Denoising gravitational-wave signals from binary black holes with a dilated convolutional autoencoder
The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the GW signals and may corrupt the astrophysical informat...
Uloženo v:
| Vydáno v: | Machine learning: science and technology Ročník 4; číslo 3; s. 35024 - 35044 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.09.2023
IOP Publishing Ltd |
| Témata: | |
| ISSN: | 2632-2153, 2632-2153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the GW signals and may corrupt the astrophysical information. We study a denoising algorithm dedicated to expose the astrophysical signals by employing a convolutional neural network in the encoder-decoder configuration, i.e. apply the denoising procedure of coalescing binary black hole signals to the publicly available LIGO O1 time series strain data. The denoising convolutional autoencoder neural network is trained on a dataset of simulated astrophysical signals injected into the real detector’s noise and a dataset of detector noise artifacts (‘glitches’), and its fidelity is tested on real GW events from O1 and O2 LIGO-Virgo observing runs. |
|---|---|
| AbstractList | Broadband frequency output of gravitational-wave detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the gravitational-wave signals and may corrupt the astrophysical information. We study a denoising algorithm dedicated to expose the astrophysical signals by employing a convolutional neural network in the encoder-decoder configuration, i.e. apply the denoising procedure of coalescing binary black hole signals in the publicly available LIGO O1 time series strain data. The denoising convolutional autoencoder neural network is trained on a dataset of simulated astrophysical signals injected into the real detector's noise and a dataset of detector noise artifacts ("glitches"), and its fidelity is tested on real gravitational-wave events from O1 and O2 LIGO-Virgo observing runs. The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local disturbances and transient artifacts, which evolve on the same timescale as the GW signals and may corrupt the astrophysical information. We study a denoising algorithm dedicated to expose the astrophysical signals by employing a convolutional neural network in the encoder-decoder configuration, i.e. apply the denoising procedure of coalescing binary black hole signals to the publicly available LIGO O1 time series strain data. The denoising convolutional autoencoder neural network is trained on a dataset of simulated astrophysical signals injected into the real detector’s noise and a dataset of detector noise artifacts (‘glitches’), and its fidelity is tested on real GW events from O1 and O2 LIGO-Virgo observing runs. |
| Author | Bejger, Michał Trovato, Agata Bacon, Philippe |
| Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0003-1350-2037 surname: Bacon fullname: Bacon, Philippe organization: Université Paris Cité, CNRS, Astroparticule et Cosmologie , F-75013 Paris, France – sequence: 2 givenname: Agata surname: Trovato fullname: Trovato, Agata organization: INFN, Sezione di Trieste , I-34127 Trieste, Italy – sequence: 3 givenname: Michał orcidid: 0000-0002-4991-8213 surname: Bejger fullname: Bejger, Michał organization: Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences , Bartycka 18, 00-716 Warszawa, Poland |
| BackLink | https://hal.science/hal-03690648$$DView record in HAL |
| BookMark | eNp9UctuFDEQHKEgEULuHC1xQEgZ0n7O-BgFQiKtxAXOlsePXS_e8eLxbsTf42HCUyinbrWqStVVz5uTMY2uaV5ieIuh7y-JoKQlmNNLbawE_6Q5_XU6-WN_1pxP0xYACMeUEzht3Ds3pjCFcY3WWR9D0SWkUcf2Xh8dmsK67hPyOe3QEEadv6EhavMFbVJ0E7oPZYM0siHq4iwyaTymeFgUkD6U5EaTrMsvmqe-6rjzh3nWfL55_-n6tl19_HB3fbVqDetJaQXngAUfCFBjuZey6zxYOQDptCCOWeDGOWm0lL7TcpCW9tg472sGtnOWnjV3i65Neqv2OeyqY5V0UD8OKa-VziWY6BQZMGArbA9WMCB24KL3lHbGcN8b46rWm0Vro-NfUrdXKzXfgAoJgvVHXLGvFuw-p68HNxW1TYc8R6dIzwVjjFJZUWJBmZymKTuvzEPeJesQFQY1t6nmutRcl1rarET4h_jTzyOUi4US0v63mUfgr_8D38X6CVO0vsqBMLW3nn4HQBnAVg |
| CODEN | MLSTCK |
| CitedBy_id | crossref_primary_10_3847_1538_4357_adbb66 crossref_primary_10_1007_s10509_025_04465_0 crossref_primary_10_1007_s41114_024_00055_8 crossref_primary_10_1103_zykf_8klg crossref_primary_10_1088_2632_2153_add3bd crossref_primary_10_1103_PhysRevD_111_024067 crossref_primary_10_1103_PhysRevD_111_063520 crossref_primary_10_1088_1361_6382_adfd33 crossref_primary_10_1088_1361_6382_ad40f0 crossref_primary_10_1088_2632_2153_ad8b94 crossref_primary_10_3847_1538_4357_ad4602 crossref_primary_10_1088_2632_2153_adb5ed |
| Cites_doi | 10.1016/j.softx.2021.100657 10.1103/PhysRevX.11.021053 10.1103/PhysRevD.98.084013 10.1162/neco.1997.9.8.1735 10.3390/s20236920 10.1103/PhysRevD.95.044028 10.1007/s41114-018-0012-9 10.12942/lrr-2012-4 10.1016/j.patrec.2018.05.018 10.1109/MCSE.2007.55 10.1088/1361-6382/aa5cea 10.1088/1361-6382/ab685e 10.1103/PhysRevD.47.2198 10.1088/0264-9381/33/13/134001 10.1088/0264-9381/32/7/074001 10.1103/PhysRevD.44.3819 10.1103/PhysRevLett.120.141103 10.1002/andp.201600209 10.1103/PhysRevLett.116.061102 10.1126/science.1127647 10.1016/j.physletb.2017.12.053 10.1103/PhysRevD.94.124040 10.1103/PhysRevD.104.064046 10.1088/0264-9381/27/17/173001 10.1073/pnas.1611835114 10.3847/2041-8213/ab960f 10.1103/PhysRevD.60.022002 10.1088/2632-2153/abb93a 10.1016/j.physletb.2019.135081 10.1088/0264-9381/32/2/024001 10.1016/j.patcog.2017.10.013 10.1038/s42254-019-0097-4 10.1016/j.softx.2021.100658 10.1103/PhysRevX.9.031040 10.3847/2041-8213/ac082e 10.1088/0264-9381/32/24/245005 10.3847/2041-8213/ab75f5 10.1103/PhysRevLett.119.161101 10.1007/s13748-019-00203-0 10.1103/PhysRevD.90.084029 10.1561/2200000056 10.1088/2632-2153/abea69 10.1103/PhysRevD.95.062002 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published by IOP Publishing Ltd 2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd – notice: 2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 1XC DOA |
| DOI | 10.1088/2632-2153/acd90f |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Physics |
| EISSN | 2632-2153 |
| ExternalDocumentID | oai_doaj_org_article_2b101d6d80d6402db568f337cc5f8cce oai:HAL:hal-03690648v1 10_1088_2632_2153_acd90f mlstacd90f |
| GrantInformation_xml | – fundername: G2NET |
| GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX AEINN AFFHD CITATION PHGZM PHGZT PQGLB 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI Q9U 1XC |
| ID | FETCH-LOGICAL-c482t-6550165b203cd5f9977f0d9b027a62e4d05cee9ca99f7a9b9d381ceff088d7ed3 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053359200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2632-2153 |
| IngestDate | Tue Oct 14 19:04:53 EDT 2025 Tue Oct 14 20:12:59 EDT 2025 Sun Nov 09 07:37:13 EST 2025 Tue Nov 18 22:03:40 EST 2025 Sat Nov 29 02:22:47 EST 2025 Wed Aug 21 03:41:44 EDT 2024 Tue Aug 29 22:44:44 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | black hole coalescence gravitational radiation LIGO binary noise gravitational radiation detector neural network detector non-Gaussianity |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-6550165b203cd5f9977f0d9b027a62e4d05cee9ca99f7a9b9d381ceff088d7ed3 |
| Notes | MLST-100943.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1350-2037 0000-0002-4991-8213 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2632-2153/acd90f |
| PQID | 2856444339 |
| PQPubID | 4916454 |
| PageCount | 21 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03690648v1 doaj_primary_oai_doaj_org_article_2b101d6d80d6402db568f337cc5f8cce crossref_citationtrail_10_1088_2632_2153_acd90f iop_journals_10_1088_2632_2153_acd90f crossref_primary_10_1088_2632_2153_acd90f proquest_journals_2856444339 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Machine learning: science and technology |
| PublicationTitleAbbrev | MLST |
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
| PublicationYear | 2023 |
| Publisher | IOP Publishing IOP Publishing Ltd |
| Publisher_xml | – name: IOP Publishing – name: IOP Publishing Ltd |
| References | Finn (mlstacd90fbib58) 1993; 47 Kingma (mlstacd90fbib61) 2014 Abbott (mlstacd90fbib15) 2021; 13 Biwer (mlstacd90fbib56) 2017; 95 Huerta (mlstacd90fbib19) 2019; 1 Abbott (mlstacd90fbib14) 2020; 37 van den Oord (mlstacd90fbib28) 2016 Shen (mlstacd90fbib32) 2017 Ismail Fawaz (mlstacd90fbib44) 2018 Abbott (mlstacd90fbib11) 2021 Cuoco (mlstacd90fbib22) 2020; 2 Aasi (mlstacd90fbib2) 2015; 32 Shen (mlstacd90fbib29) 2018 Kirkpatrick (mlstacd90fbib67) 2017; 114 Zevin (mlstacd90fbib55) 2017; 34 (mlstacd90fbib12) 2020 Gabbard (mlstacd90fbib20) 2018; 120 Abbott (mlstacd90fbib5) 2020; 892 Nitz (mlstacd90fbib66) 2020 Abbott (mlstacd90fbib9) 2021; 11 Abbott (mlstacd90fbib60) 2020; 37 Abbott (mlstacd90fbib13) 2018; 21 Jain (mlstacd90fbib33) 1999 Acernese (mlstacd90fbib3) 2015; 32 Torres-Forné (mlstacd90fbib24) 2018; 98 Abbott (mlstacd90fbib54) 2016; 33 Torres (mlstacd90fbib25) 2015; vol 40 Mogushi (mlstacd90fbib39) 2021; 2 Rezende (mlstacd90fbib63) 2016 Sathyaprakash (mlstacd90fbib17) 1991; 44 Goodfellow (mlstacd90fbib38) 2016 (mlstacd90fbib64) 2022 Macleod (mlstacd90fbib68) 2021; 13 Pascanu (mlstacd90fbib34) 2013 Jaranowski (mlstacd90fbib57) 2012; 15 Torres (mlstacd90fbib23) 2014; 90 Hochreiter (mlstacd90fbib35) 1997; 9 Gu (mlstacd90fbib37) 2018; 77 Abbott (mlstacd90fbib4) 2017; 119 Lopac (mlstacd90fbib40) 2020; 20 Abadie (mlstacd90fbib59) 2010; 27 Abbott (mlstacd90fbib65) 2018 Abbott (mlstacd90fbib7) 2021; 915 Abbott (mlstacd90fbib1) 2016; 116 Abbott (mlstacd90fbib6) 2020; 896 Hunter (mlstacd90fbib69) 2007; 9 Kingma (mlstacd90fbib46) 2019; 12 Jolliffe (mlstacd90fbib48) 2011 Owen (mlstacd90fbib18) 1999; 60 Hinton (mlstacd90fbib31) 2006; 313 Scherer (mlstacd90fbib51) 2010 Wei (mlstacd90fbib27) 2020; 800 Sohn (mlstacd90fbib47) 2015; vol 28 Torres-Forné (mlstacd90fbib26) 2016; 94 Dhillon (mlstacd90fbib42) 2019; 9 Nuttall (mlstacd90fbib62) 2015; 32 Abbott (mlstacd90fbib8) 2019; 9 Chatterjee (mlstacd90fbib36) 2021; 104 Lee (mlstacd90fbib49) 2000 Yao (mlstacd90fbib43) 2019; 118 Kingma (mlstacd90fbib45) 2013 Bohé (mlstacd90fbib53) 2017; 95 Wiener (mlstacd90fbib16) 1949 Abbott (mlstacd90fbib52) 2017; 529 Yu (mlstacd90fbib41) 2016 Abbott (mlstacd90fbib10) 2021 Ioffe (mlstacd90fbib50) 2015 George (mlstacd90fbib21) 2018; 778 Shen (mlstacd90fbib30) 2019 |
| References_xml | – volume: 13 year: 2021 ident: mlstacd90fbib68 publication-title: SoftwareX doi: 10.1016/j.softx.2021.100657 – year: 2013 ident: mlstacd90fbib34 – volume: 11 year: 2021 ident: mlstacd90fbib9 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.11.021053 – volume: 98 year: 2018 ident: mlstacd90fbib24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.084013 – year: 2020 ident: mlstacd90fbib66 article-title: gwastro/pycbc: PyCBC Release (1.17.0) – volume: 9 start-page: 1735 year: 1997 ident: mlstacd90fbib35 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 20 start-page: 6920 year: 2020 ident: mlstacd90fbib40 publication-title: Sensors doi: 10.3390/s20236920 – volume: 95 year: 2017 ident: mlstacd90fbib53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.044028 – volume: 21 start-page: 3 year: 2018 ident: mlstacd90fbib13 publication-title: Living Rev. Relativ. doi: 10.1007/s41114-018-0012-9 – year: 1999 ident: mlstacd90fbib33 – volume: vol 40 start-page: p 289 year: 2015 ident: mlstacd90fbib25 article-title: Split Bregman method for gravitational wave denoising – start-page: p S14.008 year: 2018 ident: mlstacd90fbib29 article-title: Denoising gravitational waves using deep learning with recurrent denoising autoencoders – volume: 15 start-page: 4 year: 2012 ident: mlstacd90fbib57 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2012-4 – volume: 118 start-page: 14 year: 2019 ident: mlstacd90fbib43 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.05.018 – volume: 9 start-page: 90 year: 2007 ident: mlstacd90fbib69 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 34 year: 2017 ident: mlstacd90fbib55 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aa5cea – volume: 37 year: 2020 ident: mlstacd90fbib14 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ab685e – year: 2018 ident: mlstacd90fbib44 – year: 2020 ident: mlstacd90fbib12 article-title: GraceDB – gravitational-wave candidate event database – volume: 47 start-page: 2198 year: 1993 ident: mlstacd90fbib58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.2198 – year: 2017 ident: mlstacd90fbib32 – volume: 33 year: 2016 ident: mlstacd90fbib54 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/33/13/134001 – year: 2018 ident: mlstacd90fbib65 article-title: GWTC-1: figure 10 – volume: 32 year: 2015 ident: mlstacd90fbib2 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/7/074001 – year: 2021 ident: mlstacd90fbib11 – volume: 44 start-page: 3819 year: 1991 ident: mlstacd90fbib17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.44.3819 – year: 2014 ident: mlstacd90fbib61 – volume: 120 year: 2018 ident: mlstacd90fbib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.141103 – volume: 529 year: 2017 ident: mlstacd90fbib52 publication-title: Ann. Phys., Lpz. doi: 10.1002/andp.201600209 – year: 2022 ident: mlstacd90fbib64 article-title: Gravitational wave open science center - gwtc-1 confident detection event list – volume: 116 year: 2016 ident: mlstacd90fbib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 313 start-page: 504 year: 2006 ident: mlstacd90fbib31 publication-title: Science doi: 10.1126/science.1127647 – start-page: pp 1094 year: 2011 ident: mlstacd90fbib48 – start-page: pp 535 year: 2000 ident: mlstacd90fbib49 article-title: Algorithms for non-negative matrix factorization – volume: 778 start-page: 64 year: 2018 ident: mlstacd90fbib21 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.12.053 – volume: 94 year: 2016 ident: mlstacd90fbib26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.124040 – volume: vol 28 year: 2015 ident: mlstacd90fbib47 article-title: Learning structured output representation using deep conditional generative models – volume: 104 year: 2021 ident: mlstacd90fbib36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.064046 – volume: 27 year: 2010 ident: mlstacd90fbib59 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/27/17/173001 – volume: 114 start-page: 3521 year: 2017 ident: mlstacd90fbib67 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1611835114 – year: 2019 ident: mlstacd90fbib30 – year: 2013 ident: mlstacd90fbib45 – volume: 896 start-page: L44 year: 2020 ident: mlstacd90fbib6 publication-title: Astrophys. J. doi: 10.3847/2041-8213/ab960f – volume: 60 year: 1999 ident: mlstacd90fbib18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.022002 – volume: 2 year: 2020 ident: mlstacd90fbib22 publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/abb93a – volume: 800 year: 2020 ident: mlstacd90fbib27 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.135081 – volume: 32 year: 2015 ident: mlstacd90fbib3 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/2/024001 – volume: 77 start-page: 354 year: 2018 ident: mlstacd90fbib37 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – year: 2016 ident: mlstacd90fbib63 article-title: Variational inference with normalizing flows – year: 2015 ident: mlstacd90fbib50 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 1 start-page: 600 year: 2019 ident: mlstacd90fbib19 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0097-4 – start-page: pp 92 year: 2010 ident: mlstacd90fbib51 article-title: Evaluation of pooling operations in convolutional architectures for object recognition – year: 2021 ident: mlstacd90fbib10 – volume: 13 year: 2021 ident: mlstacd90fbib15 publication-title: SoftwareX doi: 10.1016/j.softx.2021.100658 – volume: 9 year: 2019 ident: mlstacd90fbib8 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.031040 – year: 2016 ident: mlstacd90fbib38 – volume: 915 start-page: L5 year: 2021 ident: mlstacd90fbib7 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac082e – volume: 32 year: 2015 ident: mlstacd90fbib62 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/32/24/245005 – volume: 892 start-page: L3 year: 2020 ident: mlstacd90fbib5 publication-title: Astrophys. J. doi: 10.3847/2041-8213/ab75f5 – year: 2016 ident: mlstacd90fbib41 article-title: Multi-scale context aggregation by dilated convolutions – volume: 119 year: 2017 ident: mlstacd90fbib4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – volume: 9 start-page: 85 year: 2019 ident: mlstacd90fbib42 publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-019-00203-0 – volume: 90 year: 2014 ident: mlstacd90fbib23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.084029 – year: 2016 ident: mlstacd90fbib28 – volume: 37 year: 2020 ident: mlstacd90fbib60 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ab685e – volume: 12 start-page: 307 year: 2019 ident: mlstacd90fbib46 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000056 – volume: 2 year: 2021 ident: mlstacd90fbib39 publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/abea69 – year: 1949 ident: mlstacd90fbib16 – volume: 95 year: 2017 ident: mlstacd90fbib56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.062002 |
| SSID | ssj0002513520 |
| Score | 2.369351 |
| Snippet | The broadband frequency output of gravitational-wave (GW) detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated... Broadband frequency output of gravitational-wave detectors is a non-stationary and non-Gaussian time series data stream dominated by noise populated by local... |
| SourceID | doaj hal proquest crossref iop |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35024 |
| SubjectTerms | Algorithms Artificial neural networks Black holes Broadband Coders convolutional neural network data analysis Data transmission Datasets denoising autoencoder Encoders-Decoders General Relativity and Quantum Cosmology Gravitational waves Instrumentation and Detectors Noise reduction Physics Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZaxIFLWyioaQFZqBw4rLKxvbv2kdIiDgj1UCRulj22RaQ0iZIl_P3O7DqUCIleel3N7trz8MzY428Y-5ogmGiULCqXVKEqKQrXUKFrVKBBxBJAd80mmpsbfXdnfj5r9UU1YT08cM-4ofCoNKEOugw15jrBV7VOUjYAVdIAkVbfsjHPkilag9FrY2RR5nNJtKQh4ZIX6N_k0OHwyrThhzq4fvQu91QM-XY8m79YmTt3c_mBvctxIj_vx7fL3sTpHnu_7sHAs0l-ZPF7nM7GlPBz6iSUEbfdpHh0q8ipOgP1i9MlEu67q7fc05Ydp7a4S067sNzxMJ5gyBk4laBnVcR_u4d2RjCXIS722e3lj18XV0VunVCA0qItakw8RnXlRSkhVMlglJfKYDwmoa4WUYWyQu9owBmTGme8Cei5IaaErApNDPKAbU1n0_iJccxijdfSSUo9wDkdUYghNiPwBJalB2y4ZqSFPEtqbzGx3fm21pZYb4n1tmf9gJ09vTHvMTVeof1GsnmiIzTs7gHqiM06Yv-lIwN2gpLd-MbV-bWlZ-jADUZlejUasFMUvM0mvHxlRHyD7vdk2VplpaUzWqHsPCDJ4Vp7_tIJXWHsqaQ0n__HnL6wHYHxVl_udsi22sVDPGLbsGrHy8VxZw1_ANHaDhY priority: 102 providerName: Directory of Open Access Journals – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBbWbodd1j2xbN0gDNthByOOJNvSaegeRQ9b0cMG9CZIlLQFSOMsdtO_X9JRUgQDctlVpm3ZpMiPFEUy9j5BMNEoWVQuqUJVUhSuoUTXqECDiCWAHppNNOfn-vLSXOSAW5fTKjc6cVDUoQWKkY-FrtB0KynNp8XfgrpG0e5qbqFxwO4jsplQStcPcbGNsaDtRnxR5t1JXE9jqk5eoJWTY4eTLNOONRqK9qON-UMpkQfTdvGPfh6MzunR_073MXuU4SY_WcvHE3Yvzp-yo00rB55X9jMWv8Z5O6W4AaeGRLlwt5sVN24VOSV5oJhyOovC_XCCl3uK_HHqrttxCuZyx8N0hsg1cMpkzxKN73bXfUvVMkNcPme_Tr_9_HJW5A4MBSgt-qJG_2VSV16UEkKVDILFVAbj0Zd1tYgqlBUaWQPOmNQ4401AAAAxJfzXoYlBvmCH83YeXzKOzrDxWjpJHgw4pyPKQojNBDzV3NIjNt5wwkL-SuqSMbPDNrnWlnhniXd2zbsR-7i9Y7EuzbGH9jMxd0tHRbWHgXb52-Y1aoVH_RTqoMtQo1sdfFXrJGUDUCUNEEfsHYrGzjPOTr5bGkMcYBDc6dVkxD6g5NisCbo9M-I7dFezrrfKSktbvULZRUCS441s3dHdCdar_Zdfs4cCAdk6H-6YHfbL6_iGPYBVP-2Wb4eFcgtoVBvH priority: 102 providerName: ProQuest |
| Title | Denoising gravitational-wave signals from binary black holes with a dilated convolutional autoencoder |
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/acd90f https://www.proquest.com/docview/2856444339 https://hal.science/hal-03690648 https://doaj.org/article/2b101d6d80d6402db568f337cc5f8cce |
| Volume | 4 |
| WOSCitedRecordID | wos001053359200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: K7- dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: PIMPY dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M2P dateStart: 20200301 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dixMxMNyHD754fmL1LEH0wYe12yS7m-DTnfY40auLKJ5PIZ9YqG1p9-qbv92Z3bRSlEPwJSxhskkmk8xHJjOEPIvOq6AEzwoTRSYKzjJToaNrEE46FnLnZJtsohqP5eWlqvfIq-1bmPkiHf0v4bMLFNyhMDnEyQFGGM-AU_GBgY7yuE8OuQQ2DsT8gX_ZGliAcYNwkaeryb813GFFbcR-YDDf0B9yH_r-43BuOc7Z0X-N9Ta5lQRNetKB3iF7YXaXHG2SONC0p--R8CbM5hO0GFBMRZRCdptp9sOsA0X3DiBQiq9QqG3f7lKLNj-KeXVXFM241FA_mYLM6in6sCdahr7NVTPHOJk-LO-Tz2ejT6_Ps5R7IXNCsiYrQXMZloVlOXe-iArExJh7ZUGLNSULwucFsFfljFKxMsoqD6zfhRhh1r4Knj8gB7P5LDwkFNRgZSU3HHUXZ4wMQAU-VENnMdqW7JHBZhm0S7PE_BhT3V6QS6kRixqxqDss9siLbYtFF5TjGthTXNktHIbTbitguXRaLs0snEy-9DL3JSjU3haljJxXzhVROhd65CnQxc4_zk_ea6wDCUCBWCfXwx55DmSg0xmwumZEdAfu-3TVaKG5xkteJvTCA8jxhvZ-wzEgciEE5-rRP_b0mNxkIJN1LnHH5KBZXoUn5IZbN5PVsk8OT0fj-mO_NUNA-a7KoLxgNZY_R_12OwFU_fai_voL0wcdvA |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbaggSXlldFSgEL0QOHVTa2d9c-IFQoVaqGqIci9Wa8fkCkkA3ZbSr-FL-RmX2kipBy64HrZrLPzzOfx-P5CHkbrFNeCR4lJohIJJxFJsNCVy-stMzH1spabCIbj-XVlbrYIn-6vTBYVtn5xNpRu8JijrzPZAKhW3CuPsx_RagahaurnYRGA4tz__sGpmzl-7MT-L5HjJ1-vvw0jFpVgcgKyaooBU4-SJOcxdy6JCggQCF2Kof5mUmZFy5OIHAoa5QKmVG5chDUrA8BxqPLvONw3m1yT2BnMSwVZBernA5wBeAzcbsaCvZ97IYeQVTlfQMvJQ5r0a8WCYCY9gNLMLcnxfyfeFAHudO9_-31PCK7LZ2mxw3-H5MtP3tC9jqpCtp6rqfEn_hZMcG8CEXBpbYxuZlGN2bpKRaxwDCkuNeG5vUOZZpjZpOienBJMVlNDXWTKTBzR7FSvx2xcG1zXRXYDdT5xTPy9U4edp_szIqZf04oTPZVLrnhOEOzxkgPWHc-G9gce4rJHul3X17b9ilRBWSq6zIAKTViRSNWdIOVHnm3-se8aT2ywfYjgmllh03D6wPF4rtufZBmOfhflzoZu1TEzOVJKgPnmbVJkNb6HnkDUFw7x_B4pPEY8BwF5FUuBz1yBEjVracrN9wRXbP7OS0rLTTXuJTNhJ47MDnssHxrdwvkg80_vyYPhpdfRnp0Nj5_QR4yIJ9N7d8h2akW1_4luW-X1aRcvKoHKSXf7hr2fwE1FXnk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RghAXylNsKWAhOHBYsrG9u_axUKIiqtADiN4srx9qpJBEyTb9-8zsOkERqELitrLG69fY8_D4G4A30XkdtBR5aaPMZSl4bmsKdA3SKcdD4Zzqkk3U47G6uNDnKc9p9xZmvkhH_3v87IGC-ylMAXFqQAjjOUoqMbDYUBEHCx_34DbhlBBbfxU_tk4WFN5YWqTryb9V3hFHHWo_CplLioncw_b_OKA7qTM6-O_-PoD7SeFkxz35Q7gVZo_gYJPMgaW9_RjCSZjNJ-Q5YJSSKEF322l-bdeBUZgHMiqj1yis6d7wsoZ8f4zy664YuXOZZX4yRd3VM4plTzyNbdurdk54mT4sn8D30advH0_zlIMhd1LxNq_QghlWZcML4XwZNaqLsfC6QWvWVjxIX5QoZrWzWsfa6kZ7VAFciBFH7uvgxVPYn81n4RkwNId1o4QVZMM4a1VAbvChHrqGULdUBoPNUhiXRkl5MqamuyhXytBMGppJ089kBu-2NRY9OMcNtB9odbd0BKvdFeCSmbRkhjd4QvnKq8JXaFj7pqxUFKJ2rozKuZDBa-SNnX-cHp8ZKkNNQKN6p9bDDN4iK5h0Fqxu6BHbofs5XbVGGmHospdLg2ySwdGG_37TcVWiEiuF0If_2NIruHt-MjJnn8dfnsM9jmpaHyV3BPvt8iq8gDtu3U5Wy5fd7vkF5fEb8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+gravitational-wave+signals+from+binary+black+holes+with+a+dilated+convolutional+autoencoder&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Bacon%2C+Philippe&rft.au=Trovato%2C+Agata&rft.au=Bejger%2C+Micha%C5%82&rft.date=2023-09-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1088%2F2632-2153%2Facd90f&rft.externalDocID=mlstacd90f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |