Denoising gravitational-wave signals from binary black holes with a dilated convolutional autoencoder

The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the GW signals and may corrupt the astrophysical informat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning: science and technology Ročník 4; číslo 3; s. 35024 - 35044
Hlavní autoři: Bacon, Philippe, Trovato, Agata, Bejger, Michał
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.09.2023
IOP Publishing Ltd
Témata:
ISSN:2632-2153, 2632-2153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the GW signals and may corrupt the astrophysical information. We study a denoising algorithm dedicated to expose the astrophysical signals by employing a convolutional neural network in the encoder-decoder configuration, i.e. apply the denoising procedure of coalescing binary black hole signals to the publicly available LIGO O1 time series strain data. The denoising convolutional autoencoder neural network is trained on a dataset of simulated astrophysical signals injected into the real detector’s noise and a dataset of detector noise artifacts (‘glitches’), and its fidelity is tested on real GW events from O1 and O2 LIGO-Virgo observing runs.
AbstractList Broadband frequency output of gravitational-wave detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the gravitational-wave signals and may corrupt the astrophysical information. We study a denoising algorithm dedicated to expose the astrophysical signals by employing a convolutional neural network in the encoder-decoder configuration, i.e. apply the denoising procedure of coalescing binary black hole signals in the publicly available LIGO O1 time series strain data. The denoising convolutional autoencoder neural network is trained on a dataset of simulated astrophysical signals injected into the real detector's noise and a dataset of detector noise artifacts ("glitches"), and its fidelity is tested on real gravitational-wave events from O1 and O2 LIGO-Virgo observing runs.
The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the GW signals and may corrupt the astrophysical information. We study a denoising algorithm dedicated to expose the astrophysical signals by employing a convolutional neural network in the encoder-decoder configuration, i.e. apply the denoising procedure of coalescing binary black hole signals to the publicly available LIGO O1 time series strain data. The denoising convolutional autoencoder neural network is trained on a dataset of simulated astrophysical signals injected into the real detector’s noise and a dataset of detector noise artifacts (‘glitches’), and its fidelity is tested on real GW events from O1 and O2 LIGO-Virgo observing runs.
Author Bejger, Michał
Trovato, Agata
Bacon, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0003-1350-2037
  surname: Bacon
  fullname: Bacon, Philippe
  organization: Université Paris Cité, CNRS, Astroparticule et Cosmologie , F-75013 Paris, France
– sequence: 2
  givenname: Agata
  surname: Trovato
  fullname: Trovato, Agata
  organization: INFN, Sezione di Trieste , I-34127 Trieste, Italy
– sequence: 3
  givenname: Michał
  orcidid: 0000-0002-4991-8213
  surname: Bejger
  fullname: Bejger, Michał
  organization: Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences , Bartycka 18, 00-716 Warszawa, Poland
BackLink https://hal.science/hal-03690648$$DView record in HAL
BookMark eNp9UctuFDEQHKEgEULuHC1xQEgZ0n7O-BgFQiKtxAXOlsePXS_e8eLxbsTf42HCUyinbrWqStVVz5uTMY2uaV5ieIuh7y-JoKQlmNNLbawE_6Q5_XU6-WN_1pxP0xYACMeUEzht3Ds3pjCFcY3WWR9D0SWkUcf2Xh8dmsK67hPyOe3QEEadv6EhavMFbVJ0E7oPZYM0siHq4iwyaTymeFgUkD6U5EaTrMsvmqe-6rjzh3nWfL55_-n6tl19_HB3fbVqDetJaQXngAUfCFBjuZey6zxYOQDptCCOWeDGOWm0lL7TcpCW9tg472sGtnOWnjV3i65Neqv2OeyqY5V0UD8OKa-VziWY6BQZMGArbA9WMCB24KL3lHbGcN8b46rWm0Vro-NfUrdXKzXfgAoJgvVHXLGvFuw-p68HNxW1TYc8R6dIzwVjjFJZUWJBmZymKTuvzEPeJesQFQY1t6nmutRcl1rarET4h_jTzyOUi4US0v63mUfgr_8D38X6CVO0vsqBMLW3nn4HQBnAVg
CODEN MLSTCK
CitedBy_id crossref_primary_10_3847_1538_4357_adbb66
crossref_primary_10_1007_s10509_025_04465_0
crossref_primary_10_1007_s41114_024_00055_8
crossref_primary_10_1103_zykf_8klg
crossref_primary_10_1088_2632_2153_add3bd
crossref_primary_10_1103_PhysRevD_111_024067
crossref_primary_10_1103_PhysRevD_111_063520
crossref_primary_10_1088_1361_6382_adfd33
crossref_primary_10_1088_1361_6382_ad40f0
crossref_primary_10_1088_2632_2153_ad8b94
crossref_primary_10_3847_1538_4357_ad4602
crossref_primary_10_1088_2632_2153_adb5ed
Cites_doi 10.1016/j.softx.2021.100657
10.1103/PhysRevX.11.021053
10.1103/PhysRevD.98.084013
10.1162/neco.1997.9.8.1735
10.3390/s20236920
10.1103/PhysRevD.95.044028
10.1007/s41114-018-0012-9
10.12942/lrr-2012-4
10.1016/j.patrec.2018.05.018
10.1109/MCSE.2007.55
10.1088/1361-6382/aa5cea
10.1088/1361-6382/ab685e
10.1103/PhysRevD.47.2198
10.1088/0264-9381/33/13/134001
10.1088/0264-9381/32/7/074001
10.1103/PhysRevD.44.3819
10.1103/PhysRevLett.120.141103
10.1002/andp.201600209
10.1103/PhysRevLett.116.061102
10.1126/science.1127647
10.1016/j.physletb.2017.12.053
10.1103/PhysRevD.94.124040
10.1103/PhysRevD.104.064046
10.1088/0264-9381/27/17/173001
10.1073/pnas.1611835114
10.3847/2041-8213/ab960f
10.1103/PhysRevD.60.022002
10.1088/2632-2153/abb93a
10.1016/j.physletb.2019.135081
10.1088/0264-9381/32/2/024001
10.1016/j.patcog.2017.10.013
10.1038/s42254-019-0097-4
10.1016/j.softx.2021.100658
10.1103/PhysRevX.9.031040
10.3847/2041-8213/ac082e
10.1088/0264-9381/32/24/245005
10.3847/2041-8213/ab75f5
10.1103/PhysRevLett.119.161101
10.1007/s13748-019-00203-0
10.1103/PhysRevD.90.084029
10.1561/2200000056
10.1088/2632-2153/abea69
10.1103/PhysRevD.95.062002
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: 2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
DOA
DOI 10.1088/2632-2153/acd90f
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physics
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_2b101d6d80d6402db568f337cc5f8cce
oai:HAL:hal-03690648v1
10_1088_2632_2153_acd90f
mlstacd90f
GrantInformation_xml – fundername: G2NET
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
1XC
ID FETCH-LOGICAL-c482t-6550165b203cd5f9977f0d9b027a62e4d05cee9ca99f7a9b9d381ceff088d7ed3
IEDL.DBID O3W
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053359200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-2153
IngestDate Tue Oct 14 19:04:53 EDT 2025
Tue Oct 14 20:12:59 EDT 2025
Sun Nov 09 07:37:13 EST 2025
Tue Nov 18 22:03:40 EST 2025
Sat Nov 29 02:22:47 EST 2025
Wed Aug 21 03:41:44 EDT 2024
Tue Aug 29 22:44:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords black hole
coalescence
gravitational radiation
LIGO
binary
noise
gravitational radiation detector
neural network
detector
non-Gaussianity
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-6550165b203cd5f9977f0d9b027a62e4d05cee9ca99f7a9b9d381ceff088d7ed3
Notes MLST-100943.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1350-2037
0000-0002-4991-8213
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/acd90f
PQID 2856444339
PQPubID 4916454
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_03690648v1
doaj_primary_oai_doaj_org_article_2b101d6d80d6402db568f337cc5f8cce
crossref_citationtrail_10_1088_2632_2153_acd90f
iop_journals_10_1088_2632_2153_acd90f
crossref_primary_10_1088_2632_2153_acd90f
proquest_journals_2856444339
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2023
Publisher IOP Publishing
IOP Publishing Ltd
Publisher_xml – name: IOP Publishing
– name: IOP Publishing Ltd
References Finn (mlstacd90fbib58) 1993; 47
Kingma (mlstacd90fbib61) 2014
Abbott (mlstacd90fbib15) 2021; 13
Biwer (mlstacd90fbib56) 2017; 95
Huerta (mlstacd90fbib19) 2019; 1
Abbott (mlstacd90fbib14) 2020; 37
van den Oord (mlstacd90fbib28) 2016
Shen (mlstacd90fbib32) 2017
Ismail Fawaz (mlstacd90fbib44) 2018
Abbott (mlstacd90fbib11) 2021
Cuoco (mlstacd90fbib22) 2020; 2
Aasi (mlstacd90fbib2) 2015; 32
Shen (mlstacd90fbib29) 2018
Kirkpatrick (mlstacd90fbib67) 2017; 114
Zevin (mlstacd90fbib55) 2017; 34
(mlstacd90fbib12) 2020
Gabbard (mlstacd90fbib20) 2018; 120
Abbott (mlstacd90fbib5) 2020; 892
Nitz (mlstacd90fbib66) 2020
Abbott (mlstacd90fbib9) 2021; 11
Abbott (mlstacd90fbib60) 2020; 37
Abbott (mlstacd90fbib13) 2018; 21
Jain (mlstacd90fbib33) 1999
Acernese (mlstacd90fbib3) 2015; 32
Torres-Forné (mlstacd90fbib24) 2018; 98
Abbott (mlstacd90fbib54) 2016; 33
Torres (mlstacd90fbib25) 2015; vol 40
Mogushi (mlstacd90fbib39) 2021; 2
Rezende (mlstacd90fbib63) 2016
Sathyaprakash (mlstacd90fbib17) 1991; 44
Goodfellow (mlstacd90fbib38) 2016
(mlstacd90fbib64) 2022
Macleod (mlstacd90fbib68) 2021; 13
Pascanu (mlstacd90fbib34) 2013
Jaranowski (mlstacd90fbib57) 2012; 15
Torres (mlstacd90fbib23) 2014; 90
Hochreiter (mlstacd90fbib35) 1997; 9
Gu (mlstacd90fbib37) 2018; 77
Abbott (mlstacd90fbib4) 2017; 119
Lopac (mlstacd90fbib40) 2020; 20
Abadie (mlstacd90fbib59) 2010; 27
Abbott (mlstacd90fbib65) 2018
Abbott (mlstacd90fbib7) 2021; 915
Abbott (mlstacd90fbib1) 2016; 116
Abbott (mlstacd90fbib6) 2020; 896
Hunter (mlstacd90fbib69) 2007; 9
Kingma (mlstacd90fbib46) 2019; 12
Jolliffe (mlstacd90fbib48) 2011
Owen (mlstacd90fbib18) 1999; 60
Hinton (mlstacd90fbib31) 2006; 313
Scherer (mlstacd90fbib51) 2010
Wei (mlstacd90fbib27) 2020; 800
Sohn (mlstacd90fbib47) 2015; vol 28
Torres-Forné (mlstacd90fbib26) 2016; 94
Dhillon (mlstacd90fbib42) 2019; 9
Nuttall (mlstacd90fbib62) 2015; 32
Abbott (mlstacd90fbib8) 2019; 9
Chatterjee (mlstacd90fbib36) 2021; 104
Lee (mlstacd90fbib49) 2000
Yao (mlstacd90fbib43) 2019; 118
Kingma (mlstacd90fbib45) 2013
Bohé (mlstacd90fbib53) 2017; 95
Wiener (mlstacd90fbib16) 1949
Abbott (mlstacd90fbib52) 2017; 529
Yu (mlstacd90fbib41) 2016
Abbott (mlstacd90fbib10) 2021
Ioffe (mlstacd90fbib50) 2015
George (mlstacd90fbib21) 2018; 778
Shen (mlstacd90fbib30) 2019
References_xml – volume: 13
  year: 2021
  ident: mlstacd90fbib68
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2021.100657
– year: 2013
  ident: mlstacd90fbib34
– volume: 11
  year: 2021
  ident: mlstacd90fbib9
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.11.021053
– volume: 98
  year: 2018
  ident: mlstacd90fbib24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.084013
– year: 2020
  ident: mlstacd90fbib66
  article-title: gwastro/pycbc: PyCBC Release (1.17.0)
– volume: 9
  start-page: 1735
  year: 1997
  ident: mlstacd90fbib35
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 20
  start-page: 6920
  year: 2020
  ident: mlstacd90fbib40
  publication-title: Sensors
  doi: 10.3390/s20236920
– volume: 95
  year: 2017
  ident: mlstacd90fbib53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.044028
– volume: 21
  start-page: 3
  year: 2018
  ident: mlstacd90fbib13
  publication-title: Living Rev. Relativ.
  doi: 10.1007/s41114-018-0012-9
– year: 1999
  ident: mlstacd90fbib33
– volume: vol 40
  start-page: p 289
  year: 2015
  ident: mlstacd90fbib25
  article-title: Split Bregman method for gravitational wave denoising
– start-page: p S14.008
  year: 2018
  ident: mlstacd90fbib29
  article-title: Denoising gravitational waves using deep learning with recurrent denoising autoencoders
– volume: 15
  start-page: 4
  year: 2012
  ident: mlstacd90fbib57
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2012-4
– volume: 118
  start-page: 14
  year: 2019
  ident: mlstacd90fbib43
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.05.018
– volume: 9
  start-page: 90
  year: 2007
  ident: mlstacd90fbib69
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 34
  year: 2017
  ident: mlstacd90fbib55
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/aa5cea
– volume: 37
  year: 2020
  ident: mlstacd90fbib14
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/ab685e
– year: 2018
  ident: mlstacd90fbib44
– year: 2020
  ident: mlstacd90fbib12
  article-title: GraceDB – gravitational-wave candidate event database
– volume: 47
  start-page: 2198
  year: 1993
  ident: mlstacd90fbib58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.2198
– year: 2017
  ident: mlstacd90fbib32
– volume: 33
  year: 2016
  ident: mlstacd90fbib54
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/33/13/134001
– year: 2018
  ident: mlstacd90fbib65
  article-title: GWTC-1: figure 10
– volume: 32
  year: 2015
  ident: mlstacd90fbib2
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/7/074001
– year: 2021
  ident: mlstacd90fbib11
– volume: 44
  start-page: 3819
  year: 1991
  ident: mlstacd90fbib17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.44.3819
– year: 2014
  ident: mlstacd90fbib61
– volume: 120
  year: 2018
  ident: mlstacd90fbib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.141103
– volume: 529
  year: 2017
  ident: mlstacd90fbib52
  publication-title: Ann. Phys., Lpz.
  doi: 10.1002/andp.201600209
– year: 2022
  ident: mlstacd90fbib64
  article-title: Gravitational wave open science center - gwtc-1 confident detection event list
– volume: 116
  year: 2016
  ident: mlstacd90fbib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 313
  start-page: 504
  year: 2006
  ident: mlstacd90fbib31
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: pp 1094
  year: 2011
  ident: mlstacd90fbib48
– start-page: pp 535
  year: 2000
  ident: mlstacd90fbib49
  article-title: Algorithms for non-negative matrix factorization
– volume: 778
  start-page: 64
  year: 2018
  ident: mlstacd90fbib21
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.053
– volume: 94
  year: 2016
  ident: mlstacd90fbib26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.124040
– volume: vol 28
  year: 2015
  ident: mlstacd90fbib47
  article-title: Learning structured output representation using deep conditional generative models
– volume: 104
  year: 2021
  ident: mlstacd90fbib36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.064046
– volume: 27
  year: 2010
  ident: mlstacd90fbib59
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/27/17/173001
– volume: 114
  start-page: 3521
  year: 2017
  ident: mlstacd90fbib67
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1611835114
– year: 2019
  ident: mlstacd90fbib30
– year: 2013
  ident: mlstacd90fbib45
– volume: 896
  start-page: L44
  year: 2020
  ident: mlstacd90fbib6
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/ab960f
– volume: 60
  year: 1999
  ident: mlstacd90fbib18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.022002
– volume: 2
  year: 2020
  ident: mlstacd90fbib22
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abb93a
– volume: 800
  year: 2020
  ident: mlstacd90fbib27
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.135081
– volume: 32
  year: 2015
  ident: mlstacd90fbib3
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/2/024001
– volume: 77
  start-page: 354
  year: 2018
  ident: mlstacd90fbib37
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– year: 2016
  ident: mlstacd90fbib63
  article-title: Variational inference with normalizing flows
– year: 2015
  ident: mlstacd90fbib50
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 1
  start-page: 600
  year: 2019
  ident: mlstacd90fbib19
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0097-4
– start-page: pp 92
  year: 2010
  ident: mlstacd90fbib51
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
– year: 2021
  ident: mlstacd90fbib10
– volume: 13
  year: 2021
  ident: mlstacd90fbib15
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2021.100658
– volume: 9
  year: 2019
  ident: mlstacd90fbib8
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.031040
– year: 2016
  ident: mlstacd90fbib38
– volume: 915
  start-page: L5
  year: 2021
  ident: mlstacd90fbib7
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac082e
– volume: 32
  year: 2015
  ident: mlstacd90fbib62
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/32/24/245005
– volume: 892
  start-page: L3
  year: 2020
  ident: mlstacd90fbib5
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/ab75f5
– year: 2016
  ident: mlstacd90fbib41
  article-title: Multi-scale context aggregation by dilated convolutions
– volume: 119
  year: 2017
  ident: mlstacd90fbib4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– volume: 9
  start-page: 85
  year: 2019
  ident: mlstacd90fbib42
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-019-00203-0
– volume: 90
  year: 2014
  ident: mlstacd90fbib23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.084029
– year: 2016
  ident: mlstacd90fbib28
– volume: 37
  year: 2020
  ident: mlstacd90fbib60
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/ab685e
– volume: 12
  start-page: 307
  year: 2019
  ident: mlstacd90fbib46
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– volume: 2
  year: 2021
  ident: mlstacd90fbib39
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abea69
– year: 1949
  ident: mlstacd90fbib16
– volume: 95
  year: 2017
  ident: mlstacd90fbib56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.062002
SSID ssj0002513520
Score 2.369351
Snippet The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated...
Broadband frequency output of gravitational-wave detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local...
SourceID doaj
hal
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35024
SubjectTerms Algorithms
Artificial neural networks
Black holes
Broadband
Coders
convolutional neural network
data analysis
Data transmission
Datasets
denoising autoencoder
Encoders-Decoders
General Relativity and Quantum Cosmology
Gravitational waves
Instrumentation and Detectors
Noise reduction
Physics
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZaxIFLWyioaQFZqBw4rLKxvbv2kdIiDgj1UCRulj22RaQ0iZIl_P3O7DqUCIleel3N7trz8MzY428Y-5ogmGiULCqXVKEqKQrXUKFrVKBBxBJAd80mmpsbfXdnfj5r9UU1YT08cM-4ofCoNKEOugw15jrBV7VOUjYAVdIAkVbfsjHPkilag9FrY2RR5nNJtKQh4ZIX6N_k0OHwyrThhzq4fvQu91QM-XY8m79YmTt3c_mBvctxIj_vx7fL3sTpHnu_7sHAs0l-ZPF7nM7GlPBz6iSUEbfdpHh0q8ipOgP1i9MlEu67q7fc05Ydp7a4S067sNzxMJ5gyBk4laBnVcR_u4d2RjCXIS722e3lj18XV0VunVCA0qItakw8RnXlRSkhVMlglJfKYDwmoa4WUYWyQu9owBmTGme8Cei5IaaErApNDPKAbU1n0_iJccxijdfSSUo9wDkdUYghNiPwBJalB2y4ZqSFPEtqbzGx3fm21pZYb4n1tmf9gJ09vTHvMTVeof1GsnmiIzTs7gHqiM06Yv-lIwN2gpLd-MbV-bWlZ-jADUZlejUasFMUvM0mvHxlRHyD7vdk2VplpaUzWqHsPCDJ4Vp7_tIJXWHsqaQ0n__HnL6wHYHxVl_udsi22sVDPGLbsGrHy8VxZw1_ANHaDhY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbWbodd1j2xbN0gDNthByOOJNvSaegeRQ9b0cMG9CZIlLQFSOMsdtO_X9JRUgQDctlVpm3ZpMiPFEUy9j5BMNEoWVQuqUJVUhSuoUTXqECDiCWAHppNNOfn-vLSXOSAW5fTKjc6cVDUoQWKkY-FrtB0KynNp8XfgrpG0e5qbqFxwO4jsplQStcPcbGNsaDtRnxR5t1JXE9jqk5eoJWTY4eTLNOONRqK9qON-UMpkQfTdvGPfh6MzunR_073MXuU4SY_WcvHE3Yvzp-yo00rB55X9jMWv8Z5O6W4AaeGRLlwt5sVN24VOSV5oJhyOovC_XCCl3uK_HHqrttxCuZyx8N0hsg1cMpkzxKN73bXfUvVMkNcPme_Tr_9_HJW5A4MBSgt-qJG_2VSV16UEkKVDILFVAbj0Zd1tYgqlBUaWQPOmNQ4401AAAAxJfzXoYlBvmCH83YeXzKOzrDxWjpJHgw4pyPKQojNBDzV3NIjNt5wwkL-SuqSMbPDNrnWlnhniXd2zbsR-7i9Y7EuzbGH9jMxd0tHRbWHgXb52-Y1aoVH_RTqoMtQo1sdfFXrJGUDUCUNEEfsHYrGzjPOTr5bGkMcYBDc6dVkxD6g5NisCbo9M-I7dFezrrfKSktbvULZRUCS441s3dHdCdar_Zdfs4cCAdk6H-6YHfbL6_iGPYBVP-2Wb4eFcgtoVBvH
  priority: 102
  providerName: ProQuest
Title Denoising gravitational-wave signals from binary black holes with a dilated convolutional autoencoder
URI https://iopscience.iop.org/article/10.1088/2632-2153/acd90f
https://www.proquest.com/docview/2856444339
https://hal.science/hal-03690648
https://doaj.org/article/2b101d6d80d6402db568f337cc5f8cce
Volume 4
WOSCitedRecordID wos001053359200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dixMxMNyHD754fmL1LEH0wYe12yS7m-DTnfY40auLKJ5PIZ9YqG1p9-qbv92Z3bRSlEPwJSxhskkmk8xHJjOEPIvOq6AEzwoTRSYKzjJToaNrEE46FnLnZJtsohqP5eWlqvfIq-1bmPkiHf0v4bMLFNyhMDnEyQFGGM-AU_GBgY7yuE8OuQQ2DsT8gX_ZGliAcYNwkaeryb813GFFbcR-YDDf0B9yH_r-43BuOc7Z0X-N9Ta5lQRNetKB3iF7YXaXHG2SONC0p--R8CbM5hO0GFBMRZRCdptp9sOsA0X3DiBQiq9QqG3f7lKLNj-KeXVXFM241FA_mYLM6in6sCdahr7NVTPHOJk-LO-Tz2ejT6_Ps5R7IXNCsiYrQXMZloVlOXe-iArExJh7ZUGLNSULwucFsFfljFKxMsoqD6zfhRhh1r4Knj8gB7P5LDwkFNRgZSU3HHUXZ4wMQAU-VENnMdqW7JHBZhm0S7PE_BhT3V6QS6kRixqxqDss9siLbYtFF5TjGthTXNktHIbTbitguXRaLs0snEy-9DL3JSjU3haljJxXzhVROhd65CnQxc4_zk_ea6wDCUCBWCfXwx55DmSg0xmwumZEdAfu-3TVaKG5xkteJvTCA8jxhvZ-wzEgciEE5-rRP_b0mNxkIJN1LnHH5KBZXoUn5IZbN5PVsk8OT0fj-mO_NUNA-a7KoLxgNZY_R_12OwFU_fai_voL0wcdvA
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbaggSXlldFSgEL0QOHVTa2d9c-IFQoVaqGqIci9Wa8fkCkkA3ZbSr-FL-RmX2kipBy64HrZrLPzzOfx-P5CHkbrFNeCR4lJohIJJxFJsNCVy-stMzH1spabCIbj-XVlbrYIn-6vTBYVtn5xNpRu8JijrzPZAKhW3CuPsx_RagahaurnYRGA4tz__sGpmzl-7MT-L5HjJ1-vvw0jFpVgcgKyaooBU4-SJOcxdy6JCggQCF2Kof5mUmZFy5OIHAoa5QKmVG5chDUrA8BxqPLvONw3m1yT2BnMSwVZBernA5wBeAzcbsaCvZ97IYeQVTlfQMvJQ5r0a8WCYCY9gNLMLcnxfyfeFAHudO9_-31PCK7LZ2mxw3-H5MtP3tC9jqpCtp6rqfEn_hZMcG8CEXBpbYxuZlGN2bpKRaxwDCkuNeG5vUOZZpjZpOienBJMVlNDXWTKTBzR7FSvx2xcG1zXRXYDdT5xTPy9U4edp_szIqZf04oTPZVLrnhOEOzxkgPWHc-G9gce4rJHul3X17b9ilRBWSq6zIAKTViRSNWdIOVHnm3-se8aT2ywfYjgmllh03D6wPF4rtufZBmOfhflzoZu1TEzOVJKgPnmbVJkNb6HnkDUFw7x_B4pPEY8BwF5FUuBz1yBEjVracrN9wRXbP7OS0rLTTXuJTNhJ47MDnssHxrdwvkg80_vyYPhpdfRnp0Nj5_QR4yIJ9N7d8h2akW1_4luW-X1aRcvKoHKSXf7hr2fwE1FXnk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RghAXylNsKWAhOHBYsrG9u_axUKIiqtADiN4srx9qpJBEyTb9-8zsOkERqELitrLG69fY8_D4G4A30XkdtBR5aaPMZSl4bmsKdA3SKcdD4Zzqkk3U47G6uNDnKc9p9xZmvkhH_3v87IGC-ylMAXFqQAjjOUoqMbDYUBEHCx_34DbhlBBbfxU_tk4WFN5YWqTryb9V3hFHHWo_CplLioncw_b_OKA7qTM6-O_-PoD7SeFkxz35Q7gVZo_gYJPMgaW9_RjCSZjNJ-Q5YJSSKEF322l-bdeBUZgHMiqj1yis6d7wsoZ8f4zy664YuXOZZX4yRd3VM4plTzyNbdurdk54mT4sn8D30advH0_zlIMhd1LxNq_QghlWZcML4XwZNaqLsfC6QWvWVjxIX5QoZrWzWsfa6kZ7VAFciBFH7uvgxVPYn81n4RkwNId1o4QVZMM4a1VAbvChHrqGULdUBoPNUhiXRkl5MqamuyhXytBMGppJ089kBu-2NRY9OMcNtB9odbd0BKvdFeCSmbRkhjd4QvnKq8JXaFj7pqxUFKJ2rozKuZDBa-SNnX-cHp8ZKkNNQKN6p9bDDN4iK5h0Fqxu6BHbofs5XbVGGmHospdLg2ySwdGG_37TcVWiEiuF0If_2NIruHt-MjJnn8dfnsM9jmpaHyV3BPvt8iq8gDtu3U5Wy5fd7vkF5fEb8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+gravitational-wave+signals+from+binary+black+holes+with+a+dilated+convolutional+autoencoder&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Bacon%2C+Philippe&rft.au=Trovato%2C+Agata&rft.au=Bejger%2C+Micha%C5%82&rft.date=2023-09-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1088%2F2632-2153%2Facd90f&rft.externalDocID=mlstacd90f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon