Temporal role of Sertoli cell androgen receptor expression in spermatogenic development

Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgS...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular endocrinology (Baltimore, Md.) Ročník 27; číslo 1; s. 12
Hlavní autoři: Hazra, Rasmani, Corcoran, Lisa, Robson, Mat, McTavish, Kirsten J, Upton, Dannielle, Handelsman, David J, Allan, Charles M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2013
Témata:
ISSN:1944-9917, 1944-9917
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.
AbstractList Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.
Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.
Author Hazra, Rasmani
McTavish, Kirsten J
Allan, Charles M
Handelsman, David J
Upton, Dannielle
Robson, Mat
Corcoran, Lisa
Author_xml – sequence: 1
  givenname: Rasmani
  surname: Hazra
  fullname: Hazra, Rasmani
  organization: ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia
– sequence: 2
  givenname: Lisa
  surname: Corcoran
  fullname: Corcoran, Lisa
– sequence: 3
  givenname: Mat
  surname: Robson
  fullname: Robson, Mat
– sequence: 4
  givenname: Kirsten J
  surname: McTavish
  fullname: McTavish, Kirsten J
– sequence: 5
  givenname: Dannielle
  surname: Upton
  fullname: Upton, Dannielle
– sequence: 6
  givenname: David J
  surname: Handelsman
  fullname: Handelsman, David J
– sequence: 7
  givenname: Charles M
  surname: Allan
  fullname: Allan, Charles M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23160479$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLxDAYxIOsuA-9eZYcvXTtl2Sb9CiLL1jw4IrHkqRfpZJHTbqi_70uruBpZuDHMMycTEIMSMg5lEtgUF55XLISWPET6iMyg1qIoq5BTv75KZnn_FaWIFYKTsiUcahKIesZedmiH2LSjqbokMaOPmEao-upReeoDm2KrxhoQovDGBPFzyFhzn0MtA80D5i8HvdIb2mLH-ji4DGMp-S40y7j2UEX5Pn2Zru-LzaPdw_r601hhWJjUcnOWGt0a9pKK2RcVporyxh2DIQBqbg2xlZSgTEdasWB2RaRAVcSBWcLcvnbO6T4vsM8Nr7P--k6YNzlBpjkUvBqtUcvDujOeGybIfVep6_m7wz2Dd4WZHk
CitedBy_id crossref_primary_10_1093_molehr_gax017
crossref_primary_10_1016_j_ygcen_2020_113617
crossref_primary_10_3390_ijms24054611
crossref_primary_10_3390_cells8080861
crossref_primary_10_1016_j_reprotox_2024_108645
crossref_primary_10_3390_ijms24032748
crossref_primary_10_1016_j_jpedsurg_2015_08_034
crossref_primary_10_1172_JCI96794
crossref_primary_10_3390_cancers12102830
crossref_primary_10_4161_spmg_28138
crossref_primary_10_3389_fendo_2022_897196
crossref_primary_10_1002_med_21325
crossref_primary_10_1080_15384101_2016_1207835
crossref_primary_10_1016_j_theriogenology_2019_04_025
crossref_primary_10_1038_srep32783
crossref_primary_10_3389_fendo_2019_00224
crossref_primary_10_1016_j_heliyon_2020_e05363
crossref_primary_10_3389_fendo_2021_648141
crossref_primary_10_1371_journal_pone_0120783
crossref_primary_10_1016_j_npep_2021_102215
crossref_primary_10_1016_j_mce_2017_08_023
crossref_primary_10_1210_en_2013_1878
crossref_primary_10_1210_en_2012_2273
crossref_primary_10_1016_j_mam_2024_101273
crossref_primary_10_1016_j_beem_2015_04_006
crossref_primary_10_1016_j_mce_2014_01_008
crossref_primary_10_1016_j_ijbiomac_2024_137241
crossref_primary_10_3390_ijms25115805
crossref_primary_10_1210_clinem_dgad319
crossref_primary_10_3389_fendo_2015_00152
crossref_primary_10_1002_tox_21889
crossref_primary_10_1186_s12958_020_00582_3
crossref_primary_10_1210_en_2017_00196
crossref_primary_10_1016_j_semcdb_2014_02_012
crossref_primary_10_1016_j_semcdb_2014_02_010
crossref_primary_10_1111_rda_14411
crossref_primary_10_1093_biolre_ioab085
crossref_primary_10_1210_endocr_bqaa215
crossref_primary_10_1016_j_mce_2013_09_008
crossref_primary_10_1210_en_2012_2179
crossref_primary_10_1038_s41598_021_98036_2
crossref_primary_10_3389_fendo_2022_838858
crossref_primary_10_1186_s12864_024_10544_3
crossref_primary_10_1111_j_2047_2927_2014_00240_x
crossref_primary_10_3389_fendo_2023_1095894
crossref_primary_10_1016_j_biochi_2018_11_018
crossref_primary_10_3390_jcm9041014
crossref_primary_10_1155_2021_5574202
crossref_primary_10_1038_s41467_024_49765_1
crossref_primary_10_1371_journal_pgen_1005304
crossref_primary_10_1016_j_ygcen_2014_03_030
crossref_primary_10_1111_rda_13877
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1210/me.2012-1219
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1944-9917
ExternalDocumentID 23160479
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.55
.GJ
.XZ
08P
0R~
123
18M
29M
2WC
34G
354
39C
3O-
4.4
53G
5RS
5YH
8F7
AABZA
AACZT
AAFWJ
AAKAS
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
ABDFA
ABEJV
ABGNP
ABJNI
ABNHQ
ABOCM
ABPPZ
ABPTD
ABVGC
ABXVV
ACFRR
ACGFO
ACGFS
ACUFI
ACUTJ
ACVCV
ADBBV
ADGZP
ADIYS
ADQBN
ADVEK
ADVOB
ADZCM
AEMQT
AENEX
AETEA
AFFNX
AFFZL
AFOFC
AFOSN
AFXAL
AGINJ
AGMDO
AGUTN
AHMMS
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
APJGH
AQKUS
ASAOO
ATDFG
ATGXG
BAWUL
BAYMD
BCRHZ
C45
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FLUFQ
FOEOM
GX1
H13
HF~
HZ~
H~9
IH2
KQ8
KSI
KSN
L7B
M5~
MBLQV
MBTAY
NOMLY
NPM
OAUYM
OBH
OFXIZ
OHH
OJZSN
OK1
OPAEJ
OVD
P2P
REU
ROX
ROZ
TEORI
TJX
TR2
VVN
W8F
WHG
WOQ
X52
X7M
XOL
YBU
YOC
ZCA
ZCG
ZGI
ZXP
ZY1
7X8
ID FETCH-LOGICAL-c482t-67fbccbadbd6a8e2376a38c22ef214b1783abbc6781bbfea8312cdee21387e432
IEDL.DBID 7X8
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312904000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1944-9917
IngestDate Sun Nov 09 09:16:49 EST 2025
Mon Jul 21 06:05:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-67fbccbadbd6a8e2376a38c22ef214b1783abbc6781bbfea8312cdee21387e432
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mend/article-pdf/27/1/12/11154118/mend0012.pdf
PMID 23160479
PQID 1273743653
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1273743653
pubmed_primary_23160479
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular endocrinology (Baltimore, Md.)
PublicationTitleAlternate Mol Endocrinol
PublicationYear 2013
References 3295030 - J Histochem Cytochem. 1987 Jul;35(7):733-43
12909348 - Gene. 2003 Jul 17;312:125-34
11356688 - Endocrinology. 2001 Jun;142(6):2405-8
8943767 - J Endocrinol. 1996 Oct;151(1):37-48
19741204 - Biol Reprod. 2010 Jan;82(1):202-13
14726449 - Endocrinology. 2004 Apr;145(4):1587-93
22623623 - Biol Reprod. 2012 Aug 23;87(2):38
12399534 - J Androl. 2002 Nov-Dec;23(6):870-81
14745012 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1327-32
12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
1207739 - Nature. 1975 Dec 18;258(5536):620-2
7588276 - Endocrinology. 1995 Dec;136(12):5311-21
14701682 - Development. 2004 Jan;131(2):459-67
198666 - Nature. 1977 Sep 22;269(5626):338-40
12403847 - Mol Endocrinol. 2002 Nov;16(11):2582-91
20410197 - Endocrinology. 2010 Jun;151(6):2800-10
19574395 - Endocrinology. 2009 Oct;150(10):4755-65
8276140 - Mol Cell Endocrinol. 1993 Oct;96(1-2):69-73
17937059 - J Pediatr Endocrinol Metab. 2007 Aug;20(8):853-80
19007549 - Reprod Fertil Dev. 2008;20(8):861-70
8602360 - Nucleic Acids Res. 1996 Feb 1;24(3):470-7
11579212 - Mol Endocrinol. 2001 Oct;15(10):1803-16
15761038 - Endocrinology. 2005 Jun;146(6):2674-83
9920106 - J Clin Endocrinol Metab. 1999 Jan;84(1):350-8
15342359 - Biol Reprod. 2005 Jan;72(1):78-85
1723681 - Development. 1991 Oct;113(2):689-99
21535008 - Int J Androl. 2011 Oct;34(5 Pt 2):e378-85
10813843 - Mol Reprod Dev. 2000 Jun;56(2):124-38
7671849 - Endocr Rev. 1995 Jun;16(3):271-321
10622720 - FEBS Lett. 1999 Dec 3;462(3):329-34
7137603 - Anat Rec. 1982 Aug;203(4):485-92
1920294 - J Reprod Fertil. 1991 Sep;93(1):233-43
17360365 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4961-6
2126341 - Mol Endocrinol. 1990 Apr;4(4):525-30
19341723 - Dev Biol. 2009 Jun 1;330(1):142-52
21385936 - Endocrinology. 2011 May;152(5):2076-89
20144714 - J Steroid Biochem Mol Biol. 2010 Aug;121(3-5):611-8
18713818 - J Clin Endocrinol Metab. 2008 Nov;93(11):4408-12
12773099 - Reproduction. 2003 Jun;125(6):769-84
12538611 - Endocrinology. 2003 Feb;144(2):509-17
2750675 - Am J Anat. 1989 Mar;184(3):179-89
10523039 - J Clin Endocrinol Metab. 1999 Oct;84(10):3836-44
8070367 - Endocrinology. 1994 Sep;135(3):1227-34
9294098 - J Clin Invest. 1997 Sep 15;100(6):1335-43
16540512 - Development. 2006 Apr;133(8):1495-505
15215201 - Biol Reprod. 2004 Oct;71(4):1348-58
1701137 - Endocrinology. 1990 Dec;127(6):3180-6
19392831 - Int J Androl. 2010 Jun 1;33(3):507-17
717808 - Andrologia. 1978 Jul-Aug;10(4):291-8
15642788 - J Endocrinol. 2005 Jan;184(1):107-17
11356697 - Endocrinology. 2001 Jun;142(6):2481-8
9324054 - Mol Cell Endocrinol. 1997 Sep 19;132(1-2):127-36
12903480 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2000 Jun;22(3):287-9
1464329 - EMBO J. 1992 Dec;11(13):5091-100
22514715 - PLoS One. 2012;7(4):e35136
6468765 - Dev Biol. 1984 Sep;105(1):71-9
8344214 - Endocrinology. 1993 Aug;133(2):755-60
15499637 - Prostate. 2004 Dec 1;61(4):299-304
15107499 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):6876-81
11597306 - Reproduction. 2001 Sep;122(3):419-29
8903361 - Dev Biol. 1996 Nov 1;179(2):471-84
10221590 - Endocrine. 1998 Dec;9(3):253-61
7692306 - Nature. 1993 Oct 14;365(6447):652-4
19685330 - Methods Mol Biol. 2009;558:263-77
16264094 - Reproduction. 2005 Nov;130(5):643-54
8107030 - J Reprod Fertil. 1993 Nov;99(2):479-85
2063808 - Am J Anat. 1991 May;191(1):35-47
20844538 - Nature. 2010 Sep 16;467(7313):333-7
References_xml – reference: 12909348 - Gene. 2003 Jul 17;312:125-34
– reference: 8344214 - Endocrinology. 1993 Aug;133(2):755-60
– reference: 6468765 - Dev Biol. 1984 Sep;105(1):71-9
– reference: 12403847 - Mol Endocrinol. 2002 Nov;16(11):2582-91
– reference: 198666 - Nature. 1977 Sep 22;269(5626):338-40
– reference: 20410197 - Endocrinology. 2010 Jun;151(6):2800-10
– reference: 1207739 - Nature. 1975 Dec 18;258(5536):620-2
– reference: 19741204 - Biol Reprod. 2010 Jan;82(1):202-13
– reference: 11579212 - Mol Endocrinol. 2001 Oct;15(10):1803-16
– reference: 19392831 - Int J Androl. 2010 Jun 1;33(3):507-17
– reference: 10221590 - Endocrine. 1998 Dec;9(3):253-61
– reference: 9294098 - J Clin Invest. 1997 Sep 15;100(6):1335-43
– reference: 12773099 - Reproduction. 2003 Jun;125(6):769-84
– reference: 21385936 - Endocrinology. 2011 May;152(5):2076-89
– reference: 9324054 - Mol Cell Endocrinol. 1997 Sep 19;132(1-2):127-36
– reference: 19341723 - Dev Biol. 2009 Jun 1;330(1):142-52
– reference: 19685330 - Methods Mol Biol. 2009;558:263-77
– reference: 15499637 - Prostate. 2004 Dec 1;61(4):299-304
– reference: 20144714 - J Steroid Biochem Mol Biol. 2010 Aug;121(3-5):611-8
– reference: 12538611 - Endocrinology. 2003 Feb;144(2):509-17
– reference: 19574395 - Endocrinology. 2009 Oct;150(10):4755-65
– reference: 2750675 - Am J Anat. 1989 Mar;184(3):179-89
– reference: 717808 - Andrologia. 1978 Jul-Aug;10(4):291-8
– reference: 1464329 - EMBO J. 1992 Dec;11(13):5091-100
– reference: 14701682 - Development. 2004 Jan;131(2):459-67
– reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
– reference: 15107499 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):6876-81
– reference: 15761038 - Endocrinology. 2005 Jun;146(6):2674-83
– reference: 20844538 - Nature. 2010 Sep 16;467(7313):333-7
– reference: 17937059 - J Pediatr Endocrinol Metab. 2007 Aug;20(8):853-80
– reference: 8107030 - J Reprod Fertil. 1993 Nov;99(2):479-85
– reference: 10622720 - FEBS Lett. 1999 Dec 3;462(3):329-34
– reference: 14745012 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1327-32
– reference: 11597306 - Reproduction. 2001 Sep;122(3):419-29
– reference: 1701137 - Endocrinology. 1990 Dec;127(6):3180-6
– reference: 7692306 - Nature. 1993 Oct 14;365(6447):652-4
– reference: 10813843 - Mol Reprod Dev. 2000 Jun;56(2):124-38
– reference: 11356697 - Endocrinology. 2001 Jun;142(6):2481-8
– reference: 15342359 - Biol Reprod. 2005 Jan;72(1):78-85
– reference: 1920294 - J Reprod Fertil. 1991 Sep;93(1):233-43
– reference: 2063808 - Am J Anat. 1991 May;191(1):35-47
– reference: 8276140 - Mol Cell Endocrinol. 1993 Oct;96(1-2):69-73
– reference: 21535008 - Int J Androl. 2011 Oct;34(5 Pt 2):e378-85
– reference: 7671849 - Endocr Rev. 1995 Jun;16(3):271-321
– reference: 16264094 - Reproduction. 2005 Nov;130(5):643-54
– reference: 12903480 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2000 Jun;22(3):287-9
– reference: 16540512 - Development. 2006 Apr;133(8):1495-505
– reference: 8602360 - Nucleic Acids Res. 1996 Feb 1;24(3):470-7
– reference: 8070367 - Endocrinology. 1994 Sep;135(3):1227-34
– reference: 14726449 - Endocrinology. 2004 Apr;145(4):1587-93
– reference: 7137603 - Anat Rec. 1982 Aug;203(4):485-92
– reference: 10523039 - J Clin Endocrinol Metab. 1999 Oct;84(10):3836-44
– reference: 8943767 - J Endocrinol. 1996 Oct;151(1):37-48
– reference: 18713818 - J Clin Endocrinol Metab. 2008 Nov;93(11):4408-12
– reference: 19007549 - Reprod Fertil Dev. 2008;20(8):861-70
– reference: 1723681 - Development. 1991 Oct;113(2):689-99
– reference: 9920106 - J Clin Endocrinol Metab. 1999 Jan;84(1):350-8
– reference: 22623623 - Biol Reprod. 2012 Aug 23;87(2):38
– reference: 17360365 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4961-6
– reference: 7588276 - Endocrinology. 1995 Dec;136(12):5311-21
– reference: 15215201 - Biol Reprod. 2004 Oct;71(4):1348-58
– reference: 3295030 - J Histochem Cytochem. 1987 Jul;35(7):733-43
– reference: 12399534 - J Androl. 2002 Nov-Dec;23(6):870-81
– reference: 11356688 - Endocrinology. 2001 Jun;142(6):2405-8
– reference: 8903361 - Dev Biol. 1996 Nov 1;179(2):471-84
– reference: 15642788 - J Endocrinol. 2005 Jan;184(1):107-17
– reference: 2126341 - Mol Endocrinol. 1990 Apr;4(4):525-30
– reference: 22514715 - PLoS One. 2012;7(4):e35136
SSID ssj0014581
Score 2.3285155
Snippet Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 12
SubjectTerms Animals
Female
Follicle Stimulating Hormone - blood
Gene Expression
Gene Expression Regulation, Developmental
Humans
Male
Mice
Mice, Transgenic
Organ Size
Rats
Receptors, Androgen - genetics
Receptors, Androgen - metabolism
Seminiferous Tubules - anatomy & histology
Seminiferous Tubules - growth & development
Sertoli Cells - metabolism
Spermatocytes - metabolism
Spermatogenesis
Spermatogonia - metabolism
Testis - cytology
Testis - growth & development
Testosterone - blood
Title Temporal role of Sertoli cell androgen receptor expression in spermatogenic development
URI https://www.ncbi.nlm.nih.gov/pubmed/23160479
https://www.proquest.com/docview/1273743653
Volume 27
WOSCitedRecordID wos000312904000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-EC--3w8iiLcgebRNTyKieNDFw6p7K3lCwW1XdxX99860XfYmgpeeEtom05kvM1-_IeQMYrAPXnIWVaKZsknOrLM5My5wqVTQsRH1eb7Pej09GOSPXcJt3NEqpz6xcdS-dpgjv-AQZyHapYm8HL0x7BqF1dWuhcY8WZQAZdCqs8GsigC3bw5cuVIMcFDWEd_xr5UhSmRy7OvBfwGXTZC5Xfvv462T1Q5e0qvWHjbIXKg2ydZVBUfr4Tc9pw3hs8mkb5Llh66uvkVe-q1C1StFtiGtIwUfMqlfS4qJfWpQ1QAsjYJ7DCM4pdPw1RFoK1pWFNXGAfnikNJRP-MhbZOn25v-9R3rWi4wp7SYsDSL1jlrvPWp0QEpM0ZqJ0SIgivLMy2NtQ4iHLc2BqMlF86HILjUWVBS7JCFqq7CHqExF14pGJVoCTAgMamLqAvBpfcwJdsnp9OVLMCk8XVMFeqPcTFby32y225HMWq1NwqAoymq4h_8YfYhWRFN8wpMmByRxQgfdDgmS-5zUo7fTxpbgWvv8eEH4xHLhg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+role+of+Sertoli+cell+androgen+receptor+expression+in+spermatogenic+development&rft.jtitle=Molecular+endocrinology+%28Baltimore%2C+Md.%29&rft.au=Hazra%2C+Rasmani&rft.au=Corcoran%2C+Lisa&rft.au=Robson%2C+Mat&rft.au=McTavish%2C+Kirsten+J&rft.date=2013-01-01&rft.issn=1944-9917&rft.eissn=1944-9917&rft.volume=27&rft.issue=1&rft.spage=12&rft_id=info:doi/10.1210%2Fme.2012-1219&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-9917&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-9917&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-9917&client=summon