All-order differential equations for one-loop closed-string integrals and modular graph forms

A bstract We investigate generating functions for the integrals over world-sheet tori appearing in closed-string one-loop amplitudes of bosonic, heterotic and type-II theories. These closed-string integrals are shown to obey homogeneous and linear differential equations in the modular parameter of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2020; číslo 1; s. 64 - 74
Hlavní autoři: Gerken, Jan E., Kleinschmidt, Axel, Schlotterer, Oliver
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 2020
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1126-6708, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract We investigate generating functions for the integrals over world-sheet tori appearing in closed-string one-loop amplitudes of bosonic, heterotic and type-II theories. These closed-string integrals are shown to obey homogeneous and linear differential equations in the modular parameter of the torus. We spell out the first-order Cauchy-Riemann and second-order Laplace equations for the generating functions for any number of external states. The low-energy expansion of such torus integrals introduces infinite families of non-holomorphic modular forms known as modular graph forms. Our results generate homogeneous first- and second-order differential equations for arbitrary such modular graph forms and can be viewed as a step towards all-order low-energy expansions of closed-string integrals.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP01(2020)064