Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system

•Optimization of large-scale hydropower system in the Yangtze River basin.•Improved decomposition–coordination and discrete differential dynamic programming.•Generating initial solution randomly to reduce generation time.•Proposing relative coefficient for more power generation.•Proposing adaptive b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy conversion and management Ročník 84; s. 363 - 373
Hlavní autoři: Li, Chunlong, Zhou, Jianzhong, Ouyang, Shuo, Ding, Xiaoling, Chen, Lu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.08.2014
Elsevier
Témata:
ISSN:0196-8904, 1879-2227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Optimization of large-scale hydropower system in the Yangtze River basin.•Improved decomposition–coordination and discrete differential dynamic programming.•Generating initial solution randomly to reduce generation time.•Proposing relative coefficient for more power generation.•Proposing adaptive bias corridor technology to enhance convergence speed. With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem.
AbstractList With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition-coordination and discrete differential dynamic programming (IDC-DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC-DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem.
•Optimization of large-scale hydropower system in the Yangtze River basin.•Improved decomposition–coordination and discrete differential dynamic programming.•Generating initial solution randomly to reduce generation time.•Proposing relative coefficient for more power generation.•Proposing adaptive bias corridor technology to enhance convergence speed. With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem.
Author Zhou, Jianzhong
Chen, Lu
Ouyang, Shuo
Li, Chunlong
Ding, Xiaoling
Author_xml – sequence: 1
  givenname: Chunlong
  surname: Li
  fullname: Li, Chunlong
– sequence: 2
  givenname: Jianzhong
  surname: Zhou
  fullname: Zhou, Jianzhong
  email: jz.zhou@mail.hust.edu.cn
– sequence: 3
  givenname: Shuo
  surname: Ouyang
  fullname: Ouyang, Shuo
– sequence: 4
  givenname: Xiaoling
  surname: Ding
  fullname: Ding, Xiaoling
– sequence: 5
  givenname: Lu
  surname: Chen
  fullname: Chen, Lu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28525188$$DView record in Pascal Francis
BookMark eNqFkcGKFDEQhoOs4OzqK0hfBC89JulOOgEPyqLrwoIXPYd0ujJm6CRtkl0ZT158At9wn8S0s3vxMlCQBL7_r1T95-gsxAAIvSR4SzDhb_ZbCCYGr8OWYtJvcS3OnqANEYNsKaXDGdpgInkrJO6fofOc9xjjjmG-Qb-v_ZLiHUzNBCb6JWZXXAz3v_6YGNPkgl6fjQ4VcNkkKFAv1kKCUJyem-kQtHemqS67pL13YdfYmJq4FOfdz6M82mbWaQdtNnqG5tthSnGJPyA1-ZAL-OfoqdVzhhcP5wX6-vHDl8tP7c3nq-vL9zet6QUtrSaCSdGNHKS1VEvdc1pHgtECYbqXHRGT7pnoNJCOdmzkZphk348CG9qTsbtAr4--9bffbyEX5etQMM86QLzNihLCZUelICdRwodBEiooPo0yPhAsO7Girx5Qva7CJh2My2pJzut0UFQwyogQlXt75EyKOSewyrjyb5claTcrgtWavdqrx-zVmr3CtTircv6f_LHDSeG7oxBqCncOksrGVRIml8AUNUV3yuIvWazTSQ
CODEN ECMADL
CitedBy_id crossref_primary_10_1016_j_jclepro_2022_133271
crossref_primary_10_1016_j_jhydrol_2019_124425
crossref_primary_10_1016_j_jhydrol_2020_125013
crossref_primary_10_3390_en13030634
crossref_primary_10_1061__ASCE_WR_1943_5452_0001146
crossref_primary_10_1016_j_jclepro_2017_09_257
crossref_primary_10_1155_2018_8767158
crossref_primary_10_1016_j_jclepro_2019_119035
crossref_primary_10_1016_j_enconman_2022_115541
crossref_primary_10_1049_rpg2_12098
crossref_primary_10_1016_j_asoc_2019_105715
crossref_primary_10_3390_w15040716
crossref_primary_10_1016_j_asoc_2021_107315
crossref_primary_10_1016_j_ejor_2017_02_015
crossref_primary_10_1061__ASCE_WR_1943_5452_0000882
crossref_primary_10_1007_s12204_021_2270_z
crossref_primary_10_1016_j_apenergy_2019_03_064
crossref_primary_10_1177_1077546316655912
crossref_primary_10_3390_su17031018
crossref_primary_10_1155_2019_1534598
crossref_primary_10_1016_j_enconman_2023_117827
crossref_primary_10_2166_nh_2023_181
crossref_primary_10_1016_j_seta_2021_101832
crossref_primary_10_1016_j_energy_2019_03_117
crossref_primary_10_1016_j_energy_2018_11_083
crossref_primary_10_1007_s11269_023_03658_y
crossref_primary_10_1155_2016_2518734
crossref_primary_10_3390_en16176368
crossref_primary_10_3390_w15091732
crossref_primary_10_1016_j_scitotenv_2019_04_430
crossref_primary_10_4018_IJSI_2019010102
crossref_primary_10_1016_j_enconman_2015_08_057
crossref_primary_10_1016_j_jhydrol_2023_129803
crossref_primary_10_1016_j_energy_2017_06_062
crossref_primary_10_1016_j_energy_2024_134172
crossref_primary_10_1016_j_enconman_2014_10_048
crossref_primary_10_1088_1748_9326_abf60c
crossref_primary_10_1080_15567036_2018_1555626
crossref_primary_10_2166_ws_2017_070
crossref_primary_10_1016_j_energy_2019_116827
crossref_primary_10_1061__ASCE_WR_1943_5452_0001288
crossref_primary_10_1007_s11269_025_04116_7
crossref_primary_10_1016_j_enconman_2014_11_024
crossref_primary_10_1007_s11269_024_03863_3
crossref_primary_10_1007_s11269_016_1407_6
crossref_primary_10_1007_s11269_015_0934_x
crossref_primary_10_1016_j_enconman_2015_02_055
crossref_primary_10_1016_j_enconman_2015_08_009
crossref_primary_10_1016_j_energy_2017_03_069
crossref_primary_10_1061__ASCE_WR_1943_5452_0000622
crossref_primary_10_1007_s11269_018_2083_5
crossref_primary_10_1016_j_asoc_2025_112917
crossref_primary_10_1051_matecconf_201824601058
crossref_primary_10_1088_1757_899X_794_1_012002
crossref_primary_10_1016_j_energy_2021_119960
crossref_primary_10_1016_j_renene_2023_119353
crossref_primary_10_1016_j_energy_2023_129834
crossref_primary_10_1016_j_jclepro_2018_04_134
crossref_primary_10_1155_2022_8463358
crossref_primary_10_3390_w11040843
crossref_primary_10_1061__ASCE_WR_1943_5452_0001194
crossref_primary_10_1016_j_renene_2019_01_059
crossref_primary_10_1016_j_renene_2023_04_069
crossref_primary_10_1051_e3sconf_201912405056
crossref_primary_10_1016_j_jhydrol_2017_09_029
crossref_primary_10_3390_en18184977
crossref_primary_10_3390_e17096129
crossref_primary_10_1016_j_jclepro_2024_141784
crossref_primary_10_1016_j_jclepro_2021_128047
crossref_primary_10_1016_j_jhydrol_2023_130019
crossref_primary_10_1016_j_energy_2022_123784
crossref_primary_10_3390_en15072466
crossref_primary_10_1007_s42524_023_0271_3
crossref_primary_10_2166_ws_2022_424
crossref_primary_10_1016_j_jhydrol_2021_126357
crossref_primary_10_1051_matecconf_201824601104
crossref_primary_10_1007_s11269_020_02748_5
crossref_primary_10_1016_j_enconman_2019_01_028
crossref_primary_10_1016_j_enconman_2017_02_060
crossref_primary_10_3390_w9040293
Cites_doi 10.1061/(ASCE)WR.1943-5452.0000149
10.1016/j.ijepes.2010.08.004
10.1029/WR021i012p01797
10.1007/s11269-009-9419-0
10.1016/j.enconman.2009.10.024
10.1109/59.982207
10.1016/j.enconman.2010.06.038
10.1016/j.jhydrol.2009.07.026
10.1061/(ASCE)WR.1943-5452.0000142
10.1016/j.proeng.2012.01.707
10.1016/j.enbuild.2009.10.027
10.1061/(ASCE)0733-9496(2003)129:3(178)
10.1007/BF01580431
10.1111/j.1752-1688.2011.00628.x
10.1016/j.enconman.2005.01.002
10.1007/s11269-006-9092-5
10.1061/(ASCE)0733-9496(2001)127:6(363)
10.1007/s11269-010-9755-0
10.1016/j.cirp.2010.03.031
10.1007/s10333-005-0070-y
10.1016/j.enconman.2013.07.047
10.1016/j.apenergy.2011.12.086
10.1061/(ASCE)WR.1943-5452.0000174
10.1061/(ASCE)0733-9496(1996)122:4(287)
10.1016/j.enconman.2009.10.036
10.1016/j.enconman.2008.08.022
10.1016/j.enconman.2010.06.029
10.1109/59.871743
10.1061/(ASCE)0733-9496(2003)129:5(388)
10.2166/wst.2013.528
10.1061/(ASCE)0733-9496(2004)130:3(198)
10.1029/WR007i002p00273
10.1016/j.ijepes.2013.02.035
10.1029/WR011i005p00621
10.1016/j.enconman.2009.07.020
10.1016/j.energy.2009.12.025
10.1029/WR018i004p00673
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
7S9
L.6
DOI 10.1016/j.enconman.2014.04.065
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database
Technology Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2227
EndPage 373
ExternalDocumentID 28525188
10_1016_j_enconman_2014_04_065
S0196890414003690
GeographicLocations Yangtze River
GeographicLocations_xml – name: Yangtze River
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7TB
8FD
FR3
7S9
L.6
ID FETCH-LOGICAL-c482t-a185983b6e9ff2a9a462904ebfe15a49318da4583ae13235b6c7d944b80c241b3
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338601100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sat Sep 27 22:14:56 EDT 2025
Thu Oct 02 11:32:47 EDT 2025
Sun Sep 28 00:14:09 EDT 2025
Wed Apr 02 07:20:27 EDT 2025
Sat Nov 29 02:31:51 EST 2025
Tue Nov 18 20:56:34 EST 2025
Fri Feb 23 02:20:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decomposition–coordination
Discrete differential dynamic programming
Long-term optimization
The Yangtze River basin
Improvement strategies
Large-scale hydropower system
Hydroelectric power plant
Hydraulic power
Improvement
Electric power production
Dynamic programming
Decomposition-coordination
Optimization
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-a185983b6e9ff2a9a462904ebfe15a49318da4583ae13235b6c7d944b80c241b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567109380
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_2116932981
proquest_miscellaneous_1677912820
proquest_miscellaneous_1567109380
pascalfrancis_primary_28525188
crossref_citationtrail_10_1016_j_enconman_2014_04_065
crossref_primary_10_1016_j_enconman_2014_04_065
elsevier_sciencedirect_doi_10_1016_j_enconman_2014_04_065
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy conversion and management
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lu, Sun, Lu (b0140) 2010; 51
Jalali, Afshar, Marino (b0115) 2007; 21
Laud, Ferreira (b0150) 1996; 122
Qin, Zhou, Lu, Wang, Zhang (b0130) 2010; 51
Cinar, Kayakutlu, Daim (b0105) 2010; 35
Wang, Zhou, Qin, Lu (b0145) 2010; 51
Kaihara, Fujii, Tsujibe, Nonaka (b0170) 2010; 59
Howson, Sancho (b0080) 1975; 8
Yi, Labadie, Stitt (b0100) 2003; 129
Heidari, Chow, Kokotovic (b0185) 1971; 7
Mandal, Chakraborty (b0125) 2009; 50
Marano, Rizzo, Tiano (b0075) 2012
Cheng, Shen, Wu (b0090) 2012; 138
Cheng, Liao, Tang, Zhao (b0020) 2009; 50
Yoo (b0055) 2009; 376
Wang, Zhang (b0155) 2012; 138
Li, Zhang, Ji, Wang, Lund (b0205) 2013; 68
Yao, Chen (b0175) 2010; 42
Janejira, Ichiro, Masayuki, Yoshinobu (b0195) 2005; 3
Hincal, Altan-Sakarya, Ger (b0110) 2011; 25
Zambon, Barros, Lopes (b0030) 2012; 138
Chow, Maidment, Tauxe (b0190) 1975; 11
Wang, Yuan, Zhang (b0015) 2004; 130
Barros, Tsai, Yang (b0010) 2003; 129
Deep, Singh, Kansal, Mohan (b0120) 2009; 23
Arce, Ohishi, Soares (b0070) 2002; 17
Shawwash, Siu, Russell (b0050) 2000; 15
Cheng, Shen, Wu, Chau (b0085) 2012; 48
Pérez-Díaz, Wilhelmi, Arévalo (b0035) 2010; 51
Zheng, Yang, Hao (b0160) 2012; 28
Jiang, Etorre (b0135) 2005; 46
Cheng, Chau, Wu, Shen (b0210) 2011
Yeh (b0005) 1985; 21
Fawal, Georges, Bornard (b0165) 1998
Yan, Wen, Li, Chung, Wong (b0180) 2011; 33
Cai, Mckinney, Lasdon (b0060) 2002; 127
Zhuge YS, Xie PP. The Application of DDDP method to optimal operation for cascade reservoirs based on state transformation matrix. In: International conference on computational and information sciences; 2010.
Zhang, Zhou, Zhang, Liao, Wang (b0025) 2012
Afshar (b0045) 2013; 51
Mo, Lu, Wang, Zhou (b0040) 2013; 76
Yakowitz (b0065) 1982; 18
Giles, Wunderlich (b0095) 1981; 107
Howson (10.1016/j.enconman.2014.04.065_b0080) 1975; 8
Wang (10.1016/j.enconman.2014.04.065_b0145) 2010; 51
Jalali (10.1016/j.enconman.2014.04.065_b0115) 2007; 21
Wang (10.1016/j.enconman.2014.04.065_b0015) 2004; 130
Cai (10.1016/j.enconman.2014.04.065_b0060) 2002; 127
Fawal (10.1016/j.enconman.2014.04.065_b0165) 1998
Kaihara (10.1016/j.enconman.2014.04.065_b0170) 2010; 59
Zambon (10.1016/j.enconman.2014.04.065_b0030) 2012; 138
Deep (10.1016/j.enconman.2014.04.065_b0120) 2009; 23
Yakowitz (10.1016/j.enconman.2014.04.065_b0065) 1982; 18
Pérez-Díaz (10.1016/j.enconman.2014.04.065_b0035) 2010; 51
Arce (10.1016/j.enconman.2014.04.065_b0070) 2002; 17
Cheng (10.1016/j.enconman.2014.04.065_b0085) 2012; 48
Cheng (10.1016/j.enconman.2014.04.065_b0090) 2012; 138
Hincal (10.1016/j.enconman.2014.04.065_b0110) 2011; 25
Zhang (10.1016/j.enconman.2014.04.065_b0025) 2012
Zheng (10.1016/j.enconman.2014.04.065_b0160) 2012; 28
Li (10.1016/j.enconman.2014.04.065_b0205) 2013; 68
Yi (10.1016/j.enconman.2014.04.065_b0100) 2003; 129
Cheng (10.1016/j.enconman.2014.04.065_b0210) 2011
Yeh (10.1016/j.enconman.2014.04.065_b0005) 1985; 21
Yoo (10.1016/j.enconman.2014.04.065_b0055) 2009; 376
10.1016/j.enconman.2014.04.065_b0200
Janejira (10.1016/j.enconman.2014.04.065_b0195) 2005; 3
Marano (10.1016/j.enconman.2014.04.065_b0075) 2012
Cheng (10.1016/j.enconman.2014.04.065_b0020) 2009; 50
Heidari (10.1016/j.enconman.2014.04.065_b0185) 1971; 7
Afshar (10.1016/j.enconman.2014.04.065_b0045) 2013; 51
Yan (10.1016/j.enconman.2014.04.065_b0180) 2011; 33
Jiang (10.1016/j.enconman.2014.04.065_b0135) 2005; 46
Cinar (10.1016/j.enconman.2014.04.065_b0105) 2010; 35
Lu (10.1016/j.enconman.2014.04.065_b0140) 2010; 51
Giles (10.1016/j.enconman.2014.04.065_b0095) 1981; 107
Barros (10.1016/j.enconman.2014.04.065_b0010) 2003; 129
Laud (10.1016/j.enconman.2014.04.065_b0150) 1996; 122
Yao (10.1016/j.enconman.2014.04.065_b0175) 2010; 42
Mandal (10.1016/j.enconman.2014.04.065_b0125) 2009; 50
Chow (10.1016/j.enconman.2014.04.065_b0190) 1975; 11
Shawwash (10.1016/j.enconman.2014.04.065_b0050) 2000; 15
Mo (10.1016/j.enconman.2014.04.065_b0040) 2013; 76
Qin (10.1016/j.enconman.2014.04.065_b0130) 2010; 51
Wang (10.1016/j.enconman.2014.04.065_b0155) 2012; 138
References_xml – volume: 129
  start-page: 178
  year: 2003
  end-page: 188
  ident: b0010
  article-title: Optimization of large-scale hydropower system operations
  publication-title: J Water Resour Plann Manage
– volume: 68
  start-page: 2458
  year: 2013
  end-page: 2467
  ident: b0205
  article-title: Large-scale hydropower system optimization using dynamic programming and object-oriented programming: the case of the Northeast China Power Grid
  publication-title: Water Sci Technol
– volume: 42
  start-page: 570
  year: 2010
  end-page: 583
  ident: b0175
  article-title: Global optimization of a central air-conditioning system using decomposition–coordination method
  publication-title: Energy Build
– volume: 17
  start-page: 154
  year: 2002
  end-page: 158
  ident: b0070
  article-title: Optimal dispatch of generating units of the itaipu hydroelectric plant
  publication-title: IEEE Trans Power Syst
– volume: 130
  start-page: 198
  year: 2004
  end-page: 205
  ident: b0015
  article-title: Short-term scheduling of large-scale hydropower systems for energy maximization
  publication-title: J Water Resour Plann Manage
– volume: 51
  start-page: 561
  year: 2010
  end-page: 571
  ident: b0140
  article-title: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling
  publication-title: Energy Convers Manage
– reference: Zhuge YS, Xie PP. The Application of DDDP method to optimal operation for cascade reservoirs based on state transformation matrix. In: International conference on computational and information sciences; 2010.
– year: 2012
  ident: b0025
  article-title: Optimal operation of large-scale cascaded hydropower system in upper reaches of Yangtze river in China
  publication-title: J Water Resour Plann Manage
– volume: 8
  start-page: 104
  year: 1975
  end-page: 116
  ident: b0080
  article-title: New algorithm for the solution of multi-state dynamic programming problems
  publication-title: Math Program
– start-page: 20
  year: 2011
  end-page: 29
  ident: b0210
  article-title: Fast-growing China’s hydropower systems and operation challenges
  publication-title: World Environ Water Resour Congr
– volume: 51
  start-page: 788
  year: 2010
  end-page: 794
  ident: b0130
  article-title: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling
  publication-title: Energy Convers Manage
– year: 2012
  ident: b0075
  article-title: Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage
  publication-title: Appl Energy
– volume: 59
  start-page: 453
  year: 2010
  end-page: 456
  ident: b0170
  article-title: Proactive maintenance scheduling in a reentrant flow shop using Lagrangian decomposition coordination method
  publication-title: CIRP Ann – Manuf Technol
– volume: 21
  start-page: 1797
  year: 1985
  end-page: 1818
  ident: b0005
  article-title: Reservoir management and operations models: a state-of-the-art review
  publication-title: Water Resour Res
– volume: 25
  start-page: 1465
  year: 2011
  end-page: 1487
  ident: b0110
  article-title: Optimization of multi-reservoir systems by genetic algorithm
  publication-title: Water Resour Manage
– volume: 3
  start-page: 29
  year: 2005
  end-page: 38
  ident: b0195
  article-title: Optimization of a multiple reservoir system operation using a combination of genetic algorithm and discrete differential dynamic programming: a case study in Mae Klong system, Thailan
  publication-title: Paddy Water Environ
– volume: 127
  start-page: 363
  year: 2002
  end-page: 368
  ident: b0060
  article-title: Piece-by-piece approach to solving large nonlinear water resources management models
  publication-title: J Water Resour Plann Manage
– volume: 138
  start-page: 135
  year: 2012
  end-page: 143
  ident: b0030
  article-title: Optimization of large-scale hydrothermal system operation
  publication-title: J Water Resour Plann Manage
– volume: 15
  start-page: 1125
  year: 2000
  end-page: 1131
  ident: b0050
  article-title: The BC hydro short term hydro scheduling optimization model
  publication-title: IEEE Trans Power Syst
– volume: 7
  start-page: 273
  year: 1971
  end-page: 282
  ident: b0185
  article-title: Discrete differential dynamic programming approach to water resources systems optimization
  publication-title: Water Resour Res
– volume: 107
  start-page: 495
  year: 1981
  end-page: 511
  ident: b0095
  article-title: Weekly multipurpose planning model for TVA reservoir system
  publication-title: J Water Resour Plann Manage
– volume: 46
  start-page: 2689
  year: 2005
  end-page: 2696
  ident: b0135
  article-title: A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment
  publication-title: Energy Convers Manage
– volume: 18
  start-page: 673
  year: 1982
  end-page: 696
  ident: b0065
  article-title: Dynamic programming applications in water resources
  publication-title: Water Resour Res
– volume: 28
  start-page: 210
  year: 2012
  end-page: 213
  ident: b0160
  article-title: Multi-objective decomposition–coordination for mix-connected hydropower system load distribution
  publication-title: Proc Eng
– volume: 76
  start-page: 260
  year: 2013
  end-page: 273
  ident: b0040
  article-title: Short-term hydro generation scheduling of three Gorges-Gezhouba cascaded hydropower plants using hybrid MACS-ADE approach
  publication-title: Energy Convers Manage
– volume: 376
  start-page: 182
  year: 2009
  end-page: 187
  ident: b0055
  article-title: Maximization of hydropower generation through the application of linear programming model
  publication-title: J Hydrol
– volume: 138
  start-page: 257
  year: 2012
  end-page: 267
  ident: b0090
  article-title: Short-term scheduling for large-scale cascaded hydropower systems with multi-vibration zones of high head
  publication-title: J Water Resour Plann Manage
– volume: 129
  start-page: 388
  year: 2003
  end-page: 398
  ident: b0100
  article-title: Dynamic optimal unit commitment and loading in hydropower systems
  publication-title: J Water Resour Plann Manage
– volume: 122
  start-page: 287
  year: 1996
  end-page: 295
  ident: b0150
  article-title: Operating rule optimization for Missouri river reservoir system
  publication-title: J Water Resour Plann Manage
– volume: 51
  start-page: 2955
  year: 2010
  end-page: 2966
  ident: b0035
  article-title: Optimal short-term operation schedule of a hydropower plant in a competitive electricity market
  publication-title: Energy Convers Manage
– volume: 48
  start-page: 464
  year: 2012
  end-page: 479
  ident: b0085
  article-title: Short-term hydro scheduling with discrepant objectives using multi-step progressive optimality algorithm
  publication-title: J Am Water Resour Assoc
– volume: 138
  start-page: 3
  year: 2012
  end-page: 12
  ident: b0155
  article-title: Short-term optimal operation of hydropower reservoirs with unit commitment and navigation
  publication-title: J Water Resour Plann Manage
– volume: 51
  start-page: 2893
  year: 2010
  end-page: 2900
  ident: b0145
  article-title: Improved chaotic particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects
  publication-title: Energy Convers Manage
– volume: 33
  start-page: 55
  year: 2011
  end-page: 60
  ident: b0180
  article-title: Decomposition–coordination interior point method and its application to multi-area optimal reactive power flow
  publication-title: Int J Electr Power Energy Syst
– volume: 50
  start-page: 3007
  year: 2009
  end-page: 3014
  ident: b0020
  article-title: Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch
  publication-title: Energy Convers Manage
– volume: 50
  start-page: 97
  year: 2009
  end-page: 104
  ident: b0125
  article-title: Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution
  publication-title: Energy Convers Manage
– volume: 35
  start-page: 1724
  year: 2010
  end-page: 1729
  ident: b0105
  article-title: Development of future energy scenarios with intelligent algorithms: case of hydro in Turkey
  publication-title: Energy
– volume: 21
  start-page: 1429
  year: 2007
  end-page: 1447
  ident: b0115
  article-title: Multi-colony ant algorithm for continuous multi-reservoir operation optimization problem
  publication-title: Water Resour Manage
– volume: 51
  start-page: 71
  year: 2013
  end-page: 81
  ident: b0045
  article-title: Extension of the constrained particle swarm optimization algorithm to optimal operation of multi-reservoirs system
  publication-title: Int J Electric Power Energy Syst
– volume: 11
  start-page: 621
  year: 1975
  end-page: 628
  ident: b0190
  article-title: Computer time and memory requirements for DP and DDDP in water resources systems analysis
  publication-title: Water Resour Res
– volume: 23
  start-page: 2987
  year: 2009
  end-page: 3003
  ident: b0120
  article-title: Management of multi-purpose multi-reservoir using fuzzy interactive method
  publication-title: Water Resour Manage
– start-page: 3874
  year: 1998
  end-page: 3879
  ident: b0165
  article-title: Optimal control of complex irrigation systems via decomposition–coordination and the use of augmented Lagrangian
  publication-title: IEEE
– volume: 138
  start-page: 135
  issue: 2
  year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0030
  article-title: Optimization of large-scale hydrothermal system operation
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)WR.1943-5452.0000149
– volume: 33
  start-page: 55
  year: 2011
  ident: 10.1016/j.enconman.2014.04.065_b0180
  article-title: Decomposition–coordination interior point method and its application to multi-area optimal reactive power flow
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.08.004
– volume: 21
  start-page: 1797
  issue: 12
  year: 1985
  ident: 10.1016/j.enconman.2014.04.065_b0005
  article-title: Reservoir management and operations models: a state-of-the-art review
  publication-title: Water Resour Res
  doi: 10.1029/WR021i012p01797
– volume: 23
  start-page: 2987
  year: 2009
  ident: 10.1016/j.enconman.2014.04.065_b0120
  article-title: Management of multi-purpose multi-reservoir using fuzzy interactive method
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-009-9419-0
– volume: 51
  start-page: 561
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0140
  article-title: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.10.024
– start-page: 20
  year: 2011
  ident: 10.1016/j.enconman.2014.04.065_b0210
  article-title: Fast-growing China’s hydropower systems and operation challenges
  publication-title: World Environ Water Resour Congr
– volume: 17
  start-page: 154
  issue: 1
  year: 2002
  ident: 10.1016/j.enconman.2014.04.065_b0070
  article-title: Optimal dispatch of generating units of the itaipu hydroelectric plant
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.982207
– volume: 51
  start-page: 2955
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0035
  article-title: Optimal short-term operation schedule of a hydropower plant in a competitive electricity market
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.06.038
– volume: 376
  start-page: 182
  year: 2009
  ident: 10.1016/j.enconman.2014.04.065_b0055
  article-title: Maximization of hydropower generation through the application of linear programming model
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.07.026
– volume: 138
  start-page: 3
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0155
  article-title: Short-term optimal operation of hydropower reservoirs with unit commitment and navigation
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)WR.1943-5452.0000142
– ident: 10.1016/j.enconman.2014.04.065_b0200
– volume: 28
  start-page: 210
  year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0160
  article-title: Multi-objective decomposition–coordination for mix-connected hydropower system load distribution
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2012.01.707
– volume: 42
  start-page: 570
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0175
  article-title: Global optimization of a central air-conditioning system using decomposition–coordination method
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2009.10.027
– volume: 129
  start-page: 178
  issue: 3
  year: 2003
  ident: 10.1016/j.enconman.2014.04.065_b0010
  article-title: Optimization of large-scale hydropower system operations
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)0733-9496(2003)129:3(178)
– year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0025
  article-title: Optimal operation of large-scale cascaded hydropower system in upper reaches of Yangtze river in China
  publication-title: J Water Resour Plann Manage
– volume: 8
  start-page: 104
  issue: 1
  year: 1975
  ident: 10.1016/j.enconman.2014.04.065_b0080
  article-title: New algorithm for the solution of multi-state dynamic programming problems
  publication-title: Math Program
  doi: 10.1007/BF01580431
– volume: 48
  start-page: 464
  issue: 3
  year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0085
  article-title: Short-term hydro scheduling with discrepant objectives using multi-step progressive optimality algorithm
  publication-title: J Am Water Resour Assoc
  doi: 10.1111/j.1752-1688.2011.00628.x
– volume: 46
  start-page: 2689
  year: 2005
  ident: 10.1016/j.enconman.2014.04.065_b0135
  article-title: A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2005.01.002
– volume: 21
  start-page: 1429
  year: 2007
  ident: 10.1016/j.enconman.2014.04.065_b0115
  article-title: Multi-colony ant algorithm for continuous multi-reservoir operation optimization problem
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-006-9092-5
– volume: 127
  start-page: 363
  issue: 6
  year: 2002
  ident: 10.1016/j.enconman.2014.04.065_b0060
  article-title: Piece-by-piece approach to solving large nonlinear water resources management models
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)0733-9496(2001)127:6(363)
– volume: 25
  start-page: 1465
  year: 2011
  ident: 10.1016/j.enconman.2014.04.065_b0110
  article-title: Optimization of multi-reservoir systems by genetic algorithm
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-010-9755-0
– volume: 59
  start-page: 453
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0170
  article-title: Proactive maintenance scheduling in a reentrant flow shop using Lagrangian decomposition coordination method
  publication-title: CIRP Ann – Manuf Technol
  doi: 10.1016/j.cirp.2010.03.031
– volume: 3
  start-page: 29
  year: 2005
  ident: 10.1016/j.enconman.2014.04.065_b0195
  article-title: Optimization of a multiple reservoir system operation using a combination of genetic algorithm and discrete differential dynamic programming: a case study in Mae Klong system, Thailan
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-005-0070-y
– volume: 76
  start-page: 260
  year: 2013
  ident: 10.1016/j.enconman.2014.04.065_b0040
  article-title: Short-term hydro generation scheduling of three Gorges-Gezhouba cascaded hydropower plants using hybrid MACS-ADE approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.07.047
– year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0075
  article-title: Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.12.086
– volume: 138
  start-page: 257
  issue: 3
  year: 2012
  ident: 10.1016/j.enconman.2014.04.065_b0090
  article-title: Short-term scheduling for large-scale cascaded hydropower systems with multi-vibration zones of high head
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)WR.1943-5452.0000174
– volume: 107
  start-page: 495
  issue: 2
  year: 1981
  ident: 10.1016/j.enconman.2014.04.065_b0095
  article-title: Weekly multipurpose planning model for TVA reservoir system
  publication-title: J Water Resour Plann Manage
– volume: 122
  start-page: 287
  issue: 4
  year: 1996
  ident: 10.1016/j.enconman.2014.04.065_b0150
  article-title: Operating rule optimization for Missouri river reservoir system
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)0733-9496(1996)122:4(287)
– volume: 51
  start-page: 788
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0130
  article-title: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.10.036
– start-page: 3874
  year: 1998
  ident: 10.1016/j.enconman.2014.04.065_b0165
  article-title: Optimal control of complex irrigation systems via decomposition–coordination and the use of augmented Lagrangian
  publication-title: IEEE
– volume: 50
  start-page: 97
  year: 2009
  ident: 10.1016/j.enconman.2014.04.065_b0125
  article-title: Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.08.022
– volume: 51
  start-page: 2893
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0145
  article-title: Improved chaotic particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.06.029
– volume: 15
  start-page: 1125
  issue: 3
  year: 2000
  ident: 10.1016/j.enconman.2014.04.065_b0050
  article-title: The BC hydro short term hydro scheduling optimization model
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.871743
– volume: 129
  start-page: 388
  issue: 5
  year: 2003
  ident: 10.1016/j.enconman.2014.04.065_b0100
  article-title: Dynamic optimal unit commitment and loading in hydropower systems
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)0733-9496(2003)129:5(388)
– volume: 68
  start-page: 2458
  issue: 11
  year: 2013
  ident: 10.1016/j.enconman.2014.04.065_b0205
  article-title: Large-scale hydropower system optimization using dynamic programming and object-oriented programming: the case of the Northeast China Power Grid
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2013.528
– volume: 130
  start-page: 198
  issue: 3
  year: 2004
  ident: 10.1016/j.enconman.2014.04.065_b0015
  article-title: Short-term scheduling of large-scale hydropower systems for energy maximization
  publication-title: J Water Resour Plann Manage
  doi: 10.1061/(ASCE)0733-9496(2004)130:3(198)
– volume: 7
  start-page: 273
  issue: 2
  year: 1971
  ident: 10.1016/j.enconman.2014.04.065_b0185
  article-title: Discrete differential dynamic programming approach to water resources systems optimization
  publication-title: Water Resour Res
  doi: 10.1029/WR007i002p00273
– volume: 51
  start-page: 71
  year: 2013
  ident: 10.1016/j.enconman.2014.04.065_b0045
  article-title: Extension of the constrained particle swarm optimization algorithm to optimal operation of multi-reservoirs system
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2013.02.035
– volume: 11
  start-page: 621
  issue: 5
  year: 1975
  ident: 10.1016/j.enconman.2014.04.065_b0190
  article-title: Computer time and memory requirements for DP and DDDP in water resources systems analysis
  publication-title: Water Resour Res
  doi: 10.1029/WR011i005p00621
– volume: 50
  start-page: 3007
  year: 2009
  ident: 10.1016/j.enconman.2014.04.065_b0020
  article-title: Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.07.020
– volume: 35
  start-page: 1724
  year: 2010
  ident: 10.1016/j.enconman.2014.04.065_b0105
  article-title: Development of future energy scenarios with intelligent algorithms: case of hydro in Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.025
– volume: 18
  start-page: 673
  issue: 4
  year: 1982
  ident: 10.1016/j.enconman.2014.04.065_b0065
  article-title: Dynamic programming applications in water resources
  publication-title: Water Resour Res
  doi: 10.1029/WR018i004p00673
SSID ssj0003506
Score 2.417849
Snippet •Optimization of large-scale hydropower system in the Yangtze River basin.•Improved decomposition–coordination and discrete differential dynamic...
With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms Applied sciences
Decomposition
Decomposition–coordination
Discrete differential dynamic programming
Dynamic programming
Dynamical systems
Energy
Energy of waters: ocean thermal energy, wave and tidal energy, etc
Energy. Thermal use of fuels
Exact sciences and technology
Hydroelectric power
Hydroelectric power plants
Improvement strategies
Installations for energy generation and conversion: thermal and electrical energy
Large-scale hydropower system
Long-term optimization
Natural energy
Nonlinear dynamics
Optimization
Power generation
Power plants
The Yangtze River basin
water power
watersheds
Yangtze River
Title Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system
URI https://dx.doi.org/10.1016/j.enconman.2014.04.065
https://www.proquest.com/docview/1567109380
https://www.proquest.com/docview/1677912820
https://www.proquest.com/docview/2116932981
Volume 84
WOSCitedRecordID wos000338601100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwUIIf4mys9kJO5QoHGc2L6c0BCgaXAxUO8iJ7Fppzap1mZsXHHDE_BGPApPwnEceymFjl0gVVGVJk6d88Xny_HncxB6qnWRgB_RQSxEHtBEqkBEPAmEzrhWBddxk8D04z47OOCjkXjf6_1wa2FOpqws-empmP9XU8M-MLZZOnsJc_tGYQd8B6PDFswO238yvA0TAI8slNGLt6IsJ2qI8gpeNyc2BtjMHJh1ucdAnX2tlKUJohe2Ur3Tb82c4LKCIWbWrt00RHNqlOTBAiytno3PClNz4bNPEL0S9reLDBuVexOiay4-W1Pf7E-sCqAup1XrVZu4dlU3gAM0fxl3fnhXn7mI97iuPC1vK7WMJtIUJfrUjW2E1CvrfLhTJAEXtkCxG6857Qy4UTs8Wt8d2bIoa27BRiiOnpvcoCX0zEj6aJPi1haqWM3D_Zt_9KpFJ4g7Sl07qWknHcInia-gLcJiwftoa_fN3uit5wNR3FR49X3prFP_8z_6G0W6MZfGnNpWXFkjDw0jOryFbravMnjXQvA26qnyDrreSXB5F31zYMQrYPz59XsXhhiQgB0McReGuIUh7sAQAwxxF4a40rgDQ3wOQ2xheA99eLV3-PJ10Bb-CHLKyTKQQCIFj7JECa2JFJImBG6cyrQKY0kF-KFCmgl_qcKIRHGW5KwQlGZ8mAMjzaJt1C-rUt1HmOVMFQUdMqYySgmVBcslUyQPgRyGSg9Q7O51mrdZ8U1xlmm62doD9MKfN7d5YS48QzhTpi27taw1BZReeO7Oiu39JQmPiUmpOEBPHBhS8A9m0k-WqqoXaRgnRm4d8eGGYxLGBBBVsuEYEpq0TUTw8MGlu_4QXTt_uh-h_vK4Vo_R1fxkOVkc77TPyy8LpgWE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+decomposition%E2%80%93coordination+and+discrete+differential+dynamic+programming+for+optimization+of+large-scale+hydropower+system&rft.jtitle=Energy+conversion+and+management&rft.au=Li%2C+Chunlong&rft.au=Zhou%2C+Jianzhong&rft.au=Ouyang%2C+Shuo&rft.au=Ding%2C+Xiaoling&rft.date=2014-08-01&rft.issn=0196-8904&rft.volume=84&rft.spage=363&rft.epage=373&rft_id=info:doi/10.1016%2Fj.enconman.2014.04.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2014_04_065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon