychography of 2D materials to deep sub-Ångström resolution publication-title: Nature – volume: 151 start-page: 232 year: 2015 end-page: 239 article-title: Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions publication-title: Ultramicroscopy – volume: 119 start-page: 72 year: 2019 end-page: 87 article-title: Radiation damage to organic and inorganic specimens in the TEM publication-title: Micron – volume: 165 start-page: 42 year: 2016 end-page: 50 article-title: Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast publication-title: Ultramicroscopy – volume: 41 start-page: 452 issue: 4 year: 1974 end-page: 456 article-title: Differential phase contrast in a STEM publication-title: Optik – volume: 8 start-page: 611 issue: 8 year: 2012 article-title: Differential phase-contrast microscopy at atomic resolution publication-title: Nat Phys – volume: 11 start-page: 143 issue: 2 year: 1989 end-page: 154 article-title: Observation of microdiffraction patterns with a dedicated STEM instrument publication-title: J Electron Microsc Tech – volume: 46 start-page: 607 issue: 6 year: 2011 end-page: 628 article-title: A critical review of orientation microscopy in SEM and TEM publication-title: Cryst Res Technol – volume: 48 start-page: 304 issue: 3 year: 1993 end-page: 314 article-title: Experimental tests on double-resolution coherent imaging via STEM publication-title: Ultramicroscopy – volume: 51 start-page: 205104 issue: 20 year: 2018 article-title: Path-separated electron interferometry in a scanning transmission electron microscope publication-title: J Phys D: Appl Phys – volume: 71 start-page: 473 issue: 5 year: 2015 end-page: 482 article-title: Interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens publication-title: Acta Crystallogr, Sect A: Found Adv – volume: 98 start-page: 121408 issue: 12 year: 2018 article-title: Atomic-scale quantification of charge densities in two-dimensional materials publication-title: Phys Rev B – volume: 8 start-page: 10878 issue: 10 year: 2014 end-page: 10884 article-title: Three-dimensional valency mapping in ceria nanocrystals publication-title: ACS Nano – volume: 112 start-page: 071901 issue: 7 year: 2018 article-title: Determination of the structural phase and octahedral rotation angle in halide perovskites publication-title: Appl Phys Lett – volume: 8 start-page: 16070 year: 2017 article-title: Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films publication-title: Nat Commun – volume: 39 start-page: 138 issue: 2 year: 2014 end-page: 146 article-title: Observing and measuring strain in nanostructures and devices with transmission electron microscopy publication-title: MRS Bull – volume: 110 start-page: 118 issue: 2 year: 2010 end-page: 125 article-title: Position averaged convergent beam electron diffraction: Theory and applications publication-title: Ultramicroscopy – volume: 110 start-page: 205505 issue: 20 year: 2013 article-title: Systematic mapping of icosahedral short-range order in a melt-spun ZrCu metallic glass publication-title: Phys Rev Lett – volume: 2 start-page: 126 issue: 1 year: 2015 end-page: 136 article-title: Precession electron diffraction–a topical review publication-title: IUCrJ – volume: 25 start-page: 495 issue: 4 year: 1969 end-page: 501 article-title: Beugung im inhomogenen primärstrahlwellenfeld. I. prinzip einer phasenmessung von elektronenbeungungsinterferenzen publication-title: Acta Crystallogr, Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr – volume: 196 start-page: 58 year: 2019 end-page: 66 article-title: Prospects of annular differential phase contrast applied for optical sectioning in STEM publication-title: Ultramicroscopy – volume: 50 start-page: 41 issue: 1 year: 1993 end-page: 56 article-title: Determination of multiple lattice parameters from convergent-beam electron diffraction patterns publication-title: Ultramicroscopy – volume: 108 start-page: 073901 issue: 7 year: 2012 article-title: Atom-scale ptychographic electron diffractive imaging of boron nitride cones publication-title: Phys Rev Lett – volume: 6 start-page: 37624 year: 2016 article-title: Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3 publication-title: Sci Rep – volume: 33 start-page: 205 issue: 11 year: 2010 end-page: 219 article-title: Nano-beam diffraction: Crystal structure and strain analysis at the nanoscale publication-title: ECS Trans – volume: 52 start-page: 212 issue: 2 year: 1996 end-page: 220 article-title: Variable coherence microscopy: A rich source of structural information from disordered materials publication-title: Acta Crystallogr, Sect A – ident: S1431927619000497_ref194 doi: 10.3390/met8121085 – ident: S1431927619000497_ref195 doi: 10.1107/S0108767395012876 – ident: S1431927619000497_ref215 doi: 10.1016/j.ultramic.2016.09.002 – ident: S1431927619000497_ref66 – ident: S1431927619000497_ref191 doi: 10.1038/srep37624 – ident: S1431927619000497_ref162 doi: 10.1016/j.matchar.2014.08.010 – ident: S1431927619000497_ref96 doi: 10.1017/S1431927613005849 – ident: S1431927619000497_ref160 doi: 10.1103/PhysRevLett.108.073901 – ident: S1431927619000497_ref213 doi: 10.1088/1742-6596/644/1/012032 – ident: S1431927619000497_ref182 doi: 10.1017/S1431927616003329 – ident: S1431927619000497_ref150 doi: 10.1017/S1431927617001490 – ident: S1431927619000497_ref171 doi: 10.1016/S0304-3991(76)91538-2 – ident: S1431927619000497_ref138 doi: 10.1016/j.ultramic.2016.05.004 – ident: S1431927619000497_ref120 doi: 10.1063/1.3460106 – ident: S1431927619000497_ref128 doi: 10.1002/anie.201400625 – ident: S1431927619000497_ref14 doi: 10.1021/acs.jpcc.5b09524 – ident: S1431927619000497_ref2 doi: 10.1017/S1431927618003422 – ident: S1431927619000497_ref167 doi: 10.1063/1.1823034 – ident: S1431927619000497_ref38 doi: 10.1016/j.ultramic.2016.04.004 – ident: S1431927619000497_ref152 doi: 10.1016/j.micron.2016.05.008 – ident: S1431927619000497_ref84 doi: 10.1103/PhysRevB.82.121415 – ident: S1431927619000497_ref85 doi: 10.1088/0034-4885/42/11/002 – ident: S1431927619000497_ref224 doi: 10.1017/S143192760210064X – ident: S1431927619000497_ref222 doi: 10.1107/S0021889899010894 – ident: S1431927619000497_ref183 doi: 10.1039/C7EE02443F – ident: S1431927619000497_ref25 doi: 10.1093/oxfordjournals.jmicro.a023409 – ident: S1431927619000497_ref59 doi: 10.1016/j.actamat.2014.07.062 – ident: S1431927619000497_ref48 doi: 10.1149/1.3546851 – ident: S1431927619000497_ref61 doi: 10.1021/nn5047053 – ident: S1431927619000497_ref79 doi: 10.1038/nmat2897 – ident: S1431927619000497_ref50 doi: 10.1021/ja304079d – ident: S1431927619000497_ref188 doi: 10.1063/1.5040496 – ident: S1431927619000497_ref88 doi: 10.1103/PhysRevLett.111.266101 – ident: S1431927619000497_ref71 doi: 10.1380/ejssnt.2018.247 – ident: S1431927619000497_ref205 doi: 10.1093/jmicro/dfy002 – ident: S1431927619000497_ref46 doi: 10.1103/PhysRevLett.93.023903 – ident: S1431927619000497_ref200 doi: 10.1016/0304-3991(94)90039-6 – ident: S1431927619000497_ref4 doi: 10.1016/j.ultramic.2018.06.003 – ident: S1431927619000497_ref75 doi: 10.1063/1.3225103 – ident: S1431927619000497_ref33 doi: 10.1016/0968-4328(95)00054-8 – ident: S1431927619000497_ref110 doi: 10.1016/j.ultramic.2018.09.012 – ident: S1431927619000497_ref158 doi: 10.1016/0022-3093(79)90033-4 – ident: S1431927619000497_ref157 doi: 10.1016/j.ultramic.2014.09.013 – ident: S1431927619000497_ref95 doi: 10.1017/S1431927618001320 – ident: S1431927619000497_ref57 doi: 10.1063/1.5025686 – ident: S1431927619000497_ref16 doi: 10.1063/1.4935238 – ident: S1431927619000497_ref30 doi: 10.1103/PhysRevB.89.064101 – ident: S1431927619000497_ref230 doi: 10.1016/j.ultramic.2012.10.002 – ident: S1431927619000497_ref12 doi: 10.1103/PhysRevLett.121.266102 – ident: S1431927619000497_ref185 doi: 10.1109/IPFA.2009.5232604 – ident: S1431927619000497_ref226 doi: 10.1017/S1431927607074004 – ident: S1431927619000497_ref118 doi: 10.1017/S1431927615006881 – ident: S1431927619000497_ref146 doi: 10.1186/s40679-017-0046-1 – ident: S1431927619000497_ref80 doi: 10.1107/S0567739469001045 – ident: S1431927619000497_ref139 doi: 10.1103/PhysRevB.98.121408 – ident: S1431927619000497_ref175 doi: 10.1088/1748-0221/11/04/P04006 – ident: S1431927619000497_ref223 doi: 10.1002/crat.201100125 – ident: S1431927619000497_ref27 doi: 10.1107/S0365110X57002194 – ident: S1431927619000497_ref41 doi: 10.1107/S0909049505028529 – ident: S1431927619000497_ref124 doi: 10.1364/JOSAA.29.001606 – volume: 5 start-page: 23 year: 1928 ident: S1431927619000497_ref99 article-title: Elektronenbeugung an glimmerplättchen publication-title: Jpn J Phys – ident: S1431927619000497_ref10 doi: 10.1111/jmi.12007 – ident: S1431927619000497_ref28 doi: 10.1002/jemt.1060110209 – ident: S1431927619000497_ref214 doi: 10.1016/j.ultramic.2014.10.013 – ident: S1431927619000497_ref102 doi: 10.1016/j.ultramic.2010.12.014 – ident: S1431927619000497_ref31 doi: 10.1017/S1551929512000818 – ident: S1431927619000497_ref3 doi: 10.1016/0168-9002(89)91111-X – ident: S1431927619000497_ref122 doi: 10.1016/j.ultramic.2018.09.010 – ident: S1431927619000497_ref21 doi: 10.1063/1.1774275 – ident: S1431927619000497_ref187 doi: 10.1007/978-1-4757-5581-7_15 – ident: S1431927619000497_ref44 doi: 10.1038/s41467-019-08904-9 – volume: 339 start-page: 521 year: 1992 ident: S1431927619000497_ref166 article-title: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution publication-title: Phil Trans R Soc London, Ser A doi: 10.1098/rsta.1992.0050 – ident: S1431927619000497_ref186 doi: 10.1107/S010876739700874X – ident: S1431927619000497_ref127 doi: 10.1107/S2052252514022283 – ident: S1431927619000497_ref23 doi: 10.1021/bk-1984-0248.ch017 – ident: S1431927619000497_ref132 doi: 10.1007/BF01326780 – ident: S1431927619000497_ref70 doi: 10.1016/0304-3991(94)90091-4 – ident: S1431927619000497_ref165 – ident: S1431927619000497_ref168 doi: 10.1016/0304-3991(93)90105-7 – ident: S1431927619000497_ref111 doi: 10.1038/nmeth.2472 – ident: S1431927619000497_ref131 doi: 10.1038/ncomms16070 – ident: S1431927619000497_ref45 doi: 10.1103/PhysRevLett.121.056101 – ident: S1431927619000497_ref6 doi: 10.1063/1.3224886 – ident: S1431927619000497_ref1 doi: 10.1107/S0108767399014798 – ident: S1431927619000497_ref39 doi: 10.1016/j.micron.2019.01.005 – ident: S1431927619000497_ref22 doi: 10.1016/j.micron.2015.09.001 – ident: S1431927619000497_ref129 doi: 10.1016/j.ultramic.2005.03.006 – ident: S1431927619000497_ref155 doi: 10.1038/s41598-017-07488-y – ident: S1431927619000497_ref220 doi: 10.1088/1361-6463/aabc47 – ident: S1431927619000497_ref225 doi: 10.1017/S1431927603440427 – ident: S1431927619000497_ref98 doi: 10.1080/01418618608242884 – ident: S1431927619000497_ref74 doi: 10.1103/PhysRevApplied.10.061001 – ident: S1431927619000497_ref145 doi: 10.1016/j.ultramic.2017.03.010 – ident: S1431927619000497_ref141 doi: 10.1038/374630a0 – ident: S1431927619000497_ref89 doi: 10.1557/mrs.2014.4 – ident: S1431927619000497_ref201 doi: 10.1016/S0304-3991(02)00155-9 – ident: S1431927619000497_ref203 doi: 10.1103/PhysRevLett.117.015501 – ident: S1431927619000497_ref87 doi: 10.1103/PhysRevLett.108.195505 – ident: S1431927619000497_ref104 doi: 10.1016/0304-3991(86)90214-7 – ident: S1431927619000497_ref15 doi: 10.1021/cm201783z – ident: S1431927619000497_ref143 doi: 10.1017/S1431927616003500 – ident: S1431927619000497_ref231 doi: 10.1103/PhysRevLett.112.166101 – ident: S1431927619000497_ref178 doi: 10.4028/www.scientific.net/MSF.273-275.215 – ident: S1431927619000497_ref190 doi: 10.1103/PhysRevLett.103.097202 – ident: S1431927619000497_ref227 doi: 10.1021/acs.nanolett.5b02483 – ident: S1431927619000497_ref17 doi: 10.1017/S1431927617009576 – ident: S1431927619000497_ref112 doi: 10.1038/s41524-018-0139-y – ident: S1431927619000497_ref114 doi: 10.1103/PhysRevLett.110.205505 – ident: S1431927619000497_ref192 doi: 10.1017/S1431927615015664 – ident: S1431927619000497_ref136 doi: 10.1038/ncomms6653 – ident: S1431927619000497_ref73 doi: 10.1021/acs.nanolett.8b00952 – ident: S1431927619000497_ref154 doi: 10.1016/j.scriptamat.2017.11.005 – ident: S1431927619000497_ref221 doi: 10.1021/acs.nanolett.8b03166 – ident: S1431927619000497_ref233 doi: 10.1016/0304-3991(92)90110-6 – ident: S1431927619000497_ref140 doi: 10.1016/j.ultramic.2018.12.018 – ident: S1431927619000497_ref53 doi: 10.1063/1.1506010 – ident: S1431927619000497_ref126 doi: 10.1109/4.551910 – ident: S1431927619000497_ref153 doi: 10.1016/j.ultramic.2016.12.021 – ident: S1431927619000497_ref149 doi: 10.1063/1.4975932 – ident: S1431927619000497_ref65 doi: 10.1007/s11837-018-2854-8 – ident: S1431927619000497_ref196 doi: 10.1016/j.ultramic.2012.06.004 – ident: S1431927619000497_ref121 doi: 10.1016/j.ultramic.2015.06.011 – ident: S1431927619000497_ref180 doi: 10.1021/nn1023126 – ident: S1431927619000497_ref211 doi: 10.1016/j.ultramic.2018.03.004 – ident: S1431927619000497_ref218 doi: 10.1038/ncomms5155 – ident: S1431927619000497_ref72 doi: 10.1016/0304-3991(95)00007-N – ident: S1431927619000497_ref210 doi: 10.1017/S1431927611000055 – ident: S1431927619000497_ref20 doi: 10.1016/j.ultramic.2016.06.009 – ident: S1431927619000497_ref19 doi: 10.1109/20.104427 – ident: S1431927619000497_ref199 doi: 10.1063/1.4901435 – ident: S1431927619000497_ref135 doi: 10.1063/1.4767655 – ident: S1431927619000497_ref92 doi: 10.1016/j.matdes.2016.10.015 – ident: S1431927619000497_ref123 doi: 10.1016/j.ultramic.2009.05.012 – volume: 354 start-page: 197 year: 1977 ident: S1431927619000497_ref97 article-title: Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination publication-title: Proc R Soc London, Ser A doi: 10.1098/rspa.1977.0064 – ident: S1431927619000497_ref5 doi: 10.1016/0304-3991(89)90052-1 – ident: S1431927619000497_ref232 doi: 10.1038/nature11563 – ident: S1431927619000497_ref217 doi: 10.1016/j.ultramic.2017.02.006 – ident: S1431927619000497_ref76 doi: 10.1016/0304-3991(82)90225-X – ident: S1431927619000497_ref13 doi: 10.1016/j.ultramic.2018.12.010 – ident: S1431927619000497_ref26 doi: 10.1016/S0304-3991(03)00003-2 – ident: S1431927619000497_ref34 doi: 10.1016/j.matlet.2005.09.052 – volume-title: Le Microscope à Contraste de Phase et le Microscope Interférentiel year: 1954 ident: S1431927619000497_ref52 – ident: S1431927619000497_ref116 doi: 10.1021/acs.nanolett.8b02718 – ident: S1431927619000497_ref173 doi: 10.1063/1.4829154 – ident: S1431927619000497_ref81 doi: 10.1107/S0567739469001069 – ident: S1431927619000497_ref18 doi: 10.1016/j.ultramic.2008.11.023 – ident: S1431927619000497_ref49 doi: 10.1016/j.ultramic.2010.04.004 – ident: S1431927619000497_ref113 doi: 10.1063/1.3040323 – ident: S1431927619000497_ref184 doi: 10.1103/PhysRevLett.121.146101 – ident: S1431927619000497_ref106 doi: 10.1107/S0108767311020708 – ident: S1431927619000497_ref197 doi: 10.1016/j.ultramic.2011.01.035 – ident: S1431927619000497_ref37 doi: 10.1107/S0108767311051592 – ident: S1431927619000497_ref159 doi: 10.1186/s40679-017-0048-z – ident: S1431927619000497_ref58 doi: 10.1038/s41467-017-00150-1 – ident: S1431927619000497_ref151 doi: 10.1063/1.4922994 – ident: S1431927619000497_ref78 doi: 10.1016/j.ultramic.2019.02.023 – ident: S1431927619000497_ref68 doi: 10.1016/j.ultramic.2018.12.003 – ident: S1431927619000497_ref51 doi: 10.1103/PhysRevB.82.104103 – ident: S1431927619000497_ref177 doi: 10.1155/TSM.13.15 – ident: S1431927619000497_ref115 doi: 10.1107/S2053273315011845 – ident: S1431927619000497_ref7 doi: 10.1002/andp.19283921704 – volume: 26 start-page: 5 year: 2012 ident: S1431927619000497_ref103 article-title: Quantitative four-dimensional electron diffraction in the TEM publication-title: Microsc Anal – ident: S1431927619000497_ref228 doi: 10.1063/1.2362978 – ident: S1431927619000497_ref108 doi: 10.1103/PhysRevB.79.214110 – ident: S1431927619000497_ref36 doi: 10.1063/1.5017537 – ident: S1431927619000497_ref107 doi: 10.1016/j.ultramic.2015.10.011 – ident: S1431927619000497_ref91 doi: 10.1016/j.ultramic.2018.09.005 – ident: S1431927619000497_ref63 doi: 10.1016/j.ultramic.2018.03.013 – volume: 41 start-page: 452 year: 1974 ident: S1431927619000497_ref32 article-title: Differential phase contrast in a STEM publication-title: Optik – volume: 39 start-page: 416 year: 1974 ident: S1431927619000497_ref170 article-title: Phase contrast in scanning transmission electron microscopy publication-title: Optik – volume: 54 start-page: 83 year: 1979 ident: S1431927619000497_ref202 article-title: Linear imaging of strong phase objects using asymmetrical detectors in stem publication-title: Optik – ident: S1431927619000497_ref55 doi: 10.1038/s42003-018-0263-8 – ident: S1431927619000497_ref100 doi: 10.1016/j.ultramic.2011.01.029 – ident: S1431927619000497_ref8 doi: 10.1016/j.ultramic.2010.05.001 – ident: S1431927619000497_ref47 doi: 10.1149/1.3485694 – ident: S1431927619000497_ref117 doi: 10.1103/PhysRevA.91.023805 – ident: S1431927619000497_ref56 doi: 10.1016/j.ultramic.2015.03.015 – ident: S1431927619000497_ref11 doi: 10.1103/PhysRevB.93.134116 – ident: S1431927619000497_ref216 doi: 10.1038/ncomms12532 – ident: S1431927619000497_ref134 doi: 10.1017/S1431927612001274 – ident: S1431927619000497_ref64 doi: 10.1002/admi.201701258 – ident: S1431927619000497_ref179 doi: 10.1016/j.ultramic.2018.05.003 – ident: S1431927619000497_ref40 doi: 10.1038/ncomms8267 – ident: S1431927619000497_ref148 doi: 10.1038/ncomms10719 – ident: S1431927619000497_ref62 doi: 10.1016/j.ultramic.2017.04.015 – ident: S1431927619000497_ref9 doi: 10.1007/s10853-006-1302-2 – ident: S1431927619000497_ref172 doi: 10.1080/21663831.2018.1436609 – ident: S1431927619000497_ref69 doi: 10.1186/s40679-018-0059-4 – ident: S1431927619000497_ref164 doi: 10.1016/j.matdes.2016.06.001 – ident: S1431927619000497_ref169 doi: 10.1364/AO.3.000437 – ident: S1431927619000497_ref125 doi: 10.1016/j.ultramic.2014.08.002 – ident: S1431927619000497_ref209 doi: 10.1109/IPFA.2015.7224366 – ident: S1431927619000497_ref198 doi: 10.1016/j.apsusc.2003.11.058 – ident: S1431927619000497_ref67 doi: 10.1063/1.4989822 – ident: S1431927619000497_ref42 doi: 10.1103/PhysRevLett.106.160802 – ident: S1431927619000497_ref144 – ident: S1431927619000497_ref109 doi: 10.1016/j.ultramic.2009.10.001 – ident: S1431927619000497_ref204 doi: 10.1038/s41598-017-02778-x – ident: S1431927619000497_ref208 doi: 10.1063/1.5066111 – ident: S1431927619000497_ref181 doi: 10.1038/nphys2337 – ident: S1431927619000497_ref101 doi: 10.1016/j.ultramic.2012.12.019 – volume: 50 start-page: 87 year: 2005 ident: S1431927619000497_ref161 article-title: Rapid spot diffraction patterns identification through template matching publication-title: Arch Metall Mater – ident: S1431927619000497_ref43 doi: 10.1016/0304-3991(93)90019-T – ident: S1431927619000497_ref193 doi: 10.1038/nature11806 – ident: S1431927619000497_ref163 doi: 10.1524/zkri.2010.1205 – year: 2018 ident: S1431927619000497_ref83 article-title: Metal-organic framework crystal-glass composites publication-title: ChemRxiv – ident: S1431927619000497_ref176 doi: 10.1017/S1431927608081348 – ident: S1431927619000497_ref86 doi: 10.1038/ncomms1733 – volume: 2 start-page: 433 year: 1979 ident: S1431927619000497_ref29 article-title: Innovative imaging and microdiffraction in stem publication-title: Ultramicroscopy – ident: S1431927619000497_ref147 doi: 10.1017/S1431927614002037 – ident: S1431927619000497_ref35 – ident: S1431927619000497_ref229 doi: 10.1126/sciadv.1602427 – ident: S1431927619000497_ref189 doi: 10.1016/j.matchar.2018.05.031 – volume: 133 start-page: 109 year: 2013 ident: S1431927619000497_ref119 article-title: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.07.002 – ident: S1431927619000497_ref156 doi: 10.1007/978-1-4419-7200-2 – ident: S1431927619000497_ref130 doi: 10.1016/S0304-3991(03)00094-9 – ident: S1431927619000497_ref93 doi: 10.1016/j.ultramic.2008.12.012 – ident: S1431927619000497_ref77 doi: 10.1002/bbpc.19700741112 – ident: S1431927619000497_ref105 doi: 10.1016/j.ultramic.2016.03.006 – ident: S1431927619000497_ref212 doi: 10.1038/s41586-018-0855-y – ident: S1431927619000497_ref24 doi: 10.1002/jemt.1060030105 – ident: S1431927619000497_ref207 doi: 10.1088/0034-4885/59/3/003 – ident: S1431927619000497_ref133 doi: 10.1016/j.ultramic.2013.08.008 – ident: S1431927619000497_ref54 doi: 10.1016/S0304-3991(02)00435-7 – ident: S1431927619000497_ref142 doi: 10.1063/1.2356699 – ident: S1431927619000497_ref137 doi: 10.1063/1.4927837 – ident: S1431927619000497_ref219 doi: 10.1063/1.5051380 – ident: S1431927619000497_ref82 doi: 10.1107/S0567739469001057 – ident: S1431927619000497_ref174 doi: 10.1016/0304-3991(93)90089-G – ident: S1431927619000497_ref90 doi: 10.1063/1.4868124 – ident: S1431927619000497_ref206 doi: 10.1017/S1431927607075204 – ident: S1431927619000497_ref94 doi: 10.1038/s41586-018-0298-5 – ident: S1431927619000497_ref60 doi: 10.1107/S056773947400057X |
| SSID | ssj0003076 |
| Score | 2.6741018 |
| SecondaryResourceType | review_article |
| Snippet | Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent... |
| SourceID | proquest pubmed crossref cambridge |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 563 |
| SubjectTerms | Computer applications Datasets Diffraction Experiments Imaging Mapping Materials Applications Names Nanodiffraction Phase contrast Scanning electron microscopy Scanning transmission electron microscopy Sensors Spectroscopy Transmission electron microscopy |
| SummonAdditionalLinks | – databaseName: Cambridge Journals Open Access dbid: IKXGN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS-QwFH-46oIXdb90_FiysAd32TBtmmkSb6IzuyIOwijMrbRJCsLaSq2CF_92X5pOXRWFPXhtk7R5ecn7te_jB_BdiDQQWkZ0gACfcs0tVTKMqbGhMANpc5N5sgkxHsvpVJ3MwXSWC-PCKrsaB40nv-FHu_TlT_vnxsfQ2Ko_QUuP8MR9hjc4V_TdT8t-uwRJK_h3sIAIhuGWXTg8mv4ed6c06rbPPIpC6kaZeTxdOemnI_9bd-Gx_XoBlDbGabTydtNaheUWsJI9f-UDzNniI7z3FJa3n-BuhA3ogeMI8PU9yER7GiTSmEFUI3edDFu6HXLsIgBdLswt2eEHdHI6PP6xS0ZVefHQE4_80jG3VD7rgtQlOandQe3La5O0MMSn3nyGs9HwdP8PbTkdqOaS1TRludvzhiPQ0cKmLOAmNyrWUmuEQoMsjwMTSJVZBA5SZtYRaIXKCJ5bYSSLvsB8URZ2HYiJszzlMjXKeXctyxhP0Q4rK0IbcxX24Fcn8qSV31Xio9pE8kzOPQhmC5votj66o-n4-1qXn12XS18c5LXGWzNteXgbFg1QEbGV6sG37jYujXPbpIUtr7ENKjBiCKbiHqx5LeuehuAcpcajjf-b6yYsIfBTPuRtC-br6tpuw6K-qc-vqq_tVrkHuVIdkg priority: 102 providerName: Cambridge University Press |
| Title | Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond |
| URI | https://www.cambridge.org/core/product/identifier/S1431927619000497/type/journal_article https://www.ncbi.nlm.nih.gov/pubmed/31084643 https://www.proquest.com/docview/2353072769 https://www.proquest.com/docview/2231847296 |
| Volume | 25 |
| WOSCitedRecordID | wos000474798800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1435-8115 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: P5Z dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1435-8115 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: M7P dateStart: 20020201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1435-8115 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: 7X7 dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1435-8115 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: 7RV dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1435-8115 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: BENPR dateStart: 20020201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8OwVf_P5YPZcIPqgYbNO0SXwR9XZV5JZyd8riy9ImKQjanrs94V78251pul1F3BdfUkgzbelMZn4kk_kBPFKqiJTVCU8R4HNppedGxxl3PlYu1b5yZSCbULOZns9N3i-4rfq0yrVP7By1ayytkT8XSYrmKFRmXp5-58QaRburPYXGDuxRlQTRpe7lgydGgXC6KIm5QdH1riaVjKZO6otNh5LV77UV_oxR_wCeXQCaXv3fT78GV3royV4FW7kOF3x9Ay4FMsrzm_BzigP4AVX7D5U62LENhEasC2hoENTPJj1xDjukXD461XLOHssDfnwyOXzygk2XzbeNJDrvhjhYluH8BGsblrfkckOhbFbUjoVDNLfg43Ry8uYd79kZuJVatLwQFc1eJxGyWOULEUlXOZNZbS2CmrSssshF2pQeIYDWpScqrNg4JSuvnBbJbditm9rfBeaysiqkLpyhfVovSiELjKjGq9hn0sQjeDboZtHPsdUi5KepxV-qHEG0Vt_C9pXOiXDj6zaRp4PIaSjzsW3w_lrPm6_ZKHkED4fbqBragClq35zhGATTiAaEyUZwJ9jS8DaE2fjXZHJv-8Pvw2WEbCYkq-3Dbrs88w_gov3Rflktx7Cjjj5RO1ddq8ew93oyy4_w-v7D_O1s3E0QbPP08y_HSw4Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAWIv3DcKA4wEEqBZS1wntpEQQrTVpq1VpRVp4iVLbEdCgmS0Gagv_CR-I-fESQpC9G0PvDp24jifzznOuXyEPJMyDaRRfRaBgc-EEY5pFcbMulDaSLncZp5sQk4m6vRUTzfIzzYXBsMqW5lYC2pbGvxHvs_7EcCRy1i_Pf_KkDUKvasthYaHxZFbfocj2-LN4QC-73POR8PZ-wPWsAowIxSvWMpzRJ0VoGqNdCkPhM2tjo0yBpRxlOVxYAOlMweqS6nMIYVTqK0UuZNWYaEDEPlXhOAB7qJp9LGT_DBBn83UD5mGqbZeVCxRjY3YFuraKpe_13L4Uyf-w9CtFd7o5v-2VLfIjca0pu_8XrhNNlxxh1zzZJvLu-THCDqwAbIZ-Eok9MR4wiZaK2wAPLbTYUMMRMcYq4hZO0v6QgzYyWw4fvmajubll9VIUE4lcszMfX4IrUo6rVCl-ELgNC0s9UlC98iHS3n5bbJZlIW7T6iNszwVKrUa_dCOZ1ykYDFoJ0MXCx32yF6HhaSRIYvEx9_J5C_o9EjQwiUxTSV3JBT5vG7Iq27IuS9jsq7zbour1WxWoOqRp91l-DToYEoLV15AHzgsgLXDddwjOx673dPgGAGrJvoP1t_8Cbl-MBsfJ8eHk6OHZAvMU-0D83bJZjW_cI_IVfOt-rSYP663HiVnlw3gX1H-Y4E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-Dimensional+Scanning+Transmission+Electron+Microscopy+%284D-STEM%29%3A+From+Scanning+Nanodiffraction+to+Ptychography+and+Beyond&rft.jtitle=Microscopy+and+microanalysis&rft.au=Ophus%2C+Colin&rft.date=2019-06-01&rft.pub=Oxford+University+Press&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=25&rft.issue=3&rft.spage=563&rft.epage=582&rft_id=info:doi/10.1017%2FS1431927619000497 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon |