Autophagy in cancer associated fibroblasts promotes tumor cell survival Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment

Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this proc...

Full description

Saved in:
Bibliographic Details
Published in:Cell cycle (Georgetown, Tex.) Vol. 9; no. 17; pp. 3515 - 3533
Main Authors: Martinez-Outschoorn, Ubaldo E., Trimmer, Casey, Lin, Zhao, Whitaker-Menezes, Diana, Chiavarina, Barbara, Zhou, Jie, Wang, Chenguang, Pavlides, Stephanos, Martinez-Cantarin, Maria P., Capozza, Franco, Witkiewicz, Agnieszka K., Flomenberg, Neal, Howell, Anthony, Pestell, Richard G., Caro, Jaime, Lisanti, Michael P., Sotgia, Federica
Format: Journal Article
Language:English
Published: United States Taylor & Francis 01.09.2010
Landes Bioscience
Subjects:
ISSN:1538-4101, 1551-4005, 1551-4005
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB-another inducer of autophagy-prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knock-down of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (-/-) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the "Autophagic Tumor Stroma Model of Cancer Metabolism," and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a "lethal" tumor microenvironment.
AbstractList Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB—another inducer of autophagy—prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knockdown of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (−/−) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the “autophagic tumor stroma model of cancer metabolism”, and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a “lethal” tumor microenvironment.
Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB--another inducer of autophagy-prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knock-down of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (-/-) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the "Autophagic Tumor Stroma Model of Cancer Metabolism", and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a "lethal" tumor microenvironment.Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB--another inducer of autophagy-prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knock-down of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (-/-) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the "Autophagic Tumor Stroma Model of Cancer Metabolism", and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a "lethal" tumor microenvironment.
Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB--another inducer of autophagy-prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knock-down of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (-/-) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the "Autophagic Tumor Stroma Model of Cancer Metabolism", and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a "lethal" tumor microenvironment.
Author Capozza, Franco
Zhou, Jie
Pavlides, Stephanos
Caro, Jaime
Martinez-Cantarin, Maria P.
Martinez-Outschoorn, Ubaldo E.
Wang, Chenguang
Howell, Anthony
Lisanti, Michael P.
Trimmer, Casey
Whitaker-Menezes, Diana
Witkiewicz, Agnieszka K.
Sotgia, Federica
Pestell, Richard G.
Lin, Zhao
Chiavarina, Barbara
Flomenberg, Neal
AuthorAffiliation 2 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
5 Department of Pathology; Jefferson Center for Pancreatic, Biliary and Related Cancers; Thomas Jefferson University; Philadelphia, PA USA
6 Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Manchester, UK
1 Department of Medical Oncology; Thomas Jefferson University; Philadelphia, PA USA
7 Division of Hematology; Department of Medicine; Cardeza Foundation; Thomas Jefferson University; Philadelphia, PA USA
4 Division of Nephrology; Department of Medicine; Thomas Jefferson University; Philadelphia, PA USA
3 Departments of Stem Cell Biology & Regenerative Medicine and Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
AuthorAffiliation_xml – name: 5 Department of Pathology; Jefferson Center for Pancreatic, Biliary and Related Cancers; Thomas Jefferson University; Philadelphia, PA USA
– name: 7 Division of Hematology; Department of Medicine; Cardeza Foundation; Thomas Jefferson University; Philadelphia, PA USA
– name: 6 Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer; Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; Manchester, UK
– name: 2 The Jefferson Stem Cell Biology and Regenerative Medicine Center; Thomas Jefferson University; Philadelphia, PA USA
– name: 1 Department of Medical Oncology; Thomas Jefferson University; Philadelphia, PA USA
– name: 4 Division of Nephrology; Department of Medicine; Thomas Jefferson University; Philadelphia, PA USA
– name: 3 Departments of Stem Cell Biology & Regenerative Medicine and Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
Author_xml – sequence: 1
  givenname: Ubaldo E.
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E.
– sequence: 2
  givenname: Casey
  surname: Trimmer
  fullname: Trimmer, Casey
– sequence: 3
  givenname: Zhao
  surname: Lin
  fullname: Lin, Zhao
– sequence: 4
  givenname: Diana
  surname: Whitaker-Menezes
  fullname: Whitaker-Menezes, Diana
– sequence: 5
  givenname: Barbara
  surname: Chiavarina
  fullname: Chiavarina, Barbara
– sequence: 6
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
– sequence: 7
  givenname: Chenguang
  surname: Wang
  fullname: Wang, Chenguang
– sequence: 8
  givenname: Stephanos
  surname: Pavlides
  fullname: Pavlides, Stephanos
– sequence: 9
  givenname: Maria P.
  surname: Martinez-Cantarin
  fullname: Martinez-Cantarin, Maria P.
– sequence: 10
  givenname: Franco
  surname: Capozza
  fullname: Capozza, Franco
– sequence: 11
  givenname: Agnieszka K.
  surname: Witkiewicz
  fullname: Witkiewicz, Agnieszka K.
– sequence: 12
  givenname: Neal
  surname: Flomenberg
  fullname: Flomenberg, Neal
– sequence: 13
  givenname: Anthony
  surname: Howell
  fullname: Howell, Anthony
– sequence: 14
  givenname: Richard G.
  surname: Pestell
  fullname: Pestell, Richard G.
– sequence: 15
  givenname: Jaime
  surname: Caro
  fullname: Caro, Jaime
– sequence: 16
  givenname: Michael P.
  surname: Lisanti
  fullname: Lisanti, Michael P.
  email: federica.sotgia@jefferson.edu
– sequence: 17
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  email: federica.sotgia@jefferson.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20855962$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1rFDEYDlKxH3r0KnPzNGsy-b4IZdFaKPSi55BJMt1IZjImmZX9983u1kWL4imBPF_v--QSnE1xcgC8RXBFEEMfjFnJFeIr1MlOvAAXiFLUEgjp2f6ORUsQROfgMufvEHaCS_QKnHdQUCpZdwFurpcS541-2DV-aoyejEuNzjkar4uzzeD7FPugc8nNnOIYi8tNWcaYGuNCaPKStn6rw2vwctAhuzdP5xX49vnT1_WX9u7-5nZ9fdcaIrrSYsdIL6CkuGd9p6Ek1EqOxNBzwTS11klGrRB24DUg4RANkguqMWd1FojxFfh41J2XfnTWuKkkHdSc_KjTTkXt1Z8vk9-oh7hVGBLOEK8C758EUvyxuFzU6PN-FD25uGTFKWMM4oPVu9-tTh6_llcB7RFgUsw5ueEEQVDty1HGKKkQV4dyKh4_wxtfdPFxn9SHf7LIkVUTWpd7H7PxrvZ0crtfSjabGNO0Xh-Isx0qDf6HVm10Kt4Ed3ISR4qfhphG_TOmYFXRuxDTkOrX8Fnhv4d8BAwVy6g
CitedBy_id crossref_primary_10_1089_ars_2013_5292
crossref_primary_10_3390_ph8040675
crossref_primary_10_3389_fimmu_2024_1308070
crossref_primary_10_3389_fcell_2020_00282
crossref_primary_10_1308_rcsann_2017_0024
crossref_primary_10_4161_cc_9_17_12908
crossref_primary_10_1002_jcb_24303
crossref_primary_10_1016_j_bbcan_2023_189029
crossref_primary_10_1146_annurev_pathol_011811_120856
crossref_primary_10_1007_s10330_022_0573_3
crossref_primary_10_1111_j_1349_7006_2011_01985_x
crossref_primary_10_1186_s12885_016_2270_9
crossref_primary_10_3390_ijms18092016
crossref_primary_10_3389_fonc_2016_00226
crossref_primary_10_1016_j_bbadis_2012_10_013
crossref_primary_10_1053_j_seminoncol_2013_04_016
crossref_primary_10_1158_0008_5472_CAN_16_0425
crossref_primary_10_3389_fonc_2017_00211
crossref_primary_10_1186_s13046_020_01611_0
crossref_primary_10_1002_pmic_201700167
crossref_primary_10_3390_cancers6031363
crossref_primary_10_1038_aps_2015_159
crossref_primary_10_1080_15548627_2016_1196317
crossref_primary_10_1177_1010428318756203
crossref_primary_10_1038_leu_2015_289
crossref_primary_10_3390_cancers11081191
crossref_primary_10_3390_biomedicines5020029
crossref_primary_10_3389_fonc_2015_00158
crossref_primary_10_1007_s13402_023_00884_9
crossref_primary_10_4161_cc_10_13_16227
crossref_primary_10_1002_1878_0261_13077
crossref_primary_10_1111_exd_14063
crossref_primary_10_1186_s13630_016_0027_3
crossref_primary_10_3389_fcell_2023_1089068
crossref_primary_10_1371_journal_pone_0097580
crossref_primary_10_3390_metabo12030213
crossref_primary_10_3892_ol_2012_1015
crossref_primary_10_1080_07357907_2019_1651328
crossref_primary_10_1186_s12885_015_1030_6
crossref_primary_10_4161_cc_22776
crossref_primary_10_3390_ijms18061297
crossref_primary_10_1038_s41598_017_13006_x
crossref_primary_10_3390_jcm6010007
crossref_primary_10_1186_bcr3472
crossref_primary_10_4161_cc_10_23_18254
crossref_primary_10_1016_j_pan_2011_11_003
crossref_primary_10_1007_s10911_018_9402_6
crossref_primary_10_1016_j_celrep_2025_115432
crossref_primary_10_3390_cells8030234
crossref_primary_10_1093_carcin_bgv067
crossref_primary_10_4161_cc_10_12_16002
crossref_primary_10_3390_metabo15040221
crossref_primary_10_1139_bcb_2015_0120
crossref_primary_10_3390_cells13050408
crossref_primary_10_1016_j_biopha_2018_03_165
crossref_primary_10_1080_07853890_2023_2241472
crossref_primary_10_4161_cc_20920
crossref_primary_10_1002_2211_5463_12628
crossref_primary_10_4161_cc_22786
crossref_primary_10_1002_cbin_11326
crossref_primary_10_1155_2019_6240505
crossref_primary_10_4161_cc_24289
crossref_primary_10_1242_dmm_028332
crossref_primary_10_1038_s41420_024_02226_6
crossref_primary_10_1186_s13046_019_1172_5
crossref_primary_10_1038_s41598_025_07201_4
crossref_primary_10_3389_fcell_2020_00630
crossref_primary_10_1016_j_bbcan_2020_188443
crossref_primary_10_1007_s00109_014_1124_7
crossref_primary_10_1186_s12935_021_02121_5
crossref_primary_10_1016_j_addr_2014_09_009
crossref_primary_10_1177_1758834014521111
crossref_primary_10_1016_j_jbior_2014_05_003
crossref_primary_10_3390_ijms19123773
crossref_primary_10_3390_ijms21155486
crossref_primary_10_4161_cc_10_23_18151
crossref_primary_10_1189_jlb_3HI0715_305R
crossref_primary_10_1016_j_bbrc_2016_10_088
crossref_primary_10_1016_j_pharmthera_2011_03_009
crossref_primary_10_3390_cancers14020322
crossref_primary_10_3390_cancers14092291
crossref_primary_10_3390_v9120389
crossref_primary_10_1038_nrc3915
crossref_primary_10_2174_0929867331666230719142202
crossref_primary_10_1007_s11626_018_0231_0
crossref_primary_10_1016_j_molmed_2013_05_002
crossref_primary_10_1074_jbc_RA118_002727
crossref_primary_10_1186_s13058_022_01548_6
crossref_primary_10_4161_cc_10_8_15330
crossref_primary_10_1016_j_clcc_2017_10_013
crossref_primary_10_4161_cc_10_13_16233
crossref_primary_10_1186_s13045_021_01087_1
crossref_primary_10_1186_1741_7015_9_62
crossref_primary_10_3389_fonc_2022_862743
crossref_primary_10_4161_cc_10_11_15659
crossref_primary_10_3389_fendo_2022_1044670
crossref_primary_10_3389_fimmu_2025_1648757
crossref_primary_10_1158_1078_0432_CCR_12_2123
crossref_primary_10_4161_cc_11_6_19530
crossref_primary_10_4161_cc_9_21_13817
crossref_primary_10_3892_or_2016_4660
crossref_primary_10_1038_s41568_019_0222_9
crossref_primary_10_1002_med_21531
crossref_primary_10_1016_j_semcancer_2013_06_007
crossref_primary_10_1007_s00404_021_06137_0
crossref_primary_10_1155_2016_1716341
crossref_primary_10_3389_fendo_2023_1083048
crossref_primary_10_3390_cancers13040864
crossref_primary_10_1186_s12943_016_0558_7
crossref_primary_10_1042_BCJ20170164
crossref_primary_10_4161_cc_21884
crossref_primary_10_1002_biot_201600084
crossref_primary_10_1007_s10555_011_9340_x
crossref_primary_10_4161_cc_21643
crossref_primary_10_1042_BCJ20170847
crossref_primary_10_3892_ijmm_2017_3267
crossref_primary_10_1155_2021_6645220
crossref_primary_10_1016_j_brainresbull_2019_09_012
crossref_primary_10_1089_ars_2019_7898
crossref_primary_10_1016_j_mad_2011_11_001
crossref_primary_10_1016_j_biocel_2011_01_023
crossref_primary_10_1016_j_coisb_2021_100377
crossref_primary_10_4161_cc_11_2_19006
crossref_primary_10_1038_bjc_2013_768
crossref_primary_10_1042_BCJ20210676
crossref_primary_10_3390_biomedicines9121942
crossref_primary_10_1002_jnr_23431
crossref_primary_10_1007_s13277_014_2156_x
crossref_primary_10_1038_onc_2011_220
crossref_primary_10_3389_fonc_2018_00331
crossref_primary_10_4161_cc_25695
crossref_primary_10_1016_j_semcancer_2015_09_011
crossref_primary_10_1155_2014_375325
crossref_primary_10_1016_j_bbrc_2024_150308
crossref_primary_10_4103_sjg_SJG_483_16
crossref_primary_10_3390_cells13050447
crossref_primary_10_1038_s41419_022_05351_1
crossref_primary_10_3390_biomedicines11041130
crossref_primary_10_3390_ijms21010080
crossref_primary_10_1016_j_lfs_2015_04_012
crossref_primary_10_3389_fimmu_2021_767939
crossref_primary_10_1007_s12032_024_02417_2
crossref_primary_10_1016_j_jsbmb_2011_12_004
crossref_primary_10_1016_j_omto_2021_10_005
crossref_primary_10_2147_OTT_S312003
crossref_primary_10_4161_cc_21384
crossref_primary_10_1016_j_toxrep_2024_101863
crossref_primary_10_4161_cc_10_15_16584
crossref_primary_10_4161_cc_10_15_16585
crossref_primary_10_1080_2162402X_2021_1950953
crossref_primary_10_3389_fphar_2023_1237456
crossref_primary_10_1007_s10585_014_9645_6
crossref_primary_10_1038_cddis_2016_202
crossref_primary_10_3390_cancers17010155
crossref_primary_10_3390_ijms22062981
crossref_primary_10_1016_j_ceb_2017_05_006
crossref_primary_10_1111_odi_13652
crossref_primary_10_1007_s13402_021_00604_1
crossref_primary_10_1016_j_drup_2021_100752
crossref_primary_10_1038_srep10867
crossref_primary_10_1016_j_cmet_2019_01_015
crossref_primary_10_3389_fcell_2023_1274682
crossref_primary_10_1186_s12967_025_06831_6
crossref_primary_10_1080_15384101_2016_1252882
crossref_primary_10_1016_j_biomaterials_2018_01_023
crossref_primary_10_1053_j_seminoncol_2017_10_004
crossref_primary_10_1186_s40170_016_0149_5
crossref_primary_10_1089_ars_2011_4243
crossref_primary_10_1016_j_freeradbiomed_2022_10_271
crossref_primary_10_1089_ars_2011_4367
crossref_primary_10_3390_ijms221910874
crossref_primary_10_1007_s13277_013_1167_3
crossref_primary_10_4161_cc_25510
crossref_primary_10_1002_jcp_30419
crossref_primary_10_3390_ani12010020
crossref_primary_10_1016_j_bcp_2023_115464
crossref_primary_10_1111_hel_12944
crossref_primary_10_3389_fceld_2024_1337724
crossref_primary_10_3390_cancers12092349
crossref_primary_10_1002_ctm2_2
crossref_primary_10_1002_mc_23233
crossref_primary_10_1016_j_bbadis_2021_166262
crossref_primary_10_1016_j_drup_2025_101273
crossref_primary_10_1016_j_trsl_2017_07_004
crossref_primary_10_1155_2014_603980
crossref_primary_10_1007_s00408_014_9639_9
crossref_primary_10_1016_j_biopha_2023_114762
crossref_primary_10_1002_rmb2_12577
crossref_primary_10_1016_j_cbi_2021_109602
crossref_primary_10_3389_fonc_2020_572904
crossref_primary_10_1038_s41388_018_0423_9
crossref_primary_10_1016_j_ajpath_2012_03_017
crossref_primary_10_1016_j_critrevonc_2025_104820
crossref_primary_10_1038_s41419_018_0795_3
crossref_primary_10_1080_15548627_2018_1450020
crossref_primary_10_1016_j_yexmp_2018_11_014
crossref_primary_10_1186_2049_3002_2_2
crossref_primary_10_1038_nrclinonc_2016_60
crossref_primary_10_1186_s12964_023_01129_w
crossref_primary_10_1186_1475_2867_12_6
crossref_primary_10_1016_j_bbadis_2024_167164
crossref_primary_10_1002_iub_2569
crossref_primary_10_1080_15548627_2016_1203483
crossref_primary_10_1186_1471_2407_14_1
crossref_primary_10_4161_cc_22820
crossref_primary_10_1101_gad_345629_120
crossref_primary_10_4161_cc_10_24_18487
crossref_primary_10_1186_bcr2892
crossref_primary_10_1007_s00428_019_02735_1
crossref_primary_10_1002_1873_3468_70139
crossref_primary_10_3892_ol_2014_2385
crossref_primary_10_1016_j_matbio_2024_06_004
crossref_primary_10_4161_cc_10_11_15674
crossref_primary_10_1080_15384101_2018_1520566
crossref_primary_10_4161_cc_10_11_15675
crossref_primary_10_1007_s13277_013_0707_1
crossref_primary_10_3390_ph13070156
crossref_primary_10_1016_j_canlet_2014_07_028
crossref_primary_10_1016_j_semcancer_2014_01_005
crossref_primary_10_4161_cc_22316
crossref_primary_10_1155_2017_7454031
crossref_primary_10_1186_1476_4598_12_93
crossref_primary_10_3390_ijms232415576
crossref_primary_10_3389_fonc_2017_00081
crossref_primary_10_1053_j_seminoncol_2014_03_002
crossref_primary_10_3389_fonc_2018_00625
crossref_primary_10_3389_fonc_2021_603224
crossref_primary_10_1186_s43556_024_00233_8
crossref_primary_10_3390_cells12232742
crossref_primary_10_1080_01652176_2024_2419585
crossref_primary_10_1172_JCI191943
crossref_primary_10_1038_s41388_019_0805_7
crossref_primary_10_1002_adbi_202200233
crossref_primary_10_1016_j_ijpharm_2020_119882
crossref_primary_10_3389_fimmu_2017_00939
crossref_primary_10_1038_onc_2013_121
crossref_primary_10_1186_s13578_015_0005_2
crossref_primary_10_3390_metabo15030203
crossref_primary_10_4161_auto_28773
crossref_primary_10_1080_10715762_2018_1489133
crossref_primary_10_3390_cancers13133146
crossref_primary_10_1186_s13046_021_02046_x
crossref_primary_10_1186_s40364_020_00257_6
crossref_primary_10_1007_s13277_014_2482_z
crossref_primary_10_1016_j_mad_2015_04_003
crossref_primary_10_1016_j_fct_2021_112159
crossref_primary_10_4161_cc_19841
crossref_primary_10_1002_ijc_27664
crossref_primary_10_3389_fonc_2021_700629
crossref_primary_10_1002_ijc_31369
crossref_primary_10_3389_fonc_2022_924290
crossref_primary_10_1016_j_imbio_2015_06_018
crossref_primary_10_1016_j_prp_2023_154723
crossref_primary_10_3390_ijms131113764
crossref_primary_10_18632_oncotarget_26078
crossref_primary_10_1186_s12943_025_02297_8
crossref_primary_10_1016_j_bbcan_2014_06_002
crossref_primary_10_3390_cancers14010020
crossref_primary_10_3892_or_2021_8159
crossref_primary_10_1186_1471_2407_13_500
crossref_primary_10_3390_cancers6031570
crossref_primary_10_1155_2022_5277440
crossref_primary_10_1016_j_semcdb_2015_02_013
crossref_primary_10_4161_cc_20718
crossref_primary_10_1007_s12032_024_02525_z
crossref_primary_10_4161_cc_20717
crossref_primary_10_3389_fcell_2021_622908
crossref_primary_10_3892_or_2013_2828
crossref_primary_10_1080_14789450_2018_1500902
crossref_primary_10_4161_cc_22226
crossref_primary_10_1073_pnas_1112129109
crossref_primary_10_1172_JCI143763
crossref_primary_10_1080_09553002_2022_2063432
crossref_primary_10_1080_15592294_2016_1140295
crossref_primary_10_4161_cc_10_15_16870
crossref_primary_10_1002_adhm_201300294
crossref_primary_10_1016_j_semcancer_2015_02_007
crossref_primary_10_1242_dmm_021071
crossref_primary_10_3390_vaccines8020172
crossref_primary_10_3892_mmr_2017_7804
crossref_primary_10_3389_fcell_2020_00796
crossref_primary_10_3389_fbioe_2025_1547757
crossref_primary_10_3892_ol_2014_2225
Cites_doi 10.1073/pnas.92.5.1381
10.4161/auto.6.6.12574
10.1016/j.cell.2007.12.018
10.1074/jbc.M112274200
10.1073/pnas.0602235103
10.1016/j.cmet.2006.01.012
10.4161/cc.9.11.11848
10.1074/jbc.M001914200
10.1128/MCB.00166-09
10.1038/sj.cdd.4401838
10.4161/cbt.7.8.6220
10.4161/cc.8.23.10238
10.4161/cbt.8.11.8874
10.4161/auto.8822
10.2353/ajpath.2009.080658
10.1038/45257
10.4161/cbt.10.2.11983
10.1016/j.cmet.2006.02.002
10.1002/pros.20946
10.1016/j.cell.2006.05.036
10.2353/ajpath.2007.060661
10.1016/j.humpath.2008.06.018
10.1158/0008-5472.CAN-05-1235
10.1074/jbc.M205948200
10.4161/cc.9.16.12553
10.2353/ajpath.2009.080653
10.1002/emmm.201000073
10.1016/S0046-8177(96)90214-2
10.1128/MCB.25.17.7546-7556.2005
10.1002/hep.22753
10.1152/jn.1972.35.4.405
10.1073/pnas.95.20.11715
10.1016/j.cbi.2005.12.009
10.4161/cc.8.11.8544
10.2353/ajpath.2009.080873
10.1074/jbc.272.36.22642
10.4161/cc.9.12.12048
10.1074/jbc.M008340200
10.1038/nature06905
10.1158/1541-7786.MCR-07-0309
10.1074/jbc.M110970200
10.1016/j.ccr.2009.12.041
10.1016/j.cmet.2005.05.001
10.1093/emboj/17.22.6633
10.1113/jphysiol.2003.058131
10.1038/nrc1877
10.1158/0008-5472.CAN-07-5127
10.4161/cc.9.17.12721
10.2353/ajpath.2009.080924
10.1097/01.ju.0000138082.68045.48
10.4161/auto.8788
10.1074/jbc.M800102200
10.1038/emboj.2009.242
10.1016/j.bbrc.2005.08.111
10.1042/bj20021279
10.1038/emboj.2009.364
10.1111/j.1582-4934.2008.00615.x
10.1016/S0891-5849(00)00364-6
10.1038/nrc2618
10.1128/MCB.01396-08
10.1016/j.molcel.2004.08.025
10.1158/0008-5472.CAN-09-2211
10.1158/1078-0432.CCR-08-0732
10.1038/sj.onc.1209937
10.1074/jbc.272.26.16374
10.1038/sj.onc.1201661
ContentType Journal Article
Copyright Copyright © 2010 Landes Bioscience 2010
Copyright_xml – notice: Copyright © 2010 Landes Bioscience 2010
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4161/cc.9.17.12928
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-4005
EndPage 3533
ExternalDocumentID PMC3047617
20855962
10_4161_cc_9_17_12928
10912928
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR055660
– fundername: NCI NIH HHS
  grantid: R01 CA120876
– fundername: NCI NIH HHS
  grantid: R01 CA080250
– fundername: NCI NIH HHS
  grantid: R01 CA075503
– fundername: NCI NIH HHS
  grantid: P30 CA056036
– fundername: NCI NIH HHS
  grantid: R01-CA-75503
– fundername: NCI NIH HHS
  grantid: R01-CA-86072
– fundername: NCI NIH HHS
  grantid: P30-CA-56036
– fundername: NCI NIH HHS
  grantid: R01-CA-120876
– fundername: NCI NIH HHS
  grantid: R01-CA-080250
GroupedDBID ---
0BK
0R~
0YH
29B
30N
4.4
53G
5GY
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACFTK
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
F5P
GTTXZ
H13
HYE
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
UNR
V1K
ZA5
AAGME
AAYXX
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CITATION
CWRZV
EMOBN
IPNFZ
LJTGL
PCLFJ
RIG
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c482t-3e64b80953b6b2a0945d9718fb786a5dde965d88df75594701f9785a376538033
IEDL.DBID TFW
ISICitedReferencesCount 351
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281621700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4101
1551-4005
IngestDate Tue Nov 04 01:57:39 EST 2025
Thu Oct 02 10:30:34 EDT 2025
Wed Feb 19 02:31:20 EST 2025
Sat Nov 29 03:33:06 EST 2025
Tue Nov 18 22:06:57 EST 2025
Fri Jan 15 03:37:36 EST 2021
Tue May 21 11:32:56 EDT 2019
Mon Oct 20 23:42:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-3e64b80953b6b2a0945d9718fb786a5dde965d88df75594701f9785a376538033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.4161/cc.9.17.12928
PMID 20855962
PQID 756660303
PQPubID 23479
PageCount 19
ParticipantIDs pubmed_primary_20855962
proquest_miscellaneous_756660303
crossref_primary_10_4161_cc_9_17_12928
crossref_citationtrail_10_4161_cc_9_17_12928
informaworld_taylorfrancis_310_4161_cc_9_17_12928
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3047617
landesbioscience_primary_cc_article_12928
PublicationCentury 2000
PublicationDate 9/1/2010
2010/09/01
2010-09-00
2010-Sep-01
20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 9/1/2010
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2010
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References R63
R62
R21
R20
R64
R23
R22
R25
R24
R68
R27
R26
R29
R28
Zhao H (R60) 2009; 69
R1
R2
R3
R4
Sato T (R65) 1968; 17
R6
R7
R30
Stathopoulos GT (R49) 2008; 6
R32
R31
R34
R33
R36
Gherghiceanu M (R53) 2009; 13
R35
R38
R37
R39
Jung Y (R15) 2003; 370
Singh H (R61) 2004; 172
Kong D (R41) 2005; 65
Mills E (R8) 1972; 35
Moles A (R59) 2009; 49
Razani B (R45) 2002; 277
R40
R43
R42
R44
R47
R46
Perkins ND (R13) 2006; 25
R48
Mueller L (R51) 2007; 171
Hanai J (R67) 2002; 277
Schofield CJ (R5) 2005; 338
R50
An J (R18) 2005; 25
R52
R10
R54
R12
R56
R11
R55
R14
R58
R57
R16
Schubert W (R66) 2002; 277
R17
Wyatt CN (R9) 2004; 556
R19
References_xml – ident: R28
  doi: 10.1073/pnas.92.5.1381
– ident: R54
  doi: 10.4161/auto.6.6.12574
– ident: R26
  doi: 10.1016/j.cell.2007.12.018
– volume: 277
  start-page: 16464
  year: 2002
  ident: R67
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112274200
– ident: R14
  doi: 10.1073/pnas.0602235103
– ident: R1
  doi: 10.1016/j.cmet.2006.01.012
– ident: R44
  doi: 10.4161/cc.9.11.11848
– ident: R11
  doi: 10.1074/jbc.M001914200
– ident: R24
  doi: 10.1128/MCB.00166-09
– ident: R12
  doi: 10.1038/sj.cdd.4401838
– ident: R32
  doi: 10.4161/cbt.7.8.6220
– ident: R63
  doi: 10.4161/cc.8.23.10238
– ident: R36
  doi: 10.4161/cbt.8.11.8874
– ident: R22
  doi: 10.4161/auto.8822
– ident: R64
  doi: 10.2353/ajpath.2009.080658
– ident: R25
  doi: 10.1038/45257
– ident: R35
  doi: 10.4161/cbt.10.2.11983
– ident: R2
  doi: 10.1016/j.cmet.2006.02.002
– volume: 69
  start-page: 991
  year: 2009
  ident: R60
  publication-title: Prostate
  doi: 10.1002/pros.20946
– ident: R43
  doi: 10.1016/j.cell.2006.05.036
– volume: 171
  start-page: 1608
  year: 2007
  ident: R51
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2007.060661
– ident: R55
  doi: 10.1016/j.humpath.2008.06.018
– volume: 65
  start-page: 9047
  year: 2005
  ident: R41
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1235
– volume: 277
  start-page: 40091
  year: 2002
  ident: R66
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M205948200
– ident: R39
  doi: 10.4161/cc.9.16.12553
– ident: R68
  doi: 10.2353/ajpath.2009.080653
– ident: R48
  doi: 10.1002/emmm.201000073
– volume: 17
  start-page: 158
  year: 1968
  ident: R65
  publication-title: J Electron Microsc (Tokyo)
– ident: R57
  doi: 10.1016/S0046-8177(96)90214-2
– volume: 25
  start-page: 7546
  year: 2005
  ident: R18
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.17.7546-7556.2005
– volume: 49
  start-page: 1297
  year: 2009
  ident: R59
  publication-title: Hepatology
  doi: 10.1002/hep.22753
– volume: 35
  start-page: 405
  year: 1972
  ident: R8
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1972.35.4.405
– ident: R10
  doi: 10.1073/pnas.95.20.11715
– ident: R6
  doi: 10.1016/j.cbi.2005.12.009
– ident: R37
  doi: 10.4161/cc.8.11.8544
– ident: R33
  doi: 10.2353/ajpath.2009.080873
– ident: R3
  doi: 10.1074/jbc.272.36.22642
– ident: R40
  doi: 10.4161/cc.9.12.12048
– ident: R62
  doi: 10.1074/jbc.M008340200
– ident: R16
  doi: 10.1038/nature06905
– volume: 6
  start-page: 364
  year: 2008
  ident: R49
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-07-0309
– volume: 277
  start-page: 8635
  year: 2002
  ident: R45
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110970200
– ident: R52
  doi: 10.1016/j.ccr.2009.12.041
– ident: R4
  doi: 10.1016/j.cmet.2005.05.001
– ident: R31
  doi: 10.1093/emboj/17.22.6633
– volume: 556
  start-page: 175
  year: 2004
  ident: R9
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.058131
– ident: R38
  doi: 10.4161/cc.8.23.10238
– ident: R27
  doi: 10.1038/nrc1877
– ident: R58
  doi: 10.1158/0008-5472.CAN-07-5127
– ident: R46
  doi: 10.4161/cc.9.17.12721
– ident: R34
  doi: 10.2353/ajpath.2009.080924
– volume: 172
  start-page: 2421
  year: 2004
  ident: R61
  publication-title: J Urol
  doi: 10.1097/01.ju.0000138082.68045.48
– ident: R23
  doi: 10.4161/auto.8788
– ident: R19
  doi: 10.1074/jbc.M800102200
– ident: R42
  doi: 10.1038/emboj.2009.242
– volume: 338
  start-page: 617
  year: 2005
  ident: R5
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.08.111
– volume: 370
  start-page: 1011
  year: 2003
  ident: R15
  publication-title: Biochem J
  doi: 10.1042/bj20021279
– ident: R20
  doi: 10.1038/emboj.2009.364
– volume: 13
  start-page: 202
  year: 2009
  ident: R53
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2008.00615.x
– ident: R47
  doi: 10.1016/S0891-5849(00)00364-6
– ident: R50
  doi: 10.1038/nrc2618
– ident: R21
  doi: 10.1128/MCB.01396-08
– ident: R7
  doi: 10.1016/j.molcel.2004.08.025
– ident: R17
  doi: 10.1158/0008-5472.CAN-09-2211
– ident: R56
  doi: 10.1158/1078-0432.CCR-08-0732
– volume: 25
  start-page: 6717
  year: 2006
  ident: R13
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209937
– ident: R29
  doi: 10.1074/jbc.272.26.16374
– ident: R30
  doi: 10.1038/sj.onc.1201661
SSID ssj0028791
Score 2.4922633
Snippet Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts,...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3515
SubjectTerms Animals
Antirheumatic Agents - pharmacology
Apoptosis Regulatory Proteins
Autophagy
Binding
Biology
Bioscience
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Calcium
Cancer
Caveolin 1 - genetics
Caveolin 1 - metabolism
Cell
Cell Hypoxia
Cell Line, Tumor
Cell Survival
Chloroquine - pharmacology
Coculture Techniques
Cycle
Female
Fibroblasts - metabolism
Glutathione Synthase - antagonists & inhibitors
Glutathione Synthase - metabolism
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Intracellular Signaling Peptides and Proteins - metabolism
Landes
Membrane Proteins - metabolism
Mice
Mice, Knockout
Microtubule-Associated Proteins - metabolism
NF-kappa B - metabolism
Organogenesis
Oxidative Stress
Paracrine Communication
Proteins
Proto-Oncogene Proteins - metabolism
RNA Interference
RNA, Small Interfering - metabolism
Stromal Cells - metabolism
Tumor Microenvironment
Tumor Suppressor Proteins - metabolism
Up-Regulation
Subtitle Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment
Title Autophagy in cancer associated fibroblasts promotes tumor cell survival
URI https://www.tandfonline.com/doi/abs/10.4161/cc.9.17.12928
http://www.landesbioscience.com/journals/cc/article/12928/
https://www.ncbi.nlm.nih.gov/pubmed/20855962
https://www.proquest.com/docview/756660303
https://pubmed.ncbi.nlm.nih.gov/PMC3047617
Volume 9
WOSCitedRecordID wos000281621700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1551-4005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028791
  issn: 1538-4101
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagAgkOlFdhW6h8QEhIZMnDGzvHasXSAyocilhOlp90JUhWeSD13zPjZKPdwl7gkktsJ_GM52FPvo-QV9ayIvEsi3jGWMS8ZpEo8jRSiqc61QoMYgBx_cgvLsRyWXzeovrCskrMoX0PFBFsNS5upQMDCYbj74yZFtOET8FVpfibL7h85C64XHwdUy3BiwEpVUQMtK5H1_yz94432sEqvU8OsbQQT2kGVEn3tyD0Zi3llnNaHP7HZz0kD4aIlJ71KvSI3HLlY3K356i8fkI-nHWIPaC-X9NVSQ0qSU3VIFRnqYd8u9IQg7cNXYfaPtfQtvtZ1RQPBWjTgTECdX5KvizeX87Po4F9ITJMpG2UuZxpgXB0OtepgjRwZgvwZF5zkasZmMUin1khrOeQlTAeJx4y0pkCiwWzHmfZETkoq9I9J1SlXsRGQKgSW5b7uLCe2dg4zhTX3vkJebuRgjQDNDkyZPyQkKLg3EhjZCETLsPcTMjrsfm6x-TY1zDZFqlswyaI7xlLZLanT3RT7uNDPnUtbjlUdTmfhx5rC-_-Zm97GHhY_5ux6UaBJKxilIIqXdU1kkNUnYO9zSbkWa9P4yBIoooUSRPCdzRtbIAA4bt3ytVVAArHI1WIUI__YRpOyL2-TgI3m16Qg7bu3Etyx_xqV019Sm7H387hypfiNCy8341_Mhc
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgAS0cWB4LlKcPCAlpXfJwYue4qliKKIXDIi0ny_EDKkFS5YG0_56ZJI22C73AtRk7zbzHHn1DyEtreRZ6HjMRc864zzmTWRoxrUWUR7kGh9iBuC7EcinPzrLPQ1dlPbRVYg3te6CIzlejceNhNFo45uNvjJlm01BMIVZF8iq5luDEbNDl4Ot8LLbgpwErVTIOetfja_65fCsebaGV3iIH2FyI9zQDrqT7Wxp6uZvyQng6OfifD7tDbg9JKT3uteguueKKe-RGP6by_D55d9wi_ID-dk5XBTWoJxXVg1ydpR5K7jKHNLyp6bpr73M1bdqfZUXxXoDWLfgj0OhD8uXk7elszoYBDMxwGTUsdinPJSLS5WkeaagEE5tBMPO5kKlOwDNmaWKltF5AYcJFEHooShMNTgvYHsTxA7JXlIV7RKiOvAyMhGwlsDz1QWY9t4FxgmuRe-cn5GgjBmUGdHIckvFDQZWCvFHGqEyFQnW8mZBXI_m6h-XYRRhelKlqunMQ3w8tUfGONeyy4MeXfGobPHUoq2I261asLfz31zvpYePBBWz2phsNUmDIKAVduLKtlYDEOgWXG0_Iw16hxk1wjipOSZoQsaVqIwFihG8_KVbfO6xwvFWFJPXxP7DhBdmfn35cqMX75Ycn5GbfNoHNdU_JXlO17hm5bn41q7p63lneb-DRNDQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BgQoOlEeB8PQBISE1Sx7e2DlWCwuIaumhiN4sx7FhJUhWeSD13zOTZKPdwl7gnLGjeF7fxKNvAF7mOU9Dx2NfxJz73GXcl2kS-VqLKIsyjQGxI3E9EYuFPD9PTzdGfVFbJdXQrieK6GI1Ofcqd-TgBMffGDNJJ6GYYKqK5FW4hpA5obrrbP51rLWkSAeqVOlzNLueXvPP5VvpaIus9BYcUG8hXdMMtJL2byj0cjPlRnaaH_zHd92B2wMkZce9Dd2FK7a4Bzf6IZUX9-H9cUvkA_rbBVsWzJCVVEwPWrU5c1hwlxmC8KZmq665z9asaX-WFaNbAVa3GI3Qng_hy_zd2eyDP4xf8A2XUePHNuGZJD66LMkijXXgNE8xlblMyERPMS6myTSXMncCyxIugtBhSTrVGLLw1IM4fgB7RVnYR8B05GRgJGKVIOeJC9Lc8TwwVnAtMmedB0drLSgzcJPTiIwfCmsUOhtljEpVKFR3Nh68GsVXPSnHLsFwU6Wq6f6CuH5kiYp3rPEv6318yee2oX8OZVXMZt0KVJ8Hr3fK48ZDAFjvzdYGpNCNSQu6sGVbK4GwOsGAG3vwsLencROaokozkjwQW5Y2ChBD-PaTYvm9YwqnO1WEqI__4RhewP7p27k6-bj49ARu9j0T1Fn3FPaaqrXP4Lr51Szr6nnnd78BlHQzIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+in+cancer+associated+fibroblasts+promotes+tumor+cell+survival%3A+Role+of+hypoxia%2C+HIF1+induction+and+NF%CE%BAB+activation+in+the+tumor+stromal+microenvironment&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Martinez-Outschoorn%2C+Ubaldo+E&rft.au=Trimmer%2C+Casey&rft.au=Lin%2C+Zhao&rft.au=Whitaker-Menezes%2C+Diana&rft.date=2010-09-01&rft.eissn=1551-4005&rft.volume=9&rft.issue=17&rft.spage=3515&rft_id=info:doi/10.4161%2Fcc.9.17.12928&rft_id=info%3Apmid%2F20855962&rft.externalDocID=20855962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon