Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase

One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration ph...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neural engineering Ročník 13; číslo 2; s. 026005
Hlavní autori: Zink, Rob, Hunyadi, Borbála, Huffel, Sabine Van, Vos, Maarten De
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.04.2016
Predmet:
ISSN:1741-2552
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
AbstractList One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
OBJECTIVEOne of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification.APPROACHWe explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm.MAIN RESULTSThe presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach.SIGNIFICANCEThe described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Author Huffel, Sabine Van
Vos, Maarten De
Hunyadi, Borbála
Zink, Rob
Author_xml – sequence: 1
  givenname: Rob
  surname: Zink
  fullname: Zink, Rob
  organization: KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium. iMinds Medical IT, Leuven, Belgium
– sequence: 2
  givenname: Borbála
  surname: Hunyadi
  fullname: Hunyadi, Borbála
– sequence: 3
  givenname: Sabine Van
  surname: Huffel
  fullname: Huffel, Sabine Van
– sequence: 4
  givenname: Maarten De
  surname: Vos
  fullname: Vos, Maarten De
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26824883$$D View this record in MEDLINE/PubMed
BookMark eNo1kE1LxDAYhIMo7of-BCVHL7V5kzZJj7r4sbDgpfeSpAmbpW1qkyL7713Z9TQwzDwDs0LXQxgsQg9AnoFImYMoIKMlJzmwnOaEckLKK7S8-CVdoFWMB0IYiIrcogXlkhZSsiXStR1imDKtom2x6VSM3nmjkg8DDg6rAau59SlMR9wH7TuLXzdb_OPTPswJKxxnfbAmZXG05q-Jjeq8ns6AcX_C3qEbp7po7y-6RvX7W735zHZfH9vNyy4zhaQpE4JVujTEMEIqAQYcVMC0o4YVpmyLqmISnKhActla2nIJ4BwYxoFzIegaPZ2x4xS-ZxtT0_tobNepwYY5NnAakETIkp-ij5forHvbNuPkezUdm_9b6C8Ob2S8
CitedBy_id crossref_primary_10_1088_1741_2552_ac16b4
crossref_primary_10_1016_j_apacoust_2020_107826
crossref_primary_10_1007_s11571_023_09940_4
crossref_primary_10_1016_j_heliyon_2024_e26365
crossref_primary_10_1109_TNSRE_2020_3034234
crossref_primary_10_1109_JBHI_2018_2829877
crossref_primary_10_3389_fnins_2019_00045
crossref_primary_10_1016_j_apacoust_2022_108822
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2560/13/2/026005
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
EndPage 026005
ExternalDocumentID 26824883
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AERVB
AFYNE
AGQPQ
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
7X8
AEINN
ID FETCH-LOGICAL-c482t-7739b5c0c300971c1f1913bf2c34c5d499381f791868de2d6811ff1c36166772
IEDL.DBID 7X8
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375683800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Sep 04 19:14:01 EDT 2025
Mon Jul 21 05:48:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-7739b5c0c300971c1f1913bf2c34c5d499381f791868de2d6811ff1c36166772
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26824883
PQID 1773807856
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1773807856
pubmed_primary_26824883
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2016
SSID ssj0031790
Score 2.234216
Snippet One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a...
OBJECTIVEOne of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 026005
SubjectTerms Acoustic Stimulation - classification
Acoustic Stimulation - methods
Acoustic Stimulation - standards
Adult
Auditory Cortex - physiology
Brain-Computer Interfaces - classification
Brain-Computer Interfaces - standards
Calibration
Female
Humans
Male
Young Adult
Title Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase
URI https://www.ncbi.nlm.nih.gov/pubmed/26824883
https://www.proquest.com/docview/1773807856
Volume 13
WOSCitedRecordID wos000375683800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwKo_ykpEQm5U4TpxkQqWigoGqQ4dukWPHgqFJaVqk_nvunBQmJCSWbLYi3_nuu_Pdd4Tc-cb4togKlnBuWBgqzgBlBMxYX4d5LFVUhG7YRDwaJdNpOm4TbnVbVrmxic5Qm0pjjtzjcey40SP5MP9gODUKX1fbERrbpCMAyqBWx9PvVwSB7FObrh0I9AB8c4Yu3uPCCzxk0_Kj35Gl8zDDg__-2yHZb7El7TfKcES2ivKYdPslxNWzNb2nrtrTpdG7JJ9A_FotGHoxQzViaCwacnKilaWqpAobNqrFms6qHGwHfRy8UEzbVqslVbRe5ZjCYdiqiSspCBtDb7fB_A22PSGT4dNk8MzaeQtMh0mwBKAt0jzSvhaOWUpzC8GcyG2gRagjA7ERuHcbp8iwb4rASJCvtVwLyaUEAZ-SnbIqi3NCY2kim_rC-kbjlKscbG6iABym1lciT3vkdnOQGagzvlGosqhWdfZzlD1y1kgjmze8G1kgkwDsjbj4w-pLsgfQRjY1NlekY-EyF9dkV38u3-vFjdMT-I7Gr1-4Gcgs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor-based+classification+of+an+auditory+mobile+BCI+without+a+subject-specific+calibration+phase&rft.jtitle=Journal+of+neural+engineering&rft.au=Zink%2C+Rob&rft.au=Hunyadi%2C+Borb%C3%A1la&rft.au=Huffel%2C+Sabine+Van&rft.au=Vos%2C+Maarten+De&rft.date=2016-04-01&rft.eissn=1741-2552&rft.volume=13&rft.issue=2&rft.spage=026005&rft_id=info:doi/10.1088%2F1741-2560%2F13%2F2%2F026005&rft_id=info%3Apmid%2F26824883&rft_id=info%3Apmid%2F26824883&rft.externalDocID=26824883