Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatt...
Gespeichert in:
| Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Jg. 12; H. 17; S. 2723 - 2732 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
01.09.2013
Landes Bioscience |
| Schlagworte: | |
| ISSN: | 1538-4101, 1551-4005, 1551-4005 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers. |
|---|---|
| AbstractList | Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers. Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers. |
| Author | Martinez-Outschoorn, Ubaldo E. Lisanti, Michael P. Sotgia, Federica |
| Author_xml | – sequence: 1 givenname: Michael P. surname: Lisanti fullname: Lisanti, Michael P. email: mlisanti@KimmelCancerCenter.org – sequence: 2 givenname: Ubaldo E. surname: Martinez-Outschoorn fullname: Martinez-Outschoorn, Ubaldo E. email: Ubaldo.Martinez-Outschoorn@jeffersonhospital.org – sequence: 3 givenname: Federica surname: Sotgia fullname: Sotgia, Federica email: fsotgia@gmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23860382$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctu1TAURSNURB8g8QXI6ohJLnZsJzYDpKqCglTUCYytE-fkXqPEDrbTKr_C15JLH5THyJa89t7HZx8XBz54LIqXjG4Eq9kbazeVrLV8UhwxKVkpKJUH-ztXpWCUHRbHKX2jtFKNZs-Kw4qrmnJVHRU_rrwNW_SYiPPdbJHkHRIL3mIsIaVgHWTsSO_aGNoBUibTDn3Iy4RvyWfM0IbBWZKWsXUhuUTAd-T0EQ5d52x2wZ8SiEg83uwjIkw451WYIW4xJ9KHSLo4b0nnkg3XGJfnxdMehoQv7s6T4uuH91_OP5aXVxefzs8uSytUlcsKawYVbeuGKtEr3ShkgtaSg-ACmkZD33LUtRZKUAAupFB9rSsrpNRW1_ykeHfrO83tiJ1FnyMMZopuhLiYAM78-eLdzmzDteFKa6bkavD6ziCG7zOmbMb1DzgM4DHMyTDBWV1xSsWKvnqc9RByX8hvLxtDShH7B4RRs-_aWGt-db2im79Q6zLsN71O6Yb_CfitwPl12yPchDh0JsMyhNjHtXKXDP9H9RPrX7_- |
| CitedBy_id | crossref_primary_10_1080_15384101_2015_1041685 crossref_primary_10_3389_fonc_2014_00051 crossref_primary_10_3390_cancers11101460 crossref_primary_10_3389_fphar_2021_691234 crossref_primary_10_1016_j_breast_2015_06_009 crossref_primary_10_1016_j_canlet_2014_07_028 crossref_primary_10_1016_j_ccr_2014_05_004 crossref_primary_10_1146_annurev_bioeng_071516_044546 crossref_primary_10_3389_fphys_2021_715081 crossref_primary_10_3390_cancers14061519 crossref_primary_10_1016_j_trsl_2019_02_006 crossref_primary_10_1080_01635581_2017_1295090 crossref_primary_10_1158_0008_5472_CAN_14_3607 crossref_primary_10_3389_fonc_2017_00003 crossref_primary_10_1002_med_21473 crossref_primary_10_3109_14756366_2015_1022173 crossref_primary_10_1016_j_bbabio_2017_01_009 crossref_primary_10_3389_fonc_2020_602416 crossref_primary_10_4161_15384101_2014_995050 crossref_primary_10_1080_2162402X_2024_2379062 crossref_primary_10_3390_cancers14020322 crossref_primary_10_1016_j_heliyon_2022_e11487 crossref_primary_10_1093_rheumatology_keab022 crossref_primary_10_3390_metabo14020103 crossref_primary_10_1080_15384101_2016_1252882 crossref_primary_10_1016_j_cca_2021_07_011 crossref_primary_10_1089_ars_2019_7947 crossref_primary_10_1038_s41556_018_0083_6 crossref_primary_10_3389_fimmu_2023_1323115 crossref_primary_10_3390_biology6020024 crossref_primary_10_1242_dmm_029447 crossref_primary_10_1016_j_lfs_2019_117145 crossref_primary_10_7759_cureus_53949 crossref_primary_10_4161_cc_27379 crossref_primary_10_3390_cancers9040033 crossref_primary_10_26508_lsa_201800073 crossref_primary_10_3390_cancers9040035 crossref_primary_10_7717_peerj_10648 crossref_primary_10_1155_2017_1372640 crossref_primary_10_3389_fonc_2020_599915 crossref_primary_10_1016_j_bbcan_2017_01_002 crossref_primary_10_1158_0008_5472_CAN_15_2468 crossref_primary_10_2217_mmt_14_16 crossref_primary_10_1038_cddis_2016_492 crossref_primary_10_3389_fonc_2021_698023 crossref_primary_10_3390_biomedicines11010112 crossref_primary_10_1038_s41467_018_03348_z crossref_primary_10_1016_j_yexcr_2017_01_013 crossref_primary_10_3390_ijms151018333 crossref_primary_10_1002_jcb_25650 crossref_primary_10_1155_2018_6075403 crossref_primary_10_1080_10409238_2018_1556578 crossref_primary_10_1186_s40169_016_0082_9 crossref_primary_10_1007_s12094_020_02367_x crossref_primary_10_1016_j_mce_2022_111594 crossref_primary_10_1016_j_jsbmb_2017_02_019 crossref_primary_10_1038_nm_3848 crossref_primary_10_1016_j_bbcan_2016_09_001 crossref_primary_10_1186_s12964_023_01129_w crossref_primary_10_1007_s10911_014_9326_8 crossref_primary_10_1111_cpr_12865 crossref_primary_10_4252_wjsc_v12_i6_448 crossref_primary_10_1016_j_lfs_2019_117049 crossref_primary_10_1186_s13048_023_01196_0 crossref_primary_10_1098_rsfs_2014_0014 crossref_primary_10_1002_med_21423 crossref_primary_10_1016_j_cellsig_2020_109708 crossref_primary_10_1016_j_semcancer_2018_10_002 crossref_primary_10_1164_rccm_201504_0780OC crossref_primary_10_1371_journal_pone_0232235 crossref_primary_10_1038_s41598_017_13505_x crossref_primary_10_1038_s41585_023_00827_x crossref_primary_10_1155_2022_4525540 crossref_primary_10_1007_s10555_023_10164_5 crossref_primary_10_1016_j_bbabio_2017_02_001 crossref_primary_10_1038_nrc_2016_73 crossref_primary_10_1101_gad_275776_115 |
| Cites_doi | 10.4161/cc.10.23.18151 10.1093/jnci/djg050 10.4161/cc.10.24.18551 10.1016/j.molmed.2008.11.001 10.2353/ajpath.2009.080924 10.2741/2327 10.1016/j.biocel.2011.01.023 10.4161/cc.10.11.15674 10.1016/S1470-2045(08)70201-8 10.1056/NEJMra0802968 10.1186/bcr3368 10.2353/ajpath.2009.080873 10.1200/JCO.2011.38.2010 10.1093/jnci/92.7.564 10.4161/cc.25510 10.1002/(SICI)1097-0215(19990315)80:6<823::AID-IJC5>3.0.CO;2-3 10.4161/cc.9.12.12048 10.1186/1741-7015-9-62 10.4161/cc.9.16.12553 10.1186/bcr2334 10.1038/sj.onc.1209876 10.1038/sj.onc.1202248 10.1158/0008-5472.CAN-12-1949 10.4161/cc.9.17.12721 10.4161/cc.10.24.18487 10.18632/aging.100134 10.4161/cc.20717 10.4161/cbt.10.2.11983 10.1002/ijc.26031 10.1089/ars.2011.4243 10.4161/cc.22776 10.4161/cc.10.13.16233 10.1371/journal.pone.0011379 10.1016/S0092-8674(00)81683-9 10.1146/annurev-pathol-011811-120856 10.4161/cc.11.6.19530 10.4161/cc.24289 10.1016/j.ajpath.2011.10.036 10.4161/cc.8.23.10238 10.4161/cc.23109 10.1038/sj.onc.1202509 10.1016/j.cell.2011.02.013 10.1016/j.humpath.2007.10.011 10.1158/1078-0432.CCR-12-2123 10.4161/cc.9.21.13817 10.1038/nrc1457 10.4161/cc.9.12.11989 10.1038/sj.onc.1210014 10.4161/cbt.12.10.17780 10.1016/j.ccr.2012.02.022 10.1016/j.molmed.2013.04.005 10.4161/cc.22137 10.1086/521032 10.4161/cc.10.15.16585 10.1016/S1470-2045(01)00622-2 10.4161/cc.20718 10.4161/cc.24092 10.1111/j.1349-7006.2011.01985.x 10.4161/cc.22136 10.4161/cbt.8.11.8874 10.1007/s12253-011-9469-5 10.4161/cc.9.17.12908 10.4161/cc.10.11.15659 10.1016/j.ajpath.2011.03.002 10.1007/s13277-011-0181-6 10.1016/j.cmet.2011.12.011 10.1038/nm.2492 10.4161/cc.21643 10.1186/bcr2892 10.1002/path.4034 10.1038/nature11706 10.4161/cc.9.17.12928 10.4161/cc.10.11.15675 10.4161/cbt.12.12.18703 10.1038/nrc1098 10.4161/cc.8.15.9116 10.1038/nrc3365 10.1038/nrd3455 10.4161/cc.10.15.16870 10.1038/nrc3181 10.1038/6029 10.4161/cc.9.11.11848 10.4161/epi.6.5.15667 10.4161/cc.22226 10.4161/cc.21384 10.1038/ncb2432 10.4161/cc.19841 10.4161/cc.21884 10.1086/375033 10.4161/cc.10.8.15330 10.4161/cc.21701 10.1002/path.4217 10.1158/1541-7786.MCR-12-0437-T 10.4161/cc.10.15.16584 10.4161/cbt.10.6.13370 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 Landes Bioscience 2013 |
| Copyright_xml | – notice: Copyright © 2013 Landes Bioscience 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.4161/cc.25695 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1551-4005 |
| EndPage | 2732 |
| ExternalDocumentID | PMC3899185 23860382 10_4161_cc_25695 10925695 |
| Genre | Other Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- 0BK 0R~ 29B 30N 4.4 53G 5GY AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEXWM AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AQTUD AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE KRBQP KWAYT KYCEM M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SJN SNACF TASJS TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGME AAYXX ABFMO ACDHJ ACFTK ACZPZ ADOPC AURDB BFWEY C1A CITATION CWRZV IPNFZ LJTGL PCLFJ ADYSH CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c482t-2e61a20b67084f8978e140653a434a779afb3e9694840aa34548f692c4559c963 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327436300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-4101 1551-4005 |
| IngestDate | Tue Nov 04 01:51:44 EST 2025 Thu Nov 20 07:25:11 EST 2025 Wed Feb 19 01:52:24 EST 2025 Sat Nov 29 03:22:07 EST 2025 Tue Nov 18 22:23:25 EST 2025 Mon Oct 20 23:45:52 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | cancer-associated fibroblast TGF-beta RAS glycolysis tumor suppressor BRCA1 NFkB stromal biomarkers tumor microenvironment oncogene metabolic symbiosis oxidative stress |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-2e61a20b67084f8978e140653a434a779afb3e9694840aa34548f692c4559c963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.4161/cc.25695?needAccess=true |
| PMID | 23860382 |
| PQID | 1431623004 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_4161_cc_25695 pubmed_primary_23860382 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3899185 informaworld_taylorfrancis_310_4161_cc_25695 crossref_citationtrail_10_4161_cc_25695 proquest_miscellaneous_1431623004 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell cycle (Georgetown, Tex.) |
| PublicationTitleAlternate | Cell Cycle |
| PublicationYear | 2013 |
| Publisher | Taylor & Francis Landes Bioscience |
| Publisher_xml | – name: Taylor & Francis – name: Landes Bioscience |
| References | Ayala (R68) 2013 Liu (R98) 2012; 180 Nieman (R13) 2011; 17 Pavlides (R40) 2012; 16 Antoniou (R79) 2003; 72 Martinez-Outschoorn (R26) 2012; 11 Martinez-Outschoorn (R23) 2011; 12 Qian (R64) 2011; 102 Sloan (R66) 2009; 174 Curry (R69) 2013; 12 Fidler (R75) 2003; 3 Witkiewicz (R58) 2010; 10 Simpkins (R65) 2012; 227 Fordyce (R15) 2012; 14 Sanchez-Alvarez (R73) 2013; 12 Fiaschi (R14) 2012; 72 Hanahan (R5) 2012; 21 Wu (R61) 2011; 10 Avena (R54) 2013; 12 Pavlides (R39) 2010; 2 Hanahan (R11) 2011; 144 Guendel (R88) 2010; 5 Martinez-Outschoorn (R29) 2011; 178 Witkiewicz (R60) 2011; 10 Martinez-Outschoorn (R34) 2010; 9 Rio (R90) 1999; 80 Fidler (R76) 2008; 9 Guido (R72) 2012; 11 Magdinier (R89) 1998; 17 Rønnov-Jessen (R9) 2009; 15 Foulkes (R84) 2003; 95 El-Gendi (R67) 2012; 18 Pavlides (R38) 2010; 9 Carito (R52) 2012; 11 Martinez-Outschoorn (R28) 2011; 43 Martinez-Outschoorn (R31) 2011; 10 Martinez-Outschoorn (R33) 2012; 15 Sotgia (R43) 2011; 9 Martinez-Outschoorn (R20) 2012; 11 Martinez-Outschoorn (R36) 2010; 9 Martinez-Outschoorn (R24) 2011; 10 Bissell (R6) 2005; 7 Sotgia (R42) 2012; 7 Wallace (R1) 2012; 12 Witkiewicz (R57) 2009; 8 Carmeliet (R4) 2011; 10 Capparelli (R49) 2012; 11 Lisanti (R17) 2010; 10 Witkiewicz (R59) 2009; 174 Zhang (R97) 2012; 14 Di Vizio (R62) 2009; 8 Turner (R85) 2006; 25 Hanahan (R10) 2000; 100 Martinez-Outschoorn (R71) 2013; 12 Capparelli (R50) 2012; 11 Easton (R81) 2007; 81 Rakha (R83) 2008; 39 Esteller (R93) 2000; 92 Martinez-Outschoorn (R35) 2011; 10 Sotgia (R44) 2011; 13 Roy (R80) 2012; 12 Brauer (R12) 2013; 19 Kenny (R7) 2007; 12 Whitaker-Menezes (R56) 2011; 10 Catteau (R92) 1999; 18 Lisanti (R19) 2011; 10 Pavlides (R41) 2009; 8 Fidler (R77) 2002; 3 Wilson (R91) 1999; 21 Martinez-Outschoorn (R22) 2010; 9 Martinez-Outschoorn (R32) 2011; 10 Capparelli (R51) 2012; 11 Schulze (R2) 2012; 491 Chiavarina (R47) 2011; 12 Migneco (R53) 2010; 9 Koo (R63) 2011; 32 Foulkes (R78) 2008; 359 Stefansson (R94) 2011; 6 Martinez-Outschoorn (R21) 2012; 11 Chiavarina (R46) 2012; 11 Whitaker-Menezes (R55) 2011; 10 Metzger-Filho (R96) 2012; 30 Lisanti (R18) 2011; 10 Martinez-Outschoorn (R25) 2011; 10 Chaudhri (R16) 2013; 11 Turner (R87) 2007; 26 Turner (R95) 2004; 4 Chiavarina (R48) 2010; 9 Stefansson (R86) 2009; 11 Kenny (R8) 2006; 20 Martinez-Outschoorn (R27) 2012; 11 Langley (R74) 2011; 128 Yoshikawa (R82) 1999; 5 Maes (R3) 2013; 19 Martinez-Outschoorn (R30) 2010; 9 Sotgia (R45) 2012; 11 Witkiewicz (R70) 2012; 11 Pavlides (R37) 2010; 9 22033146 - Cell Cycle. 2011 Dec 15;10(24):4208-16 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33 9872332 - Oncogene. 1998 Dec 17;17(24):3169-76 23729330 - J Pathol. 2013 Sep;231(1):77-87 23860378 - Cell Cycle. 2013 Aug 15;12(16):2580-97 17485314 - Front Biosci. 2007;12:3468-74 10647931 - Cell. 2000 Jan 7;100(1):57-70 21051947 - Cell Cycle. 2010 Nov 1;9(21):4297-306 21514412 - Am J Pathol. 2011 May;178(5):1949-52 22134245 - Cell Cycle. 2011 Dec 15;10(24):4250-5 23216814 - Breast Cancer Res. 2012;14(6):R155 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 23574725 - Cell Cycle. 2013 May 1;12(9):1371-84 22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22 14519755 - J Natl Cancer Inst. 2003 Oct 1;95(19):1482-5 21300172 - Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51 22189618 - Am J Pathol. 2012 Feb;180(2):599-607 21521946 - Cell Cycle. 2011 Jun 1;10(11):1794-809 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27 10074913 - Int J Cancer. 1999 Mar 15;80(6):823-6 19589159 - Breast Cancer Res. 2009;11(4):R47 23574724 - Cell Cycle. 2013 May 1;12(9):1360-70 10389907 - Clin Cancer Res. 1999 Jun;5(6):1249-61 21584795 - Tumour Biol. 2011 Aug;32(4):787-99 22344033 - Nat Cell Biol. 2012 Mar;14(3):276-86 22850421 - Cancer Res. 2012 Oct 1;72(19):5130-40 21605374 - BMC Med. 2011;9:62 19556867 - Cell Cycle. 2009 Aug;8(15):2420-4 22041887 - Cancer Biol Ther. 2011 Nov 15;12(10):924-38 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76 23082721 - Cell Cycle. 2012 Nov 1;11(21):3956-63 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43 20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43 20614009 - PLoS One. 2010;5(6):e11379 20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33 22193408 - Nat Rev Cancer. 2012 Jan;12(1):68-78 23172369 - Cell Cycle. 2012 Dec 1;11(23):4402-13 21883043 - Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84 12778135 - Nat Rev Cancer. 2003 Jun;3(6):453-8 22454417 - J Clin Oncol. 2012 May 20;30(15):1879-87 21778829 - Cell Cycle. 2011 Aug 1;10(15):2504-20 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34 12677558 - Am J Hum Genet. 2003 May;72(5):1117-30 21585620 - Cancer Sci. 2011 Aug;102(8):1590-6 21132085 - Scientist. 2006 Apr 1;20(4):30 19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9 20562527 - Cell Cycle. 2010 Jun 15;9(12):2412-22 21512313 - Cell Cycle. 2011 Apr 15;10(8):1271-86 15510162 - Nat Rev Cancer. 2004 Oct;4(10):814-9 10749912 - J Natl Cancer Inst. 2000 Apr 5;92(7):564-9 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505 23151579 - Nature. 2012 Nov 15;491(7424):364-73 15652746 - Cancer Cell. 2005 Jan;7(1):17-23 19091631 - Trends Mol Med. 2009 Jan;15(1):5-13 17924331 - Am J Hum Genet. 2007 Nov;81(5):873-83 21558814 - Cell Cycle. 2011 Jun 1;10(11):1772-83 9988281 - Nat Genet. 1999 Feb;21(2):236-40 22077552 - Annu Rev Pathol. 2012;7:423-67 23257780 - Cell Cycle. 2013 Jan 15;12(2):289-301 22395432 - Cell Cycle. 2012 Apr 1;11(7):1445-54 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001 22225869 - Cell Metab. 2012 Jan 4;15(1):4-5 18400253 - Hum Pathol. 2008 Jun;39(6):857-65 22935696 - Cell Cycle. 2012 Oct 1;11(19):3599-610 20442453 - Aging (Albany NY). 2010 Apr;2(4):185-99 21867571 - Breast Cancer Res. 2011;13(4):213 16998499 - Oncogene. 2006 Sep 25;25(43):5846-53 21654190 - Cell Cycle. 2011 Jul 1;10(13):2059-63 21593597 - Epigenetics. 2011 May;6(5):638-49 22134189 - Cell Cycle. 2011 Dec 1;10(23):4047-64 22057638 - Pathol Oncol Res. 2012 Apr;18(2):459-69 23236214 - Clin Cancer Res. 2013 Feb 1;19(3):571-85 20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51 23475953 - Mol Cancer Res. 2013 Jun;11(6):579-92 22236875 - Cancer Biol Ther. 2011 Dec 15;12(12):1101-13 21376230 - Cell. 2011 Mar 4;144(5):646-74 21566463 - Cell Cycle. 2011 Jun 1;10(11):1784-93 10208417 - Oncogene. 1999 Mar 18;18(11):1957-65 18672217 - Lancet Oncol. 2008 Aug;9(8):808 22488553 - J Pathol. 2012 Aug;227(4):490-8 11905606 - Lancet Oncol. 2002 Jan;3(1):53-7 22684298 - Cell Cycle. 2012 Jun 15;11(12):2285-302 23047606 - Cell Cycle. 2012 Nov 15;11(22):4152-66 22684333 - Cell Cycle. 2012 Jun 15;11(12):2272-84 21365651 - Int J Cancer. 2011 Jun 1;128(11):2527-35 20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19 22894905 - Cell Cycle. 2012 Sep 1;11(17):3280-9 22918248 - Cell Cycle. 2012 Sep 15;11(18):3403-14 19005198 - N Engl J Med. 2008 Nov 13;359(20):2143-53 23082722 - Cell Cycle. 2012 Nov 1;11(21):3964-71 23714574 - Trends Mol Med. 2013 Jul;19(7):428-46 22874531 - Cell Cycle. 2012 Aug 15;11(16):3019-35 17016441 - Oncogene. 2007 Mar 29;26(14):2126-32 22313602 - Cell Cycle. 2012 Mar 15;11(6):1108-17 21734470 - Cell Cycle. 2011 Aug 1;10(15):2440-9 21768775 - Cell Cycle. 2011 Aug 1;10(15):2521-8 22037646 - Nat Med. 2011;17(11):1498-503 20861671 - Cancer Biol Ther. 2010 Sep 15;10(6):537-42 |
| References_xml | – volume: 10 start-page: 4047 year: 2011 ident: R55 article-title: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue publication-title: Cell Cycle doi: 10.4161/cc.10.23.18151 – volume: 95 start-page: 1482 year: 2003 ident: R84 article-title: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djg050 – volume: 10 start-page: 4250 year: 2011 ident: R61 article-title: Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival publication-title: Cell Cycle doi: 10.4161/cc.10.24.18551 – volume: 15 start-page: 5 year: 2009 ident: R9 article-title: Breast cancer by proxy: can the microenvironment be both the cause and consequence? publication-title: Trends Mol Med doi: 10.1016/j.molmed.2008.11.001 – volume: 174 start-page: 2035 year: 2009 ident: R66 article-title: Stromal cell expression of caveolin-1 predicts outcome in breast cancer publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080924 – volume: 12 start-page: 3468 year: 2007 ident: R7 article-title: Targeting the tumor microenvironment publication-title: Front Biosci doi: 10.2741/2327 – volume: 20 start-page: 30 year: 2006 ident: R8 article-title: The Ecology of Tumors: By perturbing the microenvironment, wounds and infection may be key to tumor development publication-title: Scientist – volume: 43 start-page: 1045 year: 2011 ident: R28 article-title: Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2011.01.023 – volume: 10 start-page: 1784 year: 2011 ident: R35 article-title: Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator publication-title: Cell Cycle doi: 10.4161/cc.10.11.15674 – volume: 9 start-page: 808 year: 2008 ident: R76 article-title: The “seed and soil” hypothesis revisited publication-title: Lancet Oncol doi: 10.1016/S1470-2045(08)70201-8 – volume: 359 start-page: 2143 year: 2008 ident: R78 article-title: Inherited susceptibility to common cancers publication-title: N Engl J Med doi: 10.1056/NEJMra0802968 – volume: 14 start-page: R155 year: 2012 ident: R15 article-title: Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes publication-title: Breast Cancer Res doi: 10.1186/bcr3368 – volume: 174 start-page: 2023 year: 2009 ident: R59 article-title: An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080873 – volume: 30 start-page: 1879 year: 2012 ident: R96 article-title: Dissecting the heterogeneity of triple-negative breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2011.38.2010 – volume: 92 start-page: 564 year: 2000 ident: R93 article-title: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors publication-title: J Natl Cancer Inst doi: 10.1093/jnci/92.7.564 – volume: 12 year: 2013 ident: R71 article-title: Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFkB target stromal MCT4 publication-title: Cell Cycle doi: 10.4161/cc.25510 – volume: 80 start-page: 823 year: 1999 ident: R90 article-title: Quantification of BRCA1 protein in sporadic breast carcinoma with or without loss of heterozygosity of the BRCA1 gene publication-title: Int J Cancer doi: 10.1002/(SICI)1097-0215(19990315)80:6<823::AID-IJC5>3.0.CO;2-3 – volume: 9 start-page: 2423 year: 2010 ident: R30 article-title: Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors publication-title: Cell Cycle doi: 10.4161/cc.9.12.12048 – volume: 9 start-page: 62 year: 2011 ident: R43 article-title: Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? publication-title: BMC Med doi: 10.1186/1741-7015-9-62 – volume: 9 start-page: 3256 year: 2010 ident: R22 article-title: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells publication-title: Cell Cycle doi: 10.4161/cc.9.16.12553 – volume: 11 start-page: R47 year: 2009 ident: R86 article-title: Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes publication-title: Breast Cancer Res doi: 10.1186/bcr2334 – volume: 25 start-page: 5846 year: 2006 ident: R85 article-title: Basal-like breast cancer and the BRCA1 phenotype publication-title: Oncogene doi: 10.1038/sj.onc.1209876 – volume: 17 start-page: 3169 year: 1998 ident: R89 article-title: Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region publication-title: Oncogene doi: 10.1038/sj.onc.1202248 – volume: 72 start-page: 5130 year: 2012 ident: R14 article-title: Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1949 – volume: 9 start-page: 3485 year: 2010 ident: R37 article-title: The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism publication-title: Cell Cycle doi: 10.4161/cc.9.17.12721 – volume: 10 start-page: 4208 year: 2011 ident: R31 article-title: Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells publication-title: Cell Cycle doi: 10.4161/cc.10.24.18487 – volume: 2 start-page: 185 year: 2010 ident: R39 article-title: Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling” publication-title: Aging (Albany NY) doi: 10.18632/aging.100134 – volume: 11 start-page: 2272 year: 2012 ident: R51 article-title: CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth publication-title: Cell Cycle doi: 10.4161/cc.20717 – volume: 10 start-page: 135 year: 2010 ident: R58 article-title: Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers publication-title: Cancer Biol Ther doi: 10.4161/cbt.10.2.11983 – volume: 128 start-page: 2527 year: 2011 ident: R74 article-title: The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs publication-title: Int J Cancer doi: 10.1002/ijc.26031 – volume: 16 start-page: 1264 year: 2012 ident: R40 article-title: Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis publication-title: Antioxid Redox Signal doi: 10.1089/ars.2011.4243 – volume: 11 start-page: 4402 year: 2012 ident: R20 article-title: BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies publication-title: Cell Cycle doi: 10.4161/cc.22776 – volume: 10 start-page: 2059 year: 2011 ident: R19 article-title: Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine publication-title: Cell Cycle doi: 10.4161/cc.10.13.16233 – volume: 5 start-page: e11379 year: 2010 ident: R88 article-title: Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function publication-title: PLoS One doi: 10.1371/journal.pone.0011379 – volume: 100 start-page: 57 year: 2000 ident: R10 article-title: The hallmarks of cancer publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – volume: 7 start-page: 423 year: 2012 ident: R42 article-title: Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathol-011811-120856 – volume: 11 start-page: 1108 year: 2012 ident: R70 article-title: Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers publication-title: Cell Cycle doi: 10.4161/cc.11.6.19530 – volume: 12 start-page: 1360 year: 2013 ident: R54 article-title: Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis publication-title: Cell Cycle doi: 10.4161/cc.24289 – volume: 180 start-page: 599 year: 2012 ident: R98 article-title: ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.10.036 – volume: 8 start-page: 3984 year: 2009 ident: R41 article-title: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma publication-title: Cell Cycle doi: 10.4161/cc.8.23.10238 – volume: 12 start-page: 289 year: 2013 ident: R73 article-title: Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention publication-title: Cell Cycle doi: 10.4161/cc.23109 – volume: 18 start-page: 1957 year: 1999 ident: R92 article-title: Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics publication-title: Oncogene doi: 10.1038/sj.onc.1202509 – volume: 144 start-page: 646 year: 2011 ident: R11 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 39 start-page: 857 year: 2008 ident: R83 article-title: Expression of BRCA1 protein in breast cancer and its prognostic significance publication-title: Hum Pathol doi: 10.1016/j.humpath.2007.10.011 – volume: 19 start-page: 571 year: 2013 ident: R12 article-title: Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2123 – volume: 9 start-page: 4297 year: 2010 ident: R36 article-title: The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: A simple solution to the autophagy paradox publication-title: Cell Cycle doi: 10.4161/cc.9.21.13817 – volume: 4 start-page: 814 year: 2004 ident: R95 article-title: Hallmarks of ‘BRCAness’ in sporadic cancers publication-title: Nat Rev Cancer doi: 10.1038/nrc1457 – volume: 9 start-page: 2412 year: 2010 ident: R53 article-title: Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling publication-title: Cell Cycle doi: 10.4161/cc.9.12.11989 – volume: 26 start-page: 2126 year: 2007 ident: R87 article-title: BRCA1 dysfunction in sporadic basal-like breast cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210014 – volume: 12 start-page: 924 year: 2011 ident: R23 article-title: Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells publication-title: Cancer Biol Ther doi: 10.4161/cbt.12.10.17780 – volume: 21 start-page: 309 year: 2012 ident: R5 article-title: Accessories to the crime: functions of cells recruited to the tumor microenvironment publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.022 – volume: 19 start-page: 428 year: 2013 ident: R3 article-title: Autophagy: shaping the tumor microenvironment and therapeutic response publication-title: Trends Mol Med doi: 10.1016/j.molmed.2013.04.005 – volume: 11 start-page: 3964 year: 2012 ident: R27 article-title: Ketone body utilization drives tumor growth and metastasis publication-title: Cell Cycle doi: 10.4161/cc.22137 – volume: 81 start-page: 873 year: 2007 ident: R81 article-title: A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes publication-title: Am J Hum Genet doi: 10.1086/521032 – volume: 10 start-page: 2504 year: 2011 ident: R25 article-title: Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors publication-title: Cell Cycle doi: 10.4161/cc.10.15.16585 – volume: 3 start-page: 53 year: 2002 ident: R77 article-title: The seed and soil hypothesis: vascularisation and brain metastases publication-title: Lancet Oncol doi: 10.1016/S1470-2045(01)00622-2 – volume: 11 start-page: 2285 year: 2012 ident: R50 article-title: Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production publication-title: Cell Cycle doi: 10.4161/cc.20718 – volume: 12 start-page: 1371 year: 2013 ident: R69 article-title: Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer publication-title: Cell Cycle doi: 10.4161/cc.24092 – volume: 102 start-page: 1590 year: 2011 ident: R64 article-title: Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2011.01985.x – volume: 11 start-page: 3956 year: 2012 ident: R26 article-title: Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells publication-title: Cell Cycle doi: 10.4161/cc.22136 – volume: 8 start-page: 1071 year: 2009 ident: R57 article-title: Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer publication-title: Cancer Biol Ther doi: 10.4161/cbt.8.11.8874 – volume: 18 start-page: 459 year: 2012 ident: R67 article-title: Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome publication-title: Pathol Oncol Res doi: 10.1007/s12253-011-9469-5 – volume: 9 start-page: 3534 year: 2010 ident: R48 article-title: HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis publication-title: Cell Cycle doi: 10.4161/cc.9.17.12908 – volume: 10 start-page: 1772 year: 2011 ident: R56 article-title: Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts publication-title: Cell Cycle doi: 10.4161/cc.10.11.15659 – volume: 178 start-page: 1949 year: 2011 ident: R29 article-title: Mitochondrial biogenesis drives tumor cell proliferation publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.03.002 – volume: 32 start-page: 787 year: 2011 ident: R63 article-title: The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer publication-title: Tumour Biol doi: 10.1007/s13277-011-0181-6 – volume: 5 start-page: 1249 year: 1999 ident: R82 article-title: Reduction of BRCA1 protein expression in Japanese sporadic breast carcinomas and its frequent loss in BRCA1-associated cases publication-title: Clin Cancer Res – volume: 15 start-page: 4 year: 2012 ident: R33 article-title: Power surge: supporting cells “fuel” cancer cell mitochondria publication-title: Cell Metab doi: 10.1016/j.cmet.2011.12.011 – volume: 17 start-page: 1498 year: 2011 ident: R13 article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth publication-title: Nat Med doi: 10.1038/nm.2492 – volume: 11 start-page: 3280 year: 2012 ident: R46 article-title: Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells publication-title: Cell Cycle doi: 10.4161/cc.21643 – volume: 13 start-page: 213 year: 2011 ident: R44 article-title: Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment publication-title: Breast Cancer Res doi: 10.1186/bcr2892 – volume: 227 start-page: 490 year: 2012 ident: R65 article-title: Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts publication-title: J Pathol doi: 10.1002/path.4034 – volume: 491 start-page: 364 year: 2012 ident: R2 article-title: How cancer metabolism is tuned for proliferation and vulnerable to disruption publication-title: Nature doi: 10.1038/nature11706 – volume: 9 start-page: 3515 year: 2010 ident: R34 article-title: Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment publication-title: Cell Cycle doi: 10.4161/cc.9.17.12928 – volume: 10 start-page: 1794 year: 2011 ident: R60 article-title: Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers publication-title: Cell Cycle doi: 10.4161/cc.10.11.15675 – volume: 12 start-page: 1101 year: 2011 ident: R47 article-title: Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth publication-title: Cancer Biol Ther doi: 10.4161/cbt.12.12.18703 – volume: 3 start-page: 453 year: 2003 ident: R75 article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited publication-title: Nat Rev Cancer doi: 10.1038/nrc1098 – volume: 8 start-page: 2420 year: 2009 ident: R62 article-title: An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation publication-title: Cell Cycle doi: 10.4161/cc.8.15.9116 – volume: 12 start-page: 685 year: 2012 ident: R1 article-title: Mitochondria and cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc3365 – volume: 10 start-page: 417 year: 2011 ident: R4 article-title: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3455 – volume: 7 start-page: 17 year: 2005 ident: R6 article-title: Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? publication-title: Cancer Cell – volume: 10 start-page: 2440 year: 2011 ident: R18 article-title: Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs “fertilizer” publication-title: Cell Cycle doi: 10.4161/cc.10.15.16870 – volume: 12 start-page: 68 year: 2012 ident: R80 article-title: BRCA1 and BRCA2: different roles in a common pathway of genome protection publication-title: Nat Rev Cancer doi: 10.1038/nrc3181 – volume: 21 start-page: 236 year: 1999 ident: R91 article-title: Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas publication-title: Nat Genet doi: 10.1038/6029 – volume: 9 start-page: 2201 year: 2010 ident: R38 article-title: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation publication-title: Cell Cycle doi: 10.4161/cc.9.11.11848 – volume: 6 start-page: 638 year: 2011 ident: R94 article-title: CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer publication-title: Epigenetics doi: 10.4161/epi.6.5.15667 – volume: 11 start-page: 4152 year: 2012 ident: R21 article-title: Hereditary ovarian cancer and two-compartment tumor metabolism: epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma publication-title: Cell Cycle doi: 10.4161/cc.22226 – volume: 11 start-page: 3019 year: 2012 ident: R72 article-title: Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production publication-title: Cell Cycle doi: 10.4161/cc.21384 – volume: 14 start-page: 276 year: 2012 ident: R97 article-title: Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia publication-title: Nat Cell Biol doi: 10.1038/ncb2432 – volume: 11 start-page: 1445 year: 2012 ident: R45 article-title: Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue publication-title: Cell Cycle doi: 10.4161/cc.19841 – volume: 11 start-page: 3599 year: 2012 ident: R49 article-title: CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis publication-title: Cell Cycle doi: 10.4161/cc.21884 – volume: 72 start-page: 1117 year: 2003 ident: R79 article-title: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies publication-title: Am J Hum Genet doi: 10.1086/375033 – volume: 10 start-page: 1271 year: 2011 ident: R32 article-title: Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics publication-title: Cell Cycle doi: 10.4161/cc.10.8.15330 – volume: 11 start-page: 3403 year: 2012 ident: R52 article-title: Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth publication-title: Cell Cycle doi: 10.4161/cc.21701 – year: 2013 ident: R68 article-title: Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression publication-title: J Pathol doi: 10.1002/path.4217 – volume: 11 start-page: 579 year: 2013 ident: R16 article-title: Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-12-0437-T – volume: 10 start-page: 2521 year: 2011 ident: R24 article-title: Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells publication-title: Cell Cycle doi: 10.4161/cc.10.15.16584 – volume: 10 start-page: 537 year: 2010 ident: R17 article-title: Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment publication-title: Cancer Biol Ther doi: 10.4161/cbt.10.6.13370 – reference: 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43 – reference: 22041887 - Cancer Biol Ther. 2011 Nov 15;12(10):924-38 – reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 – reference: 17924331 - Am J Hum Genet. 2007 Nov;81(5):873-83 – reference: 17016441 - Oncogene. 2007 Mar 29;26(14):2126-32 – reference: 20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43 – reference: 20562527 - Cell Cycle. 2010 Jun 15;9(12):2412-22 – reference: 21867571 - Breast Cancer Res. 2011;13(4):213 – reference: 21778829 - Cell Cycle. 2011 Aug 1;10(15):2504-20 – reference: 9988281 - Nat Genet. 1999 Feb;21(2):236-40 – reference: 20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33 – reference: 23714574 - Trends Mol Med. 2013 Jul;19(7):428-46 – reference: 21132085 - Scientist. 2006 Apr 1;20(4):30 – reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74 – reference: 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34 – reference: 21365651 - Int J Cancer. 2011 Jun 1;128(11):2527-35 – reference: 23151579 - Nature. 2012 Nov 15;491(7424):364-73 – reference: 21512313 - Cell Cycle. 2011 Apr 15;10(8):1271-86 – reference: 18672217 - Lancet Oncol. 2008 Aug;9(8):808 – reference: 22488553 - J Pathol. 2012 Aug;227(4):490-8 – reference: 17485314 - Front Biosci. 2007;12:3468-74 – reference: 21521946 - Cell Cycle. 2011 Jun 1;10(11):1794-809 – reference: 22189618 - Am J Pathol. 2012 Feb;180(2):599-607 – reference: 12677558 - Am J Hum Genet. 2003 May;72(5):1117-30 – reference: 10389907 - Clin Cancer Res. 1999 Jun;5(6):1249-61 – reference: 10647931 - Cell. 2000 Jan 7;100(1):57-70 – reference: 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27 – reference: 22684333 - Cell Cycle. 2012 Jun 15;11(12):2272-84 – reference: 23574725 - Cell Cycle. 2013 May 1;12(9):1371-84 – reference: 22935696 - Cell Cycle. 2012 Oct 1;11(19):3599-610 – reference: 19091631 - Trends Mol Med. 2009 Jan;15(1):5-13 – reference: 22134189 - Cell Cycle. 2011 Dec 1;10(23):4047-64 – reference: 11905606 - Lancet Oncol. 2002 Jan;3(1):53-7 – reference: 16998499 - Oncogene. 2006 Sep 25;25(43):5846-53 – reference: 22918248 - Cell Cycle. 2012 Sep 15;11(18):3403-14 – reference: 22077552 - Annu Rev Pathol. 2012;7:423-67 – reference: 18400253 - Hum Pathol. 2008 Jun;39(6):857-65 – reference: 22313602 - Cell Cycle. 2012 Mar 15;11(6):1108-17 – reference: 21883043 - Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84 – reference: 22850421 - Cancer Res. 2012 Oct 1;72(19):5130-40 – reference: 23216814 - Breast Cancer Res. 2012;14(6):R155 – reference: 20442453 - Aging (Albany NY). 2010 Apr;2(4):185-99 – reference: 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505 – reference: 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76 – reference: 22033146 - Cell Cycle. 2011 Dec 15;10(24):4208-16 – reference: 23047606 - Cell Cycle. 2012 Nov 15;11(22):4152-66 – reference: 21566463 - Cell Cycle. 2011 Jun 1;10(11):1784-93 – reference: 23172369 - Cell Cycle. 2012 Dec 1;11(23):4402-13 – reference: 14519755 - J Natl Cancer Inst. 2003 Oct 1;95(19):1482-5 – reference: 23082722 - Cell Cycle. 2012 Nov 1;11(21):3964-71 – reference: 23860378 - Cell Cycle. 2013 Aug 15;12(16):2580-97 – reference: 21768775 - Cell Cycle. 2011 Aug 1;10(15):2521-8 – reference: 22874531 - Cell Cycle. 2012 Aug 15;11(16):3019-35 – reference: 10208417 - Oncogene. 1999 Mar 18;18(11):1957-65 – reference: 22236875 - Cancer Biol Ther. 2011 Dec 15;12(12):1101-13 – reference: 21584795 - Tumour Biol. 2011 Aug;32(4):787-99 – reference: 22037646 - Nat Med. 2011;17(11):1498-503 – reference: 21558814 - Cell Cycle. 2011 Jun 1;10(11):1772-83 – reference: 22193408 - Nat Rev Cancer. 2012 Jan;12(1):68-78 – reference: 20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51 – reference: 10074913 - Int J Cancer. 1999 Mar 15;80(6):823-6 – reference: 20861671 - Cancer Biol Ther. 2010 Sep 15;10(6):537-42 – reference: 21514412 - Am J Pathol. 2011 May;178(5):1949-52 – reference: 22225869 - Cell Metab. 2012 Jan 4;15(1):4-5 – reference: 9872332 - Oncogene. 1998 Dec 17;17(24):3169-76 – reference: 19005198 - N Engl J Med. 2008 Nov 13;359(20):2143-53 – reference: 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001 – reference: 20614009 - PLoS One. 2010;5(6):e11379 – reference: 15652746 - Cancer Cell. 2005 Jan;7(1):17-23 – reference: 23082721 - Cell Cycle. 2012 Nov 1;11(21):3956-63 – reference: 10749912 - J Natl Cancer Inst. 2000 Apr 5;92(7):564-9 – reference: 23236214 - Clin Cancer Res. 2013 Feb 1;19(3):571-85 – reference: 19589159 - Breast Cancer Res. 2009;11(4):R47 – reference: 23574724 - Cell Cycle. 2013 May 1;12(9):1360-70 – reference: 21300172 - Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51 – reference: 22134245 - Cell Cycle. 2011 Dec 15;10(24):4250-5 – reference: 22395432 - Cell Cycle. 2012 Apr 1;11(7):1445-54 – reference: 20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19 – reference: 23475953 - Mol Cancer Res. 2013 Jun;11(6):579-92 – reference: 22684298 - Cell Cycle. 2012 Jun 15;11(12):2285-302 – reference: 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33 – reference: 15510162 - Nat Rev Cancer. 2004 Oct;4(10):814-9 – reference: 23729330 - J Pathol. 2013 Sep;231(1):77-87 – reference: 19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9 – reference: 21585620 - Cancer Sci. 2011 Aug;102(8):1590-6 – reference: 22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22 – reference: 21593597 - Epigenetics. 2011 May;6(5):638-49 – reference: 21051947 - Cell Cycle. 2010 Nov 1;9(21):4297-306 – reference: 21734470 - Cell Cycle. 2011 Aug 1;10(15):2440-9 – reference: 12778135 - Nat Rev Cancer. 2003 Jun;3(6):453-8 – reference: 23257780 - Cell Cycle. 2013 Jan 15;12(2):289-301 – reference: 22454417 - J Clin Oncol. 2012 May 20;30(15):1879-87 – reference: 19556867 - Cell Cycle. 2009 Aug;8(15):2420-4 – reference: 21605374 - BMC Med. 2011;9:62 – reference: 22344033 - Nat Cell Biol. 2012 Mar;14(3):276-86 – reference: 21654190 - Cell Cycle. 2011 Jul 1;10(13):2059-63 – reference: 22057638 - Pathol Oncol Res. 2012 Apr;18(2):459-69 – reference: 22894905 - Cell Cycle. 2012 Sep 1;11(17):3280-9 |
| SSID | ssj0028791 |
| Score | 2.4123404 |
| SecondaryResourceType | review_article |
| Snippet | Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2723 |
| SubjectTerms | BRCA1 cancer-associated fibroblast Drug Discovery Fibroblasts - drug effects Fibroblasts - metabolism Fibroblasts - pathology glycolysis Humans metabolic symbiosis Molecular Targeted Therapy Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - pathology NFkB oncogene Oncogenes - genetics oxidative stress Phenotype RAS stromal biomarkers TGF-beta tumor microenvironment tumor suppressor |
| Title | Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery |
| URI | https://www.tandfonline.com/doi/abs/10.4161/cc.25695 https://www.ncbi.nlm.nih.gov/pubmed/23860382 https://www.proquest.com/docview/1431623004 https://pubmed.ncbi.nlm.nih.gov/PMC3899185 |
| Volume | 12 |
| WOSCitedRecordID | wos000327436300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1551-4005 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028791 issn: 1538-4101 databaseCode: TFW dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGNCQuMMavwpgeExIXAm3sOjY3hKi4MHbYtN4i27FHpJGgJEXqv8Jfy3tOVjWoFzjXbS378_P3Je99j7HXygQkuhpPmrAoUKwwiZ15lUiTYTR0Ng2qiM0msrMztVzq86EorB3SKklDh94oIsZqOtzGxg4kRMffO_cOL2pNleVI5gnWF4urjcpSmR5MUlUiEHC94-zoi6M7aORQuotn_p0uuXX_LB7838wP2f2Bb8LHHiAP2Z6vjtjdvgPl-hH7_a1y9TXFO0BxjtsMSAjBERSaxAxb5wsIqKpri0y7A0oKq-nJ7Qf46jvE0E3poF3_sGXdli3g3OB0azglLMXaiVMwjQdk8bBV8wV9JnoLuDhQNKtroDJhSitdP2aXi88Xn74kQ7uGxAmVdknq5cykUyuzqRJBoTz1qN7knBvBhckybYLlXkstUFQawwWKpSB16gSqGoeB4Anbr-rKP2OgA6oYM-NhXnhhlNOGF7LgxZxLSwZlE_bmdgNzN3iZU0uNmxw1Da107lweV3rCXm1G_uz9O3aMebuNgbyLz0pC39gk5zt-8hYjOZ5FesFiKl-vWpRRfIZ0EuPOhD3tMbP5U6RGcspVOmHZCE2bAeTzPf6kKr9Hv2-yQERa9fzfpvmC3Utj6w7Khztm-12z8i_ZgfvVlW1zwu5kS3UST84frB0e9Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NwTRe-D0oMDATEi8LtLHj2LwhtGqIrfBQxN4ix7FHpJGgJEXqv8Jfy12SVg3qy3iO01r23fn7nLvvAF4r4xHoavQ0kSJBSYUJ0olTgTQxRkObhl5lbbOJeDZTFxf66w5Eq1oYSqskDu07oYg2VpNz02U0eTjh8XfWvsWTWkc34GaExytl8s2n39c8S8W6l0lVgUCT6zRnB28OTqGBRuk2pPlvwuTGCTS9-59zvwd3esjJPnQ2ch92XPEA9romlMuH8OdLYctLCnkM-TnuNENMyCxZQxWYfvdcxjwS6zJFsN0wygsr6fL2PTt3DZrRVW5ZvfyZ5mWd1wwnx442hlPOUls-ccRM5RgCebZR9sW6ZPSa4eqwrFpcMqoUpszS5SP4Nj2ZfzwN-o4NgRUqbILQyYkJx6mMx0p4hQzVIYGTETeCCxPH2viUOy21QF5pDBfIl7zUoRVIbCzGggPYLcrCPQGmPRIZM-E-ypwwymrDM5nxLOIyJY2yEbxZ7WBiezlz6qpxlSCtoZVOrE3alR7Bq_XIX52Ex5Yxx5tGkDTtdYnvepskfMtProwkQXekbyymcOWiRibFJ4goMfSM4HFnNOs_RXQkx1yFI4gH5rQeQFLfwydF_qOV_CYVRERWT683zZewfzo_P0vOPs0-P4PbYdvJg9LjnsNuUy3cIdyyv5u8rl60DvQXtAwiLg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7B8hAX3o_yHFZIXAi0sevY3BBQgYCyh0XsLbIde4m0JKskRepf4dcydrJVg3qBc93Wsr8Zf18y_gbgmdSeiK6iSOOGBIrhOjEzJxOhM8qG1qReFrHZRLZcyqMjdTBcCmuHssqgoX1vFBFzdQju08KHAA90_JW1L-mgVvPzcCH6YRGKDxffNzJLZmpwSZUJJ8T1lrOjb44OoZFF6S6i-Xe95NYBtLj2f1O_DlcHwolveoTcgHOuugmX-haU61vw-2tl6-OQ8JDUOe0zEiNEG7DQJHrYO1egJ1ldG6LaHYaqsDo8un2NX1xHIDopLbbrn6as27JFmhvubw0PFUvx8sQ-6sYh0XjcuvSFfSl6i7Q4WDSrYwz3hENd6fo2fFu8P3z7IRn6NSSWy7RLUidmOp0akU0l95L0qSP5JuZMc8Z1lintDXNKKE6qUmvGSS15oVLLSdZYygR3YK-qK3cPUHmSMXrG_LxwXEurNCtEwYo5EyY4lE3g-dkG5nYwMw89NU5yEjVhpXNr87jSE3i6GXnaG3jsGPNiGwN5Fx-W-L6zSc52_OQZRnIKxvCGRVeuXrWko9iM-CQlngnc7TGz-VPiRmLKZDqBbISmzYBg9D3-pCp_RMPv4IFIvOr-v03zCVw-eLfIP39cfnoAV9LYxiPUxj2Eva5ZuUdw0f7qyrZ5HMPnDyJuINI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenes+induce+the+cancer-associated+fibroblast+phenotype%3A+Metabolic+symbiosis+and+%E2%80%9Cfibroblast+addiction%E2%80%9D+are+new+therapeutic+targets+for+drug+discovery&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Lisanti%2C+Michael+P.&rft.au=Martinez-Outschoorn%2C+Ubaldo+E.&rft.au=Sotgia%2C+Federica&rft.date=2013-09-01&rft.issn=1538-4101&rft.eissn=1551-4005&rft.volume=12&rft.issue=17&rft.spage=2723&rft.epage=2732&rft_id=info:doi/10.4161%2Fcc.25695&rft.externalDBID=n%2Fa&rft.externalDocID=10_4161_cc_25695 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon |