Temporal role of Sertoli cell androgen receptor expression in spermatogenic development
Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgS...
Uloženo v:
| Vydáno v: | Molecular endocrinology (Baltimore, Md.) Ročník 27; číslo 1; s. 12 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.01.2013
|
| Témata: | |
| ISSN: | 1944-9917, 1944-9917 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development. |
|---|---|
| AbstractList | Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development. Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development. |
| Author | Hazra, Rasmani McTavish, Kirsten J Allan, Charles M Handelsman, David J Upton, Dannielle Robson, Mat Corcoran, Lisa |
| Author_xml | – sequence: 1 givenname: Rasmani surname: Hazra fullname: Hazra, Rasmani organization: ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia – sequence: 2 givenname: Lisa surname: Corcoran fullname: Corcoran, Lisa – sequence: 3 givenname: Mat surname: Robson fullname: Robson, Mat – sequence: 4 givenname: Kirsten J surname: McTavish fullname: McTavish, Kirsten J – sequence: 5 givenname: Dannielle surname: Upton fullname: Upton, Dannielle – sequence: 6 givenname: David J surname: Handelsman fullname: Handelsman, David J – sequence: 7 givenname: Charles M surname: Allan fullname: Allan, Charles M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23160479$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLxDAYxIOsuA-9eZYcvXTtl2Sb9CiLL1jw4IrHkqRfpZJHTbqi_70uruBpZuDHMMycTEIMSMg5lEtgUF55XLISWPET6iMyg1qIoq5BTv75KZnn_FaWIFYKTsiUcahKIesZedmiH2LSjqbokMaOPmEao-upReeoDm2KrxhoQovDGBPFzyFhzn0MtA80D5i8HvdIb2mLH-ji4DGMp-S40y7j2UEX5Pn2Zru-LzaPdw_r601hhWJjUcnOWGt0a9pKK2RcVporyxh2DIQBqbg2xlZSgTEdasWB2RaRAVcSBWcLcvnbO6T4vsM8Nr7P--k6YNzlBpjkUvBqtUcvDujOeGybIfVep6_m7wz2Dd4WZHk |
| CitedBy_id | crossref_primary_10_1093_molehr_gax017 crossref_primary_10_1016_j_ygcen_2020_113617 crossref_primary_10_3390_ijms24054611 crossref_primary_10_3390_cells8080861 crossref_primary_10_1016_j_reprotox_2024_108645 crossref_primary_10_3390_ijms24032748 crossref_primary_10_1016_j_jpedsurg_2015_08_034 crossref_primary_10_1172_JCI96794 crossref_primary_10_3390_cancers12102830 crossref_primary_10_4161_spmg_28138 crossref_primary_10_3389_fendo_2022_897196 crossref_primary_10_1002_med_21325 crossref_primary_10_1080_15384101_2016_1207835 crossref_primary_10_1016_j_theriogenology_2019_04_025 crossref_primary_10_1038_srep32783 crossref_primary_10_3389_fendo_2019_00224 crossref_primary_10_1016_j_heliyon_2020_e05363 crossref_primary_10_3389_fendo_2021_648141 crossref_primary_10_1371_journal_pone_0120783 crossref_primary_10_1016_j_npep_2021_102215 crossref_primary_10_1016_j_mce_2017_08_023 crossref_primary_10_1210_en_2013_1878 crossref_primary_10_1210_en_2012_2273 crossref_primary_10_1016_j_mam_2024_101273 crossref_primary_10_1016_j_beem_2015_04_006 crossref_primary_10_1016_j_mce_2014_01_008 crossref_primary_10_1016_j_ijbiomac_2024_137241 crossref_primary_10_3390_ijms25115805 crossref_primary_10_1210_clinem_dgad319 crossref_primary_10_3389_fendo_2015_00152 crossref_primary_10_1002_tox_21889 crossref_primary_10_1186_s12958_020_00582_3 crossref_primary_10_1210_en_2017_00196 crossref_primary_10_1016_j_semcdb_2014_02_012 crossref_primary_10_1016_j_semcdb_2014_02_010 crossref_primary_10_1111_rda_14411 crossref_primary_10_1093_biolre_ioab085 crossref_primary_10_1210_endocr_bqaa215 crossref_primary_10_1016_j_mce_2013_09_008 crossref_primary_10_1210_en_2012_2179 crossref_primary_10_1038_s41598_021_98036_2 crossref_primary_10_3389_fendo_2022_838858 crossref_primary_10_1186_s12864_024_10544_3 crossref_primary_10_1111_j_2047_2927_2014_00240_x crossref_primary_10_3389_fendo_2023_1095894 crossref_primary_10_1016_j_biochi_2018_11_018 crossref_primary_10_3390_jcm9041014 crossref_primary_10_1155_2021_5574202 crossref_primary_10_1038_s41467_024_49765_1 crossref_primary_10_1371_journal_pgen_1005304 crossref_primary_10_1016_j_ygcen_2014_03_030 crossref_primary_10_1111_rda_13877 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1210/me.2012-1219 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1944-9917 |
| ExternalDocumentID | 23160479 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ .55 .GJ .XZ 08P 0R~ 123 18M 29M 2WC 34G 354 39C 3O- 4.4 53G 5RS 5YH 8F7 AABZA AACZT AAFWJ AAKAS AAPQZ AAPXW AARHZ AAUAY AAVAP ABDFA ABEJV ABGNP ABJNI ABNHQ ABOCM ABPPZ ABPTD ABVGC ABXVV ACFRR ACGFO ACGFS ACUFI ACUTJ ACVCV ADBBV ADGZP ADIYS ADQBN ADVEK ADVOB ADZCM AEMQT AENEX AETEA AFFNX AFFZL AFOFC AFOSN AFXAL AGINJ AGMDO AGUTN AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX APJGH AQKUS ASAOO ATDFG ATGXG BAWUL BAYMD BCRHZ C45 CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FLUFQ FOEOM GX1 H13 HF~ HZ~ H~9 IH2 KQ8 KSI KSN L7B M5~ MBLQV MBTAY NOMLY NPM OAUYM OBH OFXIZ OHH OJZSN OK1 OPAEJ OVD P2P REU ROX ROZ TEORI TJX TR2 VVN W8F WHG WOQ X52 X7M XOL YBU YOC ZCA ZCG ZGI ZXP ZY1 7X8 |
| ID | FETCH-LOGICAL-c482t-67fbccbadbd6a8e2376a38c22ef214b1783abbc6781bbfea8312cdee21387e432 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312904000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1944-9917 |
| IngestDate | Sun Nov 09 09:16:49 EST 2025 Mon Jul 21 06:05:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-67fbccbadbd6a8e2376a38c22ef214b1783abbc6781bbfea8312cdee21387e432 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/mend/article-pdf/27/1/12/11154118/mend0012.pdf |
| PMID | 23160479 |
| PQID | 1273743653 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1273743653 pubmed_primary_23160479 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular endocrinology (Baltimore, Md.) |
| PublicationTitleAlternate | Mol Endocrinol |
| PublicationYear | 2013 |
| References | 3295030 - J Histochem Cytochem. 1987 Jul;35(7):733-43 12909348 - Gene. 2003 Jul 17;312:125-34 11356688 - Endocrinology. 2001 Jun;142(6):2405-8 8943767 - J Endocrinol. 1996 Oct;151(1):37-48 19741204 - Biol Reprod. 2010 Jan;82(1):202-13 14726449 - Endocrinology. 2004 Apr;145(4):1587-93 22623623 - Biol Reprod. 2012 Aug 23;87(2):38 12399534 - J Androl. 2002 Nov-Dec;23(6):870-81 14745012 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1327-32 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 1207739 - Nature. 1975 Dec 18;258(5536):620-2 7588276 - Endocrinology. 1995 Dec;136(12):5311-21 14701682 - Development. 2004 Jan;131(2):459-67 198666 - Nature. 1977 Sep 22;269(5626):338-40 12403847 - Mol Endocrinol. 2002 Nov;16(11):2582-91 20410197 - Endocrinology. 2010 Jun;151(6):2800-10 19574395 - Endocrinology. 2009 Oct;150(10):4755-65 8276140 - Mol Cell Endocrinol. 1993 Oct;96(1-2):69-73 17937059 - J Pediatr Endocrinol Metab. 2007 Aug;20(8):853-80 19007549 - Reprod Fertil Dev. 2008;20(8):861-70 8602360 - Nucleic Acids Res. 1996 Feb 1;24(3):470-7 11579212 - Mol Endocrinol. 2001 Oct;15(10):1803-16 15761038 - Endocrinology. 2005 Jun;146(6):2674-83 9920106 - J Clin Endocrinol Metab. 1999 Jan;84(1):350-8 15342359 - Biol Reprod. 2005 Jan;72(1):78-85 1723681 - Development. 1991 Oct;113(2):689-99 21535008 - Int J Androl. 2011 Oct;34(5 Pt 2):e378-85 10813843 - Mol Reprod Dev. 2000 Jun;56(2):124-38 7671849 - Endocr Rev. 1995 Jun;16(3):271-321 10622720 - FEBS Lett. 1999 Dec 3;462(3):329-34 7137603 - Anat Rec. 1982 Aug;203(4):485-92 1920294 - J Reprod Fertil. 1991 Sep;93(1):233-43 17360365 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4961-6 2126341 - Mol Endocrinol. 1990 Apr;4(4):525-30 19341723 - Dev Biol. 2009 Jun 1;330(1):142-52 21385936 - Endocrinology. 2011 May;152(5):2076-89 20144714 - J Steroid Biochem Mol Biol. 2010 Aug;121(3-5):611-8 18713818 - J Clin Endocrinol Metab. 2008 Nov;93(11):4408-12 12773099 - Reproduction. 2003 Jun;125(6):769-84 12538611 - Endocrinology. 2003 Feb;144(2):509-17 2750675 - Am J Anat. 1989 Mar;184(3):179-89 10523039 - J Clin Endocrinol Metab. 1999 Oct;84(10):3836-44 8070367 - Endocrinology. 1994 Sep;135(3):1227-34 9294098 - J Clin Invest. 1997 Sep 15;100(6):1335-43 16540512 - Development. 2006 Apr;133(8):1495-505 15215201 - Biol Reprod. 2004 Oct;71(4):1348-58 1701137 - Endocrinology. 1990 Dec;127(6):3180-6 19392831 - Int J Androl. 2010 Jun 1;33(3):507-17 717808 - Andrologia. 1978 Jul-Aug;10(4):291-8 15642788 - J Endocrinol. 2005 Jan;184(1):107-17 11356697 - Endocrinology. 2001 Jun;142(6):2481-8 9324054 - Mol Cell Endocrinol. 1997 Sep 19;132(1-2):127-36 12903480 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2000 Jun;22(3):287-9 1464329 - EMBO J. 1992 Dec;11(13):5091-100 22514715 - PLoS One. 2012;7(4):e35136 6468765 - Dev Biol. 1984 Sep;105(1):71-9 8344214 - Endocrinology. 1993 Aug;133(2):755-60 15499637 - Prostate. 2004 Dec 1;61(4):299-304 15107499 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):6876-81 11597306 - Reproduction. 2001 Sep;122(3):419-29 8903361 - Dev Biol. 1996 Nov 1;179(2):471-84 10221590 - Endocrine. 1998 Dec;9(3):253-61 7692306 - Nature. 1993 Oct 14;365(6447):652-4 19685330 - Methods Mol Biol. 2009;558:263-77 16264094 - Reproduction. 2005 Nov;130(5):643-54 8107030 - J Reprod Fertil. 1993 Nov;99(2):479-85 2063808 - Am J Anat. 1991 May;191(1):35-47 20844538 - Nature. 2010 Sep 16;467(7313):333-7 |
| References_xml | – reference: 12909348 - Gene. 2003 Jul 17;312:125-34 – reference: 8344214 - Endocrinology. 1993 Aug;133(2):755-60 – reference: 6468765 - Dev Biol. 1984 Sep;105(1):71-9 – reference: 12403847 - Mol Endocrinol. 2002 Nov;16(11):2582-91 – reference: 198666 - Nature. 1977 Sep 22;269(5626):338-40 – reference: 20410197 - Endocrinology. 2010 Jun;151(6):2800-10 – reference: 1207739 - Nature. 1975 Dec 18;258(5536):620-2 – reference: 19741204 - Biol Reprod. 2010 Jan;82(1):202-13 – reference: 11579212 - Mol Endocrinol. 2001 Oct;15(10):1803-16 – reference: 19392831 - Int J Androl. 2010 Jun 1;33(3):507-17 – reference: 10221590 - Endocrine. 1998 Dec;9(3):253-61 – reference: 9294098 - J Clin Invest. 1997 Sep 15;100(6):1335-43 – reference: 12773099 - Reproduction. 2003 Jun;125(6):769-84 – reference: 21385936 - Endocrinology. 2011 May;152(5):2076-89 – reference: 9324054 - Mol Cell Endocrinol. 1997 Sep 19;132(1-2):127-36 – reference: 19341723 - Dev Biol. 2009 Jun 1;330(1):142-52 – reference: 19685330 - Methods Mol Biol. 2009;558:263-77 – reference: 15499637 - Prostate. 2004 Dec 1;61(4):299-304 – reference: 20144714 - J Steroid Biochem Mol Biol. 2010 Aug;121(3-5):611-8 – reference: 12538611 - Endocrinology. 2003 Feb;144(2):509-17 – reference: 19574395 - Endocrinology. 2009 Oct;150(10):4755-65 – reference: 2750675 - Am J Anat. 1989 Mar;184(3):179-89 – reference: 717808 - Andrologia. 1978 Jul-Aug;10(4):291-8 – reference: 1464329 - EMBO J. 1992 Dec;11(13):5091-100 – reference: 14701682 - Development. 2004 Jan;131(2):459-67 – reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 – reference: 15107499 - Proc Natl Acad Sci U S A. 2004 May 4;101(18):6876-81 – reference: 15761038 - Endocrinology. 2005 Jun;146(6):2674-83 – reference: 20844538 - Nature. 2010 Sep 16;467(7313):333-7 – reference: 17937059 - J Pediatr Endocrinol Metab. 2007 Aug;20(8):853-80 – reference: 8107030 - J Reprod Fertil. 1993 Nov;99(2):479-85 – reference: 10622720 - FEBS Lett. 1999 Dec 3;462(3):329-34 – reference: 14745012 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1327-32 – reference: 11597306 - Reproduction. 2001 Sep;122(3):419-29 – reference: 1701137 - Endocrinology. 1990 Dec;127(6):3180-6 – reference: 7692306 - Nature. 1993 Oct 14;365(6447):652-4 – reference: 10813843 - Mol Reprod Dev. 2000 Jun;56(2):124-38 – reference: 11356697 - Endocrinology. 2001 Jun;142(6):2481-8 – reference: 15342359 - Biol Reprod. 2005 Jan;72(1):78-85 – reference: 1920294 - J Reprod Fertil. 1991 Sep;93(1):233-43 – reference: 2063808 - Am J Anat. 1991 May;191(1):35-47 – reference: 8276140 - Mol Cell Endocrinol. 1993 Oct;96(1-2):69-73 – reference: 21535008 - Int J Androl. 2011 Oct;34(5 Pt 2):e378-85 – reference: 7671849 - Endocr Rev. 1995 Jun;16(3):271-321 – reference: 16264094 - Reproduction. 2005 Nov;130(5):643-54 – reference: 12903480 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2000 Jun;22(3):287-9 – reference: 16540512 - Development. 2006 Apr;133(8):1495-505 – reference: 8602360 - Nucleic Acids Res. 1996 Feb 1;24(3):470-7 – reference: 8070367 - Endocrinology. 1994 Sep;135(3):1227-34 – reference: 14726449 - Endocrinology. 2004 Apr;145(4):1587-93 – reference: 7137603 - Anat Rec. 1982 Aug;203(4):485-92 – reference: 10523039 - J Clin Endocrinol Metab. 1999 Oct;84(10):3836-44 – reference: 8943767 - J Endocrinol. 1996 Oct;151(1):37-48 – reference: 18713818 - J Clin Endocrinol Metab. 2008 Nov;93(11):4408-12 – reference: 19007549 - Reprod Fertil Dev. 2008;20(8):861-70 – reference: 1723681 - Development. 1991 Oct;113(2):689-99 – reference: 9920106 - J Clin Endocrinol Metab. 1999 Jan;84(1):350-8 – reference: 22623623 - Biol Reprod. 2012 Aug 23;87(2):38 – reference: 17360365 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4961-6 – reference: 7588276 - Endocrinology. 1995 Dec;136(12):5311-21 – reference: 15215201 - Biol Reprod. 2004 Oct;71(4):1348-58 – reference: 3295030 - J Histochem Cytochem. 1987 Jul;35(7):733-43 – reference: 12399534 - J Androl. 2002 Nov-Dec;23(6):870-81 – reference: 11356688 - Endocrinology. 2001 Jun;142(6):2405-8 – reference: 8903361 - Dev Biol. 1996 Nov 1;179(2):471-84 – reference: 15642788 - J Endocrinol. 2005 Jan;184(1):107-17 – reference: 2126341 - Mol Endocrinol. 1990 Apr;4(4):525-30 – reference: 22514715 - PLoS One. 2012;7(4):e35136 |
| SSID | ssj0014581 |
| Score | 2.3285155 |
| Snippet | Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 12 |
| SubjectTerms | Animals Female Follicle Stimulating Hormone - blood Gene Expression Gene Expression Regulation, Developmental Humans Male Mice Mice, Transgenic Organ Size Rats Receptors, Androgen - genetics Receptors, Androgen - metabolism Seminiferous Tubules - anatomy & histology Seminiferous Tubules - growth & development Sertoli Cells - metabolism Spermatocytes - metabolism Spermatogenesis Spermatogonia - metabolism Testis - cytology Testis - growth & development Testosterone - blood |
| Title | Temporal role of Sertoli cell androgen receptor expression in spermatogenic development |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23160479 https://www.proquest.com/docview/1273743653 |
| Volume | 27 |
| WOSCitedRecordID | wos000312904000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-EC--3w8iiLcgebRNTyKieNDFw6p7K3lCwW1XdxX99860XfYmgpeeEtom05kvM1-_IeQMYrAPXnIWVaKZsknOrLM5My5wqVTQsRH1eb7Pej09GOSPXcJt3NEqpz6xcdS-dpgjv-AQZyHapYm8HL0x7BqF1dWuhcY8WZQAZdCqs8GsigC3bw5cuVIMcFDWEd_xr5UhSmRy7OvBfwGXTZC5Xfvv462T1Q5e0qvWHjbIXKg2ydZVBUfr4Tc9pw3hs8mkb5Llh66uvkVe-q1C1StFtiGtIwUfMqlfS4qJfWpQ1QAsjYJ7DCM4pdPw1RFoK1pWFNXGAfnikNJRP-MhbZOn25v-9R3rWi4wp7SYsDSL1jlrvPWp0QEpM0ZqJ0SIgivLMy2NtQ4iHLc2BqMlF86HILjUWVBS7JCFqq7CHqExF14pGJVoCTAgMamLqAvBpfcwJdsnp9OVLMCk8XVMFeqPcTFby32y225HMWq1NwqAoymq4h_8YfYhWRFN8wpMmByRxQgfdDgmS-5zUo7fTxpbgWvv8eEH4xHLhg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+role+of+Sertoli+cell+androgen+receptor+expression+in+spermatogenic+development&rft.jtitle=Molecular+endocrinology+%28Baltimore%2C+Md.%29&rft.au=Hazra%2C+Rasmani&rft.au=Corcoran%2C+Lisa&rft.au=Robson%2C+Mat&rft.au=McTavish%2C+Kirsten+J&rft.date=2013-01-01&rft.issn=1944-9917&rft.eissn=1944-9917&rft.volume=27&rft.issue=1&rft.spage=12&rft_id=info:doi/10.1210%2Fme.2012-1219&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-9917&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-9917&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-9917&client=summon |