Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase

One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration ph...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neural engineering Ročník 13; číslo 2; s. 026005
Hlavní autori: Zink, Rob, Hunyadi, Borbála, Huffel, Sabine Van, Vos, Maarten De
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.04.2016
Predmet:
ISSN:1741-2552
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1741-2552
DOI:10.1088/1741-2560/13/2/026005