Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery

Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Jg. 12; H. 17; S. 2723 - 2732
Hauptverfasser: Lisanti, Michael P., Martinez-Outschoorn, Ubaldo E., Sotgia, Federica
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 01.09.2013
Landes Bioscience
Schlagworte:
ISSN:1538-4101, 1551-4005, 1551-4005
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.
AbstractList Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.
Author Martinez-Outschoorn, Ubaldo E.
Lisanti, Michael P.
Sotgia, Federica
Author_xml – sequence: 1
  givenname: Michael P.
  surname: Lisanti
  fullname: Lisanti, Michael P.
  email: mlisanti@KimmelCancerCenter.org
– sequence: 2
  givenname: Ubaldo E.
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E.
  email: Ubaldo.Martinez-Outschoorn@jeffersonhospital.org
– sequence: 3
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  email: fsotgia@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23860382$$D View this record in MEDLINE/PubMed
BookMark eNptkctu1TAURSNURB8g8QXI6ohJLnZsJzYDpKqCglTUCYytE-fkXqPEDrbTKr_C15JLH5THyJa89t7HZx8XBz54LIqXjG4Eq9kbazeVrLV8UhwxKVkpKJUH-ztXpWCUHRbHKX2jtFKNZs-Kw4qrmnJVHRU_rrwNW_SYiPPdbJHkHRIL3mIsIaVgHWTsSO_aGNoBUibTDn3Iy4RvyWfM0IbBWZKWsXUhuUTAd-T0EQ5d52x2wZ8SiEg83uwjIkw451WYIW4xJ9KHSLo4b0nnkg3XGJfnxdMehoQv7s6T4uuH91_OP5aXVxefzs8uSytUlcsKawYVbeuGKtEr3ShkgtaSg-ACmkZD33LUtRZKUAAupFB9rSsrpNRW1_ykeHfrO83tiJ1FnyMMZopuhLiYAM78-eLdzmzDteFKa6bkavD6ziCG7zOmbMb1DzgM4DHMyTDBWV1xSsWKvnqc9RByX8hvLxtDShH7B4RRs-_aWGt-db2im79Q6zLsN71O6Yb_CfitwPl12yPchDh0JsMyhNjHtXKXDP9H9RPrX7_-
CitedBy_id crossref_primary_10_1080_15384101_2015_1041685
crossref_primary_10_3389_fonc_2014_00051
crossref_primary_10_3390_cancers11101460
crossref_primary_10_3389_fphar_2021_691234
crossref_primary_10_1016_j_breast_2015_06_009
crossref_primary_10_1016_j_canlet_2014_07_028
crossref_primary_10_1016_j_ccr_2014_05_004
crossref_primary_10_1146_annurev_bioeng_071516_044546
crossref_primary_10_3389_fphys_2021_715081
crossref_primary_10_3390_cancers14061519
crossref_primary_10_1016_j_trsl_2019_02_006
crossref_primary_10_1080_01635581_2017_1295090
crossref_primary_10_1158_0008_5472_CAN_14_3607
crossref_primary_10_3389_fonc_2017_00003
crossref_primary_10_1002_med_21473
crossref_primary_10_3109_14756366_2015_1022173
crossref_primary_10_1016_j_bbabio_2017_01_009
crossref_primary_10_3389_fonc_2020_602416
crossref_primary_10_4161_15384101_2014_995050
crossref_primary_10_1080_2162402X_2024_2379062
crossref_primary_10_3390_cancers14020322
crossref_primary_10_1016_j_heliyon_2022_e11487
crossref_primary_10_1093_rheumatology_keab022
crossref_primary_10_3390_metabo14020103
crossref_primary_10_1080_15384101_2016_1252882
crossref_primary_10_1016_j_cca_2021_07_011
crossref_primary_10_1089_ars_2019_7947
crossref_primary_10_1038_s41556_018_0083_6
crossref_primary_10_3389_fimmu_2023_1323115
crossref_primary_10_3390_biology6020024
crossref_primary_10_1242_dmm_029447
crossref_primary_10_1016_j_lfs_2019_117145
crossref_primary_10_7759_cureus_53949
crossref_primary_10_4161_cc_27379
crossref_primary_10_3390_cancers9040033
crossref_primary_10_26508_lsa_201800073
crossref_primary_10_3390_cancers9040035
crossref_primary_10_7717_peerj_10648
crossref_primary_10_1155_2017_1372640
crossref_primary_10_3389_fonc_2020_599915
crossref_primary_10_1016_j_bbcan_2017_01_002
crossref_primary_10_1158_0008_5472_CAN_15_2468
crossref_primary_10_2217_mmt_14_16
crossref_primary_10_1038_cddis_2016_492
crossref_primary_10_3389_fonc_2021_698023
crossref_primary_10_3390_biomedicines11010112
crossref_primary_10_1038_s41467_018_03348_z
crossref_primary_10_1016_j_yexcr_2017_01_013
crossref_primary_10_3390_ijms151018333
crossref_primary_10_1002_jcb_25650
crossref_primary_10_1155_2018_6075403
crossref_primary_10_1080_10409238_2018_1556578
crossref_primary_10_1186_s40169_016_0082_9
crossref_primary_10_1007_s12094_020_02367_x
crossref_primary_10_1016_j_mce_2022_111594
crossref_primary_10_1016_j_jsbmb_2017_02_019
crossref_primary_10_1038_nm_3848
crossref_primary_10_1016_j_bbcan_2016_09_001
crossref_primary_10_1186_s12964_023_01129_w
crossref_primary_10_1007_s10911_014_9326_8
crossref_primary_10_1111_cpr_12865
crossref_primary_10_4252_wjsc_v12_i6_448
crossref_primary_10_1016_j_lfs_2019_117049
crossref_primary_10_1186_s13048_023_01196_0
crossref_primary_10_1098_rsfs_2014_0014
crossref_primary_10_1002_med_21423
crossref_primary_10_1016_j_cellsig_2020_109708
crossref_primary_10_1016_j_semcancer_2018_10_002
crossref_primary_10_1164_rccm_201504_0780OC
crossref_primary_10_1371_journal_pone_0232235
crossref_primary_10_1038_s41598_017_13505_x
crossref_primary_10_1038_s41585_023_00827_x
crossref_primary_10_1155_2022_4525540
crossref_primary_10_1007_s10555_023_10164_5
crossref_primary_10_1016_j_bbabio_2017_02_001
crossref_primary_10_1038_nrc_2016_73
crossref_primary_10_1101_gad_275776_115
Cites_doi 10.4161/cc.10.23.18151
10.1093/jnci/djg050
10.4161/cc.10.24.18551
10.1016/j.molmed.2008.11.001
10.2353/ajpath.2009.080924
10.2741/2327
10.1016/j.biocel.2011.01.023
10.4161/cc.10.11.15674
10.1016/S1470-2045(08)70201-8
10.1056/NEJMra0802968
10.1186/bcr3368
10.2353/ajpath.2009.080873
10.1200/JCO.2011.38.2010
10.1093/jnci/92.7.564
10.4161/cc.25510
10.1002/(SICI)1097-0215(19990315)80:6<823::AID-IJC5>3.0.CO;2-3
10.4161/cc.9.12.12048
10.1186/1741-7015-9-62
10.4161/cc.9.16.12553
10.1186/bcr2334
10.1038/sj.onc.1209876
10.1038/sj.onc.1202248
10.1158/0008-5472.CAN-12-1949
10.4161/cc.9.17.12721
10.4161/cc.10.24.18487
10.18632/aging.100134
10.4161/cc.20717
10.4161/cbt.10.2.11983
10.1002/ijc.26031
10.1089/ars.2011.4243
10.4161/cc.22776
10.4161/cc.10.13.16233
10.1371/journal.pone.0011379
10.1016/S0092-8674(00)81683-9
10.1146/annurev-pathol-011811-120856
10.4161/cc.11.6.19530
10.4161/cc.24289
10.1016/j.ajpath.2011.10.036
10.4161/cc.8.23.10238
10.4161/cc.23109
10.1038/sj.onc.1202509
10.1016/j.cell.2011.02.013
10.1016/j.humpath.2007.10.011
10.1158/1078-0432.CCR-12-2123
10.4161/cc.9.21.13817
10.1038/nrc1457
10.4161/cc.9.12.11989
10.1038/sj.onc.1210014
10.4161/cbt.12.10.17780
10.1016/j.ccr.2012.02.022
10.1016/j.molmed.2013.04.005
10.4161/cc.22137
10.1086/521032
10.4161/cc.10.15.16585
10.1016/S1470-2045(01)00622-2
10.4161/cc.20718
10.4161/cc.24092
10.1111/j.1349-7006.2011.01985.x
10.4161/cc.22136
10.4161/cbt.8.11.8874
10.1007/s12253-011-9469-5
10.4161/cc.9.17.12908
10.4161/cc.10.11.15659
10.1016/j.ajpath.2011.03.002
10.1007/s13277-011-0181-6
10.1016/j.cmet.2011.12.011
10.1038/nm.2492
10.4161/cc.21643
10.1186/bcr2892
10.1002/path.4034
10.1038/nature11706
10.4161/cc.9.17.12928
10.4161/cc.10.11.15675
10.4161/cbt.12.12.18703
10.1038/nrc1098
10.4161/cc.8.15.9116
10.1038/nrc3365
10.1038/nrd3455
10.4161/cc.10.15.16870
10.1038/nrc3181
10.1038/6029
10.4161/cc.9.11.11848
10.4161/epi.6.5.15667
10.4161/cc.22226
10.4161/cc.21384
10.1038/ncb2432
10.4161/cc.19841
10.4161/cc.21884
10.1086/375033
10.4161/cc.10.8.15330
10.4161/cc.21701
10.1002/path.4217
10.1158/1541-7786.MCR-12-0437-T
10.4161/cc.10.15.16584
10.4161/cbt.10.6.13370
ContentType Journal Article
Copyright Copyright © 2013 Landes Bioscience 2013
Copyright_xml – notice: Copyright © 2013 Landes Bioscience 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4161/cc.25695
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-4005
EndPage 2732
ExternalDocumentID PMC3899185
23860382
10_4161_cc_25695
10925695
Genre Other
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0BK
0R~
29B
30N
4.4
53G
5GY
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
GTTXZ
H13
HYE
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAGME
AAYXX
ABFMO
ACDHJ
ACFTK
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CITATION
CWRZV
IPNFZ
LJTGL
PCLFJ
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c482t-2e61a20b67084f8978e140653a434a779afb3e9694840aa34548f692c4559c963
IEDL.DBID TFW
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327436300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4101
1551-4005
IngestDate Tue Nov 04 01:51:44 EST 2025
Thu Nov 20 07:25:11 EST 2025
Wed Feb 19 01:52:24 EST 2025
Sat Nov 29 03:22:07 EST 2025
Tue Nov 18 22:23:25 EST 2025
Mon Oct 20 23:45:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords cancer-associated fibroblast
TGF-beta
RAS
glycolysis
tumor suppressor
BRCA1
NFkB
stromal biomarkers
tumor microenvironment
oncogene
metabolic symbiosis
oxidative stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-2e61a20b67084f8978e140653a434a779afb3e9694840aa34548f692c4559c963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.4161/cc.25695?needAccess=true
PMID 23860382
PQID 1431623004
PQPubID 23479
PageCount 10
ParticipantIDs crossref_primary_10_4161_cc_25695
pubmed_primary_23860382
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3899185
informaworld_taylorfrancis_310_4161_cc_25695
crossref_citationtrail_10_4161_cc_25695
proquest_miscellaneous_1431623004
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2013
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References Ayala (R68) 2013
Liu (R98) 2012; 180
Nieman (R13) 2011; 17
Pavlides (R40) 2012; 16
Antoniou (R79) 2003; 72
Martinez-Outschoorn (R26) 2012; 11
Martinez-Outschoorn (R23) 2011; 12
Qian (R64) 2011; 102
Sloan (R66) 2009; 174
Curry (R69) 2013; 12
Fidler (R75) 2003; 3
Witkiewicz (R58) 2010; 10
Simpkins (R65) 2012; 227
Fordyce (R15) 2012; 14
Sanchez-Alvarez (R73) 2013; 12
Fiaschi (R14) 2012; 72
Hanahan (R5) 2012; 21
Wu (R61) 2011; 10
Avena (R54) 2013; 12
Pavlides (R39) 2010; 2
Hanahan (R11) 2011; 144
Guendel (R88) 2010; 5
Martinez-Outschoorn (R29) 2011; 178
Witkiewicz (R60) 2011; 10
Martinez-Outschoorn (R34) 2010; 9
Rio (R90) 1999; 80
Fidler (R76) 2008; 9
Guido (R72) 2012; 11
Magdinier (R89) 1998; 17
Rønnov-Jessen (R9) 2009; 15
Foulkes (R84) 2003; 95
El-Gendi (R67) 2012; 18
Pavlides (R38) 2010; 9
Carito (R52) 2012; 11
Martinez-Outschoorn (R28) 2011; 43
Martinez-Outschoorn (R31) 2011; 10
Martinez-Outschoorn (R33) 2012; 15
Sotgia (R43) 2011; 9
Martinez-Outschoorn (R20) 2012; 11
Martinez-Outschoorn (R36) 2010; 9
Martinez-Outschoorn (R24) 2011; 10
Bissell (R6) 2005; 7
Sotgia (R42) 2012; 7
Wallace (R1) 2012; 12
Witkiewicz (R57) 2009; 8
Carmeliet (R4) 2011; 10
Capparelli (R49) 2012; 11
Lisanti (R17) 2010; 10
Witkiewicz (R59) 2009; 174
Zhang (R97) 2012; 14
Di Vizio (R62) 2009; 8
Turner (R85) 2006; 25
Hanahan (R10) 2000; 100
Martinez-Outschoorn (R71) 2013; 12
Capparelli (R50) 2012; 11
Easton (R81) 2007; 81
Rakha (R83) 2008; 39
Esteller (R93) 2000; 92
Martinez-Outschoorn (R35) 2011; 10
Sotgia (R44) 2011; 13
Roy (R80) 2012; 12
Brauer (R12) 2013; 19
Kenny (R7) 2007; 12
Whitaker-Menezes (R56) 2011; 10
Catteau (R92) 1999; 18
Lisanti (R19) 2011; 10
Pavlides (R41) 2009; 8
Fidler (R77) 2002; 3
Wilson (R91) 1999; 21
Martinez-Outschoorn (R22) 2010; 9
Martinez-Outschoorn (R32) 2011; 10
Capparelli (R51) 2012; 11
Schulze (R2) 2012; 491
Chiavarina (R47) 2011; 12
Migneco (R53) 2010; 9
Koo (R63) 2011; 32
Foulkes (R78) 2008; 359
Stefansson (R94) 2011; 6
Martinez-Outschoorn (R21) 2012; 11
Chiavarina (R46) 2012; 11
Whitaker-Menezes (R55) 2011; 10
Metzger-Filho (R96) 2012; 30
Lisanti (R18) 2011; 10
Martinez-Outschoorn (R25) 2011; 10
Chaudhri (R16) 2013; 11
Turner (R87) 2007; 26
Turner (R95) 2004; 4
Chiavarina (R48) 2010; 9
Stefansson (R86) 2009; 11
Kenny (R8) 2006; 20
Martinez-Outschoorn (R27) 2012; 11
Langley (R74) 2011; 128
Yoshikawa (R82) 1999; 5
Maes (R3) 2013; 19
Martinez-Outschoorn (R30) 2010; 9
Sotgia (R45) 2012; 11
Witkiewicz (R70) 2012; 11
Pavlides (R37) 2010; 9
22033146 - Cell Cycle. 2011 Dec 15;10(24):4208-16
20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33
9872332 - Oncogene. 1998 Dec 17;17(24):3169-76
23729330 - J Pathol. 2013 Sep;231(1):77-87
23860378 - Cell Cycle. 2013 Aug 15;12(16):2580-97
17485314 - Front Biosci. 2007;12:3468-74
10647931 - Cell. 2000 Jan 7;100(1):57-70
21051947 - Cell Cycle. 2010 Nov 1;9(21):4297-306
21514412 - Am J Pathol. 2011 May;178(5):1949-52
22134245 - Cell Cycle. 2011 Dec 15;10(24):4250-5
23216814 - Breast Cancer Res. 2012;14(6):R155
23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98
23574725 - Cell Cycle. 2013 May 1;12(9):1371-84
22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22
14519755 - J Natl Cancer Inst. 2003 Oct 1;95(19):1482-5
21300172 - Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51
22189618 - Am J Pathol. 2012 Feb;180(2):599-607
21521946 - Cell Cycle. 2011 Jun 1;10(11):1794-809
21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27
10074913 - Int J Cancer. 1999 Mar 15;80(6):823-6
19589159 - Breast Cancer Res. 2009;11(4):R47
23574724 - Cell Cycle. 2013 May 1;12(9):1360-70
10389907 - Clin Cancer Res. 1999 Jun;5(6):1249-61
21584795 - Tumour Biol. 2011 Aug;32(4):787-99
22344033 - Nat Cell Biol. 2012 Mar;14(3):276-86
22850421 - Cancer Res. 2012 Oct 1;72(19):5130-40
21605374 - BMC Med. 2011;9:62
19556867 - Cell Cycle. 2009 Aug;8(15):2420-4
22041887 - Cancer Biol Ther. 2011 Nov 15;12(10):924-38
20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76
23082721 - Cell Cycle. 2012 Nov 1;11(21):3956-63
19411449 - Am J Pathol. 2009 Jun;174(6):2035-43
20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43
20614009 - PLoS One. 2010;5(6):e11379
20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33
22193408 - Nat Rev Cancer. 2012 Jan;12(1):68-78
23172369 - Cell Cycle. 2012 Dec 1;11(23):4402-13
21883043 - Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84
12778135 - Nat Rev Cancer. 2003 Jun;3(6):453-8
22454417 - J Clin Oncol. 2012 May 20;30(15):1879-87
21778829 - Cell Cycle. 2011 Aug 1;10(15):2504-20
19411448 - Am J Pathol. 2009 Jun;174(6):2023-34
12677558 - Am J Hum Genet. 2003 May;72(5):1117-30
21585620 - Cancer Sci. 2011 Aug;102(8):1590-6
21132085 - Scientist. 2006 Apr 1;20(4):30
19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9
20562527 - Cell Cycle. 2010 Jun 15;9(12):2412-22
21512313 - Cell Cycle. 2011 Apr 15;10(8):1271-86
15510162 - Nat Rev Cancer. 2004 Oct;4(10):814-9
10749912 - J Natl Cancer Inst. 2000 Apr 5;92(7):564-9
20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505
23151579 - Nature. 2012 Nov 15;491(7424):364-73
15652746 - Cancer Cell. 2005 Jan;7(1):17-23
19091631 - Trends Mol Med. 2009 Jan;15(1):5-13
17924331 - Am J Hum Genet. 2007 Nov;81(5):873-83
21558814 - Cell Cycle. 2011 Jun 1;10(11):1772-83
9988281 - Nat Genet. 1999 Feb;21(2):236-40
22077552 - Annu Rev Pathol. 2012;7:423-67
23257780 - Cell Cycle. 2013 Jan 15;12(2):289-301
22395432 - Cell Cycle. 2012 Apr 1;11(7):1445-54
19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001
22225869 - Cell Metab. 2012 Jan 4;15(1):4-5
18400253 - Hum Pathol. 2008 Jun;39(6):857-65
22935696 - Cell Cycle. 2012 Oct 1;11(19):3599-610
20442453 - Aging (Albany NY). 2010 Apr;2(4):185-99
21867571 - Breast Cancer Res. 2011;13(4):213
16998499 - Oncogene. 2006 Sep 25;25(43):5846-53
21654190 - Cell Cycle. 2011 Jul 1;10(13):2059-63
21593597 - Epigenetics. 2011 May;6(5):638-49
22134189 - Cell Cycle. 2011 Dec 1;10(23):4047-64
22057638 - Pathol Oncol Res. 2012 Apr;18(2):459-69
23236214 - Clin Cancer Res. 2013 Feb 1;19(3):571-85
20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51
23475953 - Mol Cancer Res. 2013 Jun;11(6):579-92
22236875 - Cancer Biol Ther. 2011 Dec 15;12(12):1101-13
21376230 - Cell. 2011 Mar 4;144(5):646-74
21566463 - Cell Cycle. 2011 Jun 1;10(11):1784-93
10208417 - Oncogene. 1999 Mar 18;18(11):1957-65
18672217 - Lancet Oncol. 2008 Aug;9(8):808
22488553 - J Pathol. 2012 Aug;227(4):490-8
11905606 - Lancet Oncol. 2002 Jan;3(1):53-7
22684298 - Cell Cycle. 2012 Jun 15;11(12):2285-302
23047606 - Cell Cycle. 2012 Nov 15;11(22):4152-66
22684333 - Cell Cycle. 2012 Jun 15;11(12):2272-84
21365651 - Int J Cancer. 2011 Jun 1;128(11):2527-35
20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19
22894905 - Cell Cycle. 2012 Sep 1;11(17):3280-9
22918248 - Cell Cycle. 2012 Sep 15;11(18):3403-14
19005198 - N Engl J Med. 2008 Nov 13;359(20):2143-53
23082722 - Cell Cycle. 2012 Nov 1;11(21):3964-71
23714574 - Trends Mol Med. 2013 Jul;19(7):428-46
22874531 - Cell Cycle. 2012 Aug 15;11(16):3019-35
17016441 - Oncogene. 2007 Mar 29;26(14):2126-32
22313602 - Cell Cycle. 2012 Mar 15;11(6):1108-17
21734470 - Cell Cycle. 2011 Aug 1;10(15):2440-9
21768775 - Cell Cycle. 2011 Aug 1;10(15):2521-8
22037646 - Nat Med. 2011;17(11):1498-503
20861671 - Cancer Biol Ther. 2010 Sep 15;10(6):537-42
References_xml – volume: 10
  start-page: 4047
  year: 2011
  ident: R55
  article-title: Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.23.18151
– volume: 95
  start-page: 1482
  year: 2003
  ident: R84
  article-title: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djg050
– volume: 10
  start-page: 4250
  year: 2011
  ident: R61
  article-title: Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.24.18551
– volume: 15
  start-page: 5
  year: 2009
  ident: R9
  article-title: Breast cancer by proxy: can the microenvironment be both the cause and consequence?
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2008.11.001
– volume: 174
  start-page: 2035
  year: 2009
  ident: R66
  article-title: Stromal cell expression of caveolin-1 predicts outcome in breast cancer
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2009.080924
– volume: 12
  start-page: 3468
  year: 2007
  ident: R7
  article-title: Targeting the tumor microenvironment
  publication-title: Front Biosci
  doi: 10.2741/2327
– volume: 20
  start-page: 30
  year: 2006
  ident: R8
  article-title: The Ecology of Tumors: By perturbing the microenvironment, wounds and infection may be key to tumor development
  publication-title: Scientist
– volume: 43
  start-page: 1045
  year: 2011
  ident: R28
  article-title: Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2011.01.023
– volume: 10
  start-page: 1784
  year: 2011
  ident: R35
  article-title: Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.11.15674
– volume: 9
  start-page: 808
  year: 2008
  ident: R76
  article-title: The “seed and soil” hypothesis revisited
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(08)70201-8
– volume: 359
  start-page: 2143
  year: 2008
  ident: R78
  article-title: Inherited susceptibility to common cancers
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0802968
– volume: 14
  start-page: R155
  year: 2012
  ident: R15
  article-title: Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr3368
– volume: 174
  start-page: 2023
  year: 2009
  ident: R59
  article-title: An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2009.080873
– volume: 30
  start-page: 1879
  year: 2012
  ident: R96
  article-title: Dissecting the heterogeneity of triple-negative breast cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.38.2010
– volume: 92
  start-page: 564
  year: 2000
  ident: R93
  article-title: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/92.7.564
– volume: 12
  year: 2013
  ident: R71
  article-title: Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFkB target stromal MCT4
  publication-title: Cell Cycle
  doi: 10.4161/cc.25510
– volume: 80
  start-page: 823
  year: 1999
  ident: R90
  article-title: Quantification of BRCA1 protein in sporadic breast carcinoma with or without loss of heterozygosity of the BRCA1 gene
  publication-title: Int J Cancer
  doi: 10.1002/(SICI)1097-0215(19990315)80:6<823::AID-IJC5>3.0.CO;2-3
– volume: 9
  start-page: 2423
  year: 2010
  ident: R30
  article-title: Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.12.12048
– volume: 9
  start-page: 62
  year: 2011
  ident: R43
  article-title: Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?
  publication-title: BMC Med
  doi: 10.1186/1741-7015-9-62
– volume: 9
  start-page: 3256
  year: 2010
  ident: R22
  article-title: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.16.12553
– volume: 11
  start-page: R47
  year: 2009
  ident: R86
  article-title: Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2334
– volume: 25
  start-page: 5846
  year: 2006
  ident: R85
  article-title: Basal-like breast cancer and the BRCA1 phenotype
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209876
– volume: 17
  start-page: 3169
  year: 1998
  ident: R89
  article-title: Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202248
– volume: 72
  start-page: 5130
  year: 2012
  ident: R14
  article-title: Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1949
– volume: 9
  start-page: 3485
  year: 2010
  ident: R37
  article-title: The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.17.12721
– volume: 10
  start-page: 4208
  year: 2011
  ident: R31
  article-title: Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.24.18487
– volume: 2
  start-page: 185
  year: 2010
  ident: R39
  article-title: Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling”
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100134
– volume: 11
  start-page: 2272
  year: 2012
  ident: R51
  article-title: CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth
  publication-title: Cell Cycle
  doi: 10.4161/cc.20717
– volume: 10
  start-page: 135
  year: 2010
  ident: R58
  article-title: Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.10.2.11983
– volume: 128
  start-page: 2527
  year: 2011
  ident: R74
  article-title: The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs
  publication-title: Int J Cancer
  doi: 10.1002/ijc.26031
– volume: 16
  start-page: 1264
  year: 2012
  ident: R40
  article-title: Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2011.4243
– volume: 11
  start-page: 4402
  year: 2012
  ident: R20
  article-title: BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies
  publication-title: Cell Cycle
  doi: 10.4161/cc.22776
– volume: 10
  start-page: 2059
  year: 2011
  ident: R19
  article-title: Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.13.16233
– volume: 5
  start-page: e11379
  year: 2010
  ident: R88
  article-title: Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011379
– volume: 100
  start-page: 57
  year: 2000
  ident: R10
  article-title: The hallmarks of cancer
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– volume: 7
  start-page: 423
  year: 2012
  ident: R42
  article-title: Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-011811-120856
– volume: 11
  start-page: 1108
  year: 2012
  ident: R70
  article-title: Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers
  publication-title: Cell Cycle
  doi: 10.4161/cc.11.6.19530
– volume: 12
  start-page: 1360
  year: 2013
  ident: R54
  article-title: Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis
  publication-title: Cell Cycle
  doi: 10.4161/cc.24289
– volume: 180
  start-page: 599
  year: 2012
  ident: R98
  article-title: ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.10.036
– volume: 8
  start-page: 3984
  year: 2009
  ident: R41
  article-title: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.23.10238
– volume: 12
  start-page: 289
  year: 2013
  ident: R73
  article-title: Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention
  publication-title: Cell Cycle
  doi: 10.4161/cc.23109
– volume: 18
  start-page: 1957
  year: 1999
  ident: R92
  article-title: Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202509
– volume: 144
  start-page: 646
  year: 2011
  ident: R11
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 39
  start-page: 857
  year: 2008
  ident: R83
  article-title: Expression of BRCA1 protein in breast cancer and its prognostic significance
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2007.10.011
– volume: 19
  start-page: 571
  year: 2013
  ident: R12
  article-title: Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-2123
– volume: 9
  start-page: 4297
  year: 2010
  ident: R36
  article-title: The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: A simple solution to the autophagy paradox
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.21.13817
– volume: 4
  start-page: 814
  year: 2004
  ident: R95
  article-title: Hallmarks of ‘BRCAness’ in sporadic cancers
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1457
– volume: 9
  start-page: 2412
  year: 2010
  ident: R53
  article-title: Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.12.11989
– volume: 26
  start-page: 2126
  year: 2007
  ident: R87
  article-title: BRCA1 dysfunction in sporadic basal-like breast cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210014
– volume: 12
  start-page: 924
  year: 2011
  ident: R23
  article-title: Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.12.10.17780
– volume: 21
  start-page: 309
  year: 2012
  ident: R5
  article-title: Accessories to the crime: functions of cells recruited to the tumor microenvironment
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.022
– volume: 19
  start-page: 428
  year: 2013
  ident: R3
  article-title: Autophagy: shaping the tumor microenvironment and therapeutic response
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2013.04.005
– volume: 11
  start-page: 3964
  year: 2012
  ident: R27
  article-title: Ketone body utilization drives tumor growth and metastasis
  publication-title: Cell Cycle
  doi: 10.4161/cc.22137
– volume: 81
  start-page: 873
  year: 2007
  ident: R81
  article-title: A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes
  publication-title: Am J Hum Genet
  doi: 10.1086/521032
– volume: 10
  start-page: 2504
  year: 2011
  ident: R25
  article-title: Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.15.16585
– volume: 3
  start-page: 53
  year: 2002
  ident: R77
  article-title: The seed and soil hypothesis: vascularisation and brain metastases
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(01)00622-2
– volume: 11
  start-page: 2285
  year: 2012
  ident: R50
  article-title: Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production
  publication-title: Cell Cycle
  doi: 10.4161/cc.20718
– volume: 12
  start-page: 1371
  year: 2013
  ident: R69
  article-title: Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer
  publication-title: Cell Cycle
  doi: 10.4161/cc.24092
– volume: 102
  start-page: 1590
  year: 2011
  ident: R64
  article-title: Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2011.01985.x
– volume: 11
  start-page: 3956
  year: 2012
  ident: R26
  article-title: Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.22136
– volume: 8
  start-page: 1071
  year: 2009
  ident: R57
  article-title: Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.8.11.8874
– volume: 18
  start-page: 459
  year: 2012
  ident: R67
  article-title: Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome
  publication-title: Pathol Oncol Res
  doi: 10.1007/s12253-011-9469-5
– volume: 9
  start-page: 3534
  year: 2010
  ident: R48
  article-title: HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.17.12908
– volume: 10
  start-page: 1772
  year: 2011
  ident: R56
  article-title: Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.11.15659
– volume: 178
  start-page: 1949
  year: 2011
  ident: R29
  article-title: Mitochondrial biogenesis drives tumor cell proliferation
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.03.002
– volume: 32
  start-page: 787
  year: 2011
  ident: R63
  article-title: The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer
  publication-title: Tumour Biol
  doi: 10.1007/s13277-011-0181-6
– volume: 5
  start-page: 1249
  year: 1999
  ident: R82
  article-title: Reduction of BRCA1 protein expression in Japanese sporadic breast carcinomas and its frequent loss in BRCA1-associated cases
  publication-title: Clin Cancer Res
– volume: 15
  start-page: 4
  year: 2012
  ident: R33
  article-title: Power surge: supporting cells “fuel” cancer cell mitochondria
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.12.011
– volume: 17
  start-page: 1498
  year: 2011
  ident: R13
  article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
  publication-title: Nat Med
  doi: 10.1038/nm.2492
– volume: 11
  start-page: 3280
  year: 2012
  ident: R46
  article-title: Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.21643
– volume: 13
  start-page: 213
  year: 2011
  ident: R44
  article-title: Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2892
– volume: 227
  start-page: 490
  year: 2012
  ident: R65
  article-title: Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts
  publication-title: J Pathol
  doi: 10.1002/path.4034
– volume: 491
  start-page: 364
  year: 2012
  ident: R2
  article-title: How cancer metabolism is tuned for proliferation and vulnerable to disruption
  publication-title: Nature
  doi: 10.1038/nature11706
– volume: 9
  start-page: 3515
  year: 2010
  ident: R34
  article-title: Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.17.12928
– volume: 10
  start-page: 1794
  year: 2011
  ident: R60
  article-title: Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.11.15675
– volume: 12
  start-page: 1101
  year: 2011
  ident: R47
  article-title: Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.12.12.18703
– volume: 3
  start-page: 453
  year: 2003
  ident: R75
  article-title: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1098
– volume: 8
  start-page: 2420
  year: 2009
  ident: R62
  article-title: An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.15.9116
– volume: 12
  start-page: 685
  year: 2012
  ident: R1
  article-title: Mitochondria and cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3365
– volume: 10
  start-page: 417
  year: 2011
  ident: R4
  article-title: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3455
– volume: 7
  start-page: 17
  year: 2005
  ident: R6
  article-title: Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?
  publication-title: Cancer Cell
– volume: 10
  start-page: 2440
  year: 2011
  ident: R18
  article-title: Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs “fertilizer”
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.15.16870
– volume: 12
  start-page: 68
  year: 2012
  ident: R80
  article-title: BRCA1 and BRCA2: different roles in a common pathway of genome protection
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3181
– volume: 21
  start-page: 236
  year: 1999
  ident: R91
  article-title: Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas
  publication-title: Nat Genet
  doi: 10.1038/6029
– volume: 9
  start-page: 2201
  year: 2010
  ident: R38
  article-title: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.11.11848
– volume: 6
  start-page: 638
  year: 2011
  ident: R94
  article-title: CpG island hypermethylation of BRCA1 and loss of pRb as co-occurring events in basal/triple-negative breast cancer
  publication-title: Epigenetics
  doi: 10.4161/epi.6.5.15667
– volume: 11
  start-page: 4152
  year: 2012
  ident: R21
  article-title: Hereditary ovarian cancer and two-compartment tumor metabolism: epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma
  publication-title: Cell Cycle
  doi: 10.4161/cc.22226
– volume: 11
  start-page: 3019
  year: 2012
  ident: R72
  article-title: Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production
  publication-title: Cell Cycle
  doi: 10.4161/cc.21384
– volume: 14
  start-page: 276
  year: 2012
  ident: R97
  article-title: Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2432
– volume: 11
  start-page: 1445
  year: 2012
  ident: R45
  article-title: Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue
  publication-title: Cell Cycle
  doi: 10.4161/cc.19841
– volume: 11
  start-page: 3599
  year: 2012
  ident: R49
  article-title: CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis
  publication-title: Cell Cycle
  doi: 10.4161/cc.21884
– volume: 72
  start-page: 1117
  year: 2003
  ident: R79
  article-title: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies
  publication-title: Am J Hum Genet
  doi: 10.1086/375033
– volume: 10
  start-page: 1271
  year: 2011
  ident: R32
  article-title: Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.8.15330
– volume: 11
  start-page: 3403
  year: 2012
  ident: R52
  article-title: Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth
  publication-title: Cell Cycle
  doi: 10.4161/cc.21701
– year: 2013
  ident: R68
  article-title: Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression
  publication-title: J Pathol
  doi: 10.1002/path.4217
– volume: 11
  start-page: 579
  year: 2013
  ident: R16
  article-title: Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-12-0437-T
– volume: 10
  start-page: 2521
  year: 2011
  ident: R24
  article-title: Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.15.16584
– volume: 10
  start-page: 537
  year: 2010
  ident: R17
  article-title: Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.10.6.13370
– reference: 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43
– reference: 22041887 - Cancer Biol Ther. 2011 Nov 15;12(10):924-38
– reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98
– reference: 17924331 - Am J Hum Genet. 2007 Nov;81(5):873-83
– reference: 17016441 - Oncogene. 2007 Mar 29;26(14):2126-32
– reference: 20431349 - Cancer Biol Ther. 2010 Jul 15;10(2):135-43
– reference: 20562527 - Cell Cycle. 2010 Jun 15;9(12):2412-22
– reference: 21867571 - Breast Cancer Res. 2011;13(4):213
– reference: 21778829 - Cell Cycle. 2011 Aug 1;10(15):2504-20
– reference: 9988281 - Nat Genet. 1999 Feb;21(2):236-40
– reference: 20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33
– reference: 23714574 - Trends Mol Med. 2013 Jul;19(7):428-46
– reference: 21132085 - Scientist. 2006 Apr 1;20(4):30
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34
– reference: 21365651 - Int J Cancer. 2011 Jun 1;128(11):2527-35
– reference: 23151579 - Nature. 2012 Nov 15;491(7424):364-73
– reference: 21512313 - Cell Cycle. 2011 Apr 15;10(8):1271-86
– reference: 18672217 - Lancet Oncol. 2008 Aug;9(8):808
– reference: 22488553 - J Pathol. 2012 Aug;227(4):490-8
– reference: 17485314 - Front Biosci. 2007;12:3468-74
– reference: 21521946 - Cell Cycle. 2011 Jun 1;10(11):1794-809
– reference: 22189618 - Am J Pathol. 2012 Feb;180(2):599-607
– reference: 12677558 - Am J Hum Genet. 2003 May;72(5):1117-30
– reference: 10389907 - Clin Cancer Res. 1999 Jun;5(6):1249-61
– reference: 10647931 - Cell. 2000 Jan 7;100(1):57-70
– reference: 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27
– reference: 22684333 - Cell Cycle. 2012 Jun 15;11(12):2272-84
– reference: 23574725 - Cell Cycle. 2013 May 1;12(9):1371-84
– reference: 22935696 - Cell Cycle. 2012 Oct 1;11(19):3599-610
– reference: 19091631 - Trends Mol Med. 2009 Jan;15(1):5-13
– reference: 22134189 - Cell Cycle. 2011 Dec 1;10(23):4047-64
– reference: 11905606 - Lancet Oncol. 2002 Jan;3(1):53-7
– reference: 16998499 - Oncogene. 2006 Sep 25;25(43):5846-53
– reference: 22918248 - Cell Cycle. 2012 Sep 15;11(18):3403-14
– reference: 22077552 - Annu Rev Pathol. 2012;7:423-67
– reference: 18400253 - Hum Pathol. 2008 Jun;39(6):857-65
– reference: 22313602 - Cell Cycle. 2012 Mar 15;11(6):1108-17
– reference: 21883043 - Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84
– reference: 22850421 - Cancer Res. 2012 Oct 1;72(19):5130-40
– reference: 23216814 - Breast Cancer Res. 2012;14(6):R155
– reference: 20442453 - Aging (Albany NY). 2010 Apr;2(4):185-99
– reference: 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505
– reference: 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76
– reference: 22033146 - Cell Cycle. 2011 Dec 15;10(24):4208-16
– reference: 23047606 - Cell Cycle. 2012 Nov 15;11(22):4152-66
– reference: 21566463 - Cell Cycle. 2011 Jun 1;10(11):1784-93
– reference: 23172369 - Cell Cycle. 2012 Dec 1;11(23):4402-13
– reference: 14519755 - J Natl Cancer Inst. 2003 Oct 1;95(19):1482-5
– reference: 23082722 - Cell Cycle. 2012 Nov 1;11(21):3964-71
– reference: 23860378 - Cell Cycle. 2013 Aug 15;12(16):2580-97
– reference: 21768775 - Cell Cycle. 2011 Aug 1;10(15):2521-8
– reference: 22874531 - Cell Cycle. 2012 Aug 15;11(16):3019-35
– reference: 10208417 - Oncogene. 1999 Mar 18;18(11):1957-65
– reference: 22236875 - Cancer Biol Ther. 2011 Dec 15;12(12):1101-13
– reference: 21584795 - Tumour Biol. 2011 Aug;32(4):787-99
– reference: 22037646 - Nat Med. 2011;17(11):1498-503
– reference: 21558814 - Cell Cycle. 2011 Jun 1;10(11):1772-83
– reference: 22193408 - Nat Rev Cancer. 2012 Jan;12(1):68-78
– reference: 20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51
– reference: 10074913 - Int J Cancer. 1999 Mar 15;80(6):823-6
– reference: 20861671 - Cancer Biol Ther. 2010 Sep 15;10(6):537-42
– reference: 21514412 - Am J Pathol. 2011 May;178(5):1949-52
– reference: 22225869 - Cell Metab. 2012 Jan 4;15(1):4-5
– reference: 9872332 - Oncogene. 1998 Dec 17;17(24):3169-76
– reference: 19005198 - N Engl J Med. 2008 Nov 13;359(20):2143-53
– reference: 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001
– reference: 20614009 - PLoS One. 2010;5(6):e11379
– reference: 15652746 - Cancer Cell. 2005 Jan;7(1):17-23
– reference: 23082721 - Cell Cycle. 2012 Nov 1;11(21):3956-63
– reference: 10749912 - J Natl Cancer Inst. 2000 Apr 5;92(7):564-9
– reference: 23236214 - Clin Cancer Res. 2013 Feb 1;19(3):571-85
– reference: 19589159 - Breast Cancer Res. 2009;11(4):R47
– reference: 23574724 - Cell Cycle. 2013 May 1;12(9):1360-70
– reference: 21300172 - Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51
– reference: 22134245 - Cell Cycle. 2011 Dec 15;10(24):4250-5
– reference: 22395432 - Cell Cycle. 2012 Apr 1;11(7):1445-54
– reference: 20519932 - Cell Cycle. 2010 Jun 1;9(11):2201-19
– reference: 23475953 - Mol Cancer Res. 2013 Jun;11(6):579-92
– reference: 22684298 - Cell Cycle. 2012 Jun 15;11(12):2285-302
– reference: 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33
– reference: 15510162 - Nat Rev Cancer. 2004 Oct;4(10):814-9
– reference: 23729330 - J Pathol. 2013 Sep;231(1):77-87
– reference: 19502809 - Cancer Biol Ther. 2009 Jun;8(11):1071-9
– reference: 21585620 - Cancer Sci. 2011 Aug;102(8):1590-6
– reference: 22439926 - Cancer Cell. 2012 Mar 20;21(3):309-22
– reference: 21593597 - Epigenetics. 2011 May;6(5):638-49
– reference: 21051947 - Cell Cycle. 2010 Nov 1;9(21):4297-306
– reference: 21734470 - Cell Cycle. 2011 Aug 1;10(15):2440-9
– reference: 12778135 - Nat Rev Cancer. 2003 Jun;3(6):453-8
– reference: 23257780 - Cell Cycle. 2013 Jan 15;12(2):289-301
– reference: 22454417 - J Clin Oncol. 2012 May 20;30(15):1879-87
– reference: 19556867 - Cell Cycle. 2009 Aug;8(15):2420-4
– reference: 21605374 - BMC Med. 2011;9:62
– reference: 22344033 - Nat Cell Biol. 2012 Mar;14(3):276-86
– reference: 21654190 - Cell Cycle. 2011 Jul 1;10(13):2059-63
– reference: 22057638 - Pathol Oncol Res. 2012 Apr;18(2):459-69
– reference: 22894905 - Cell Cycle. 2012 Sep 1;11(17):3280-9
SSID ssj0028791
Score 2.4123404
SecondaryResourceType review_article
Snippet Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2723
SubjectTerms BRCA1
cancer-associated fibroblast
Drug Discovery
Fibroblasts - drug effects
Fibroblasts - metabolism
Fibroblasts - pathology
glycolysis
Humans
metabolic symbiosis
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
NFkB
oncogene
Oncogenes - genetics
oxidative stress
Phenotype
RAS
stromal biomarkers
TGF-beta
tumor microenvironment
tumor suppressor
Title Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery
URI https://www.tandfonline.com/doi/abs/10.4161/cc.25695
https://www.ncbi.nlm.nih.gov/pubmed/23860382
https://www.proquest.com/docview/1431623004
https://pubmed.ncbi.nlm.nih.gov/PMC3899185
Volume 12
WOSCitedRecordID wos000327436300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1551-4005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028791
  issn: 1538-4101
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGNCQuMMavwpgeExIXAm3sOjY3hKi4MHbYtN4i27FHpJGgJEXqv8Jfy3tOVjWoFzjXbS378_P3Je99j7HXygQkuhpPmrAoUKwwiZ15lUiTYTR0Ng2qiM0msrMztVzq86EorB3SKklDh94oIsZqOtzGxg4kRMffO_cOL2pNleVI5gnWF4urjcpSmR5MUlUiEHC94-zoi6M7aORQuotn_p0uuXX_LB7838wP2f2Bb8LHHiAP2Z6vjtjdvgPl-hH7_a1y9TXFO0BxjtsMSAjBERSaxAxb5wsIqKpri0y7A0oKq-nJ7Qf46jvE0E3poF3_sGXdli3g3OB0azglLMXaiVMwjQdk8bBV8wV9JnoLuDhQNKtroDJhSitdP2aXi88Xn74kQ7uGxAmVdknq5cykUyuzqRJBoTz1qN7knBvBhckybYLlXkstUFQawwWKpSB16gSqGoeB4Anbr-rKP2OgA6oYM-NhXnhhlNOGF7LgxZxLSwZlE_bmdgNzN3iZU0uNmxw1Da107lweV3rCXm1G_uz9O3aMebuNgbyLz0pC39gk5zt-8hYjOZ5FesFiKl-vWpRRfIZ0EuPOhD3tMbP5U6RGcspVOmHZCE2bAeTzPf6kKr9Hv2-yQERa9fzfpvmC3Utj6w7Khztm-12z8i_ZgfvVlW1zwu5kS3UST84frB0e9Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NwTRe-D0oMDATEi8LtLHj2LwhtGqIrfBQxN4ix7FHpJGgJEXqv8Jfy12SVg3qy3iO01r23fn7nLvvAF4r4xHoavQ0kSJBSYUJ0olTgTQxRkObhl5lbbOJeDZTFxf66w5Eq1oYSqskDu07oYg2VpNz02U0eTjh8XfWvsWTWkc34GaExytl8s2n39c8S8W6l0lVgUCT6zRnB28OTqGBRuk2pPlvwuTGCTS9-59zvwd3esjJPnQ2ch92XPEA9romlMuH8OdLYctLCnkM-TnuNENMyCxZQxWYfvdcxjwS6zJFsN0wygsr6fL2PTt3DZrRVW5ZvfyZ5mWd1wwnx442hlPOUls-ccRM5RgCebZR9sW6ZPSa4eqwrFpcMqoUpszS5SP4Nj2ZfzwN-o4NgRUqbILQyYkJx6mMx0p4hQzVIYGTETeCCxPH2viUOy21QF5pDBfIl7zUoRVIbCzGggPYLcrCPQGmPRIZM-E-ypwwymrDM5nxLOIyJY2yEbxZ7WBiezlz6qpxlSCtoZVOrE3alR7Bq_XIX52Ex5Yxx5tGkDTtdYnvepskfMtProwkQXekbyymcOWiRibFJ4goMfSM4HFnNOs_RXQkx1yFI4gH5rQeQFLfwydF_qOV_CYVRERWT683zZewfzo_P0vOPs0-P4PbYdvJg9LjnsNuUy3cIdyyv5u8rl60DvQXtAwiLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7B8hAX3o_yHFZIXAi0sevY3BBQgYCyh0XsLbIde4m0JKskRepf4dcydrJVg3qBc93Wsr8Zf18y_gbgmdSeiK6iSOOGBIrhOjEzJxOhM8qG1qReFrHZRLZcyqMjdTBcCmuHssqgoX1vFBFzdQju08KHAA90_JW1L-mgVvPzcCH6YRGKDxffNzJLZmpwSZUJJ8T1lrOjb44OoZFF6S6i-Xe95NYBtLj2f1O_DlcHwolveoTcgHOuugmX-haU61vw-2tl6-OQ8JDUOe0zEiNEG7DQJHrYO1egJ1ldG6LaHYaqsDo8un2NX1xHIDopLbbrn6as27JFmhvubw0PFUvx8sQ-6sYh0XjcuvSFfSl6i7Q4WDSrYwz3hENd6fo2fFu8P3z7IRn6NSSWy7RLUidmOp0akU0l95L0qSP5JuZMc8Z1lintDXNKKE6qUmvGSS15oVLLSdZYygR3YK-qK3cPUHmSMXrG_LxwXEurNCtEwYo5EyY4lE3g-dkG5nYwMw89NU5yEjVhpXNr87jSE3i6GXnaG3jsGPNiGwN5Fx-W-L6zSc52_OQZRnIKxvCGRVeuXrWko9iM-CQlngnc7TGz-VPiRmLKZDqBbISmzYBg9D3-pCp_RMPv4IFIvOr-v03zCVw-eLfIP39cfnoAV9LYxiPUxj2Eva5ZuUdw0f7qyrZ5HMPnDyJuINI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenes+induce+the+cancer-associated+fibroblast+phenotype%3A+Metabolic+symbiosis+and+%E2%80%9Cfibroblast+addiction%E2%80%9D+are+new+therapeutic+targets+for+drug+discovery&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Lisanti%2C+Michael+P.&rft.au=Martinez-Outschoorn%2C+Ubaldo+E.&rft.au=Sotgia%2C+Federica&rft.date=2013-09-01&rft.issn=1538-4101&rft.eissn=1551-4005&rft.volume=12&rft.issue=17&rft.spage=2723&rft.epage=2732&rft_id=info:doi/10.4161%2Fcc.25695&rft.externalDBID=n%2Fa&rft.externalDocID=10_4161_cc_25695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon