Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect

Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Trends in immunology Ročník 39; číslo 8; s. 644 - 655
Hlavní autori: Rodríguez-Ruiz, María E., Vanpouille-Box, Claire, Melero, Ignacio, Formenti, Silvia Chiara, Demaria, Sandra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.08.2018
Elsevier Limited
Predmet:
ISSN:1471-4906, 1471-4981, 1471-4981
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects. Tumor-targeted radiation occasionally elicits immune-mediated systemic tumor regression. Evidence of synergy between radiotherapy and immune checkpoint blockade (ICB) supports the concept of in situ vaccination by radiation, and ICB combinations together with an optimization of the radiation dose and fractionation offer paths to improved responses. Radiation alters the balance between immune-activating and -suppressive signals in the tumor microenvironment. Pathways involved in autoimmunity and microbial immunity are responsible for regulating the induction of type I interferon via cGAS/STING in irradiated tumors and are stimulated upon tumor cell irradiation and activation of the DNA damage response.
AbstractList Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.
Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.
Radiotherapy has been used for over hundred years as a local tumor treatment. The occurrence of systemic anti-tumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.
Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects. Tumor-targeted radiation occasionally elicits immune-mediated systemic tumor regression. Evidence of synergy between radiotherapy and immune checkpoint blockade (ICB) supports the concept of in situ vaccination by radiation, and ICB combinations together with an optimization of the radiation dose and fractionation offer paths to improved responses. Radiation alters the balance between immune-activating and -suppressive signals in the tumor microenvironment. Pathways involved in autoimmunity and microbial immunity are responsible for regulating the induction of type I interferon via cGAS/STING in irradiated tumors and are stimulated upon tumor cell irradiation and activation of the DNA damage response.
Author Vanpouille-Box, Claire
Rodríguez-Ruiz, María E.
Formenti, Silvia Chiara
Demaria, Sandra
Melero, Ignacio
AuthorAffiliation 1 Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
2 Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
3 Sandra and Edward Meyer Cancer Center, New York, NY, USA
4 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
AuthorAffiliation_xml – name: 1 Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
– name: 2 Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
– name: 4 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
– name: 3 Sandra and Edward Meyer Cancer Center, New York, NY, USA
Author_xml – sequence: 1
  givenname: María E.
  surname: Rodríguez-Ruiz
  fullname: Rodríguez-Ruiz, María E.
  organization: Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
– sequence: 2
  givenname: Claire
  surname: Vanpouille-Box
  fullname: Vanpouille-Box, Claire
  organization: Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
– sequence: 3
  givenname: Ignacio
  surname: Melero
  fullname: Melero, Ignacio
  organization: Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
– sequence: 4
  givenname: Silvia Chiara
  surname: Formenti
  fullname: Formenti, Silvia Chiara
  organization: Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
– sequence: 5
  givenname: Sandra
  surname: Demaria
  fullname: Demaria, Sandra
  email: szd3005@med.cornell.edu
  organization: Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30001871$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1v1DAQxS1URD_gzglF4tJLgu04tsMBqaoKLCpCquBsOfak9ZLYi51U6n-Pw7Yruoc9eSS_3_PMPJ-iIx88IPSW4Ipgwj-sKzdVFBNZYV5hTF6gE8IEKVkrydGuxvwYnaa0zoJGCPEKHdc411KQE_RtNY6zD0O4dUYPxXcwd9q7NKbiBtIm-OS6AYo-xOJGW6cnF3y58nY2YIuLLpmwydRV34OZXqOXvR4SvHk8z9Cvz1c_L7-W1z--rC4vrkvDJJ1KyqixddtKBrS1tdSd7lpNJdhOSltbYzljHDcdtz0zpO-obfq24ZRoXfOO1Gfo09Z3M3cjWAN-inpQm-hGHR9U0E49v_HuTt2Ge8VryhvBssH5o0EMf2ZIkxpdMjAM2kOYk6JYYMpETZa33u9J12GOPo-3qLjkRLQiq97939Gulac1ZwHeCkwMKUXodxKC1ZKkWis3qSVJhbnKVEb4HmLc9G__eSY3HAI_bkHIGdw7iCoZBz4H5mJOSdngDsFyDzaD88vX-A0Ph9G_cXjKJA
CitedBy_id crossref_primary_10_1038_s41416_021_01440_8
crossref_primary_10_3389_fonc_2023_1321326
crossref_primary_10_3390_pharmaceutics16091135
crossref_primary_10_1016_j_canlet_2022_215719
crossref_primary_10_1016_j_canlet_2025_217856
crossref_primary_10_1007_s10549_023_07044_5
crossref_primary_10_1002_adtp_202000134
crossref_primary_10_1016_j_tranon_2020_100889
crossref_primary_10_3389_fimmu_2020_01610
crossref_primary_10_2147_CMAR_S393934
crossref_primary_10_1038_s41598_024_73177_2
crossref_primary_10_1016_j_critrevonc_2020_103180
crossref_primary_10_7759_cureus_72853
crossref_primary_10_3390_immuno3010006
crossref_primary_10_1016_j_ijrobp_2025_03_032
crossref_primary_10_1111_imr_13271
crossref_primary_10_7759_cureus_15712
crossref_primary_10_1038_s41467_022_31601_z
crossref_primary_10_1016_j_canlet_2022_215947
crossref_primary_10_1038_s41467_023_36523_y
crossref_primary_10_3389_fimmu_2023_1125905
crossref_primary_10_1038_s41417_021_00302_y
crossref_primary_10_1038_s41573_019_0043_2
crossref_primary_10_1016_j_lungcan_2020_07_032
crossref_primary_10_3389_fonc_2022_981332
crossref_primary_10_1016_j_canlet_2024_217326
crossref_primary_10_3390_vaccines8020191
crossref_primary_10_1016_j_lungcan_2023_107322
crossref_primary_10_1038_s41419_020_03000_z
crossref_primary_10_1155_2021_9344124
crossref_primary_10_3389_fonc_2023_1143335
crossref_primary_10_1111_cns_70102
crossref_primary_10_1007_s12013_024_01423_5
crossref_primary_10_3389_fonc_2021_674596
crossref_primary_10_1016_j_addr_2023_115083
crossref_primary_10_2147_JHC_S491733
crossref_primary_10_1002_ijc_32934
crossref_primary_10_1016_j_intimp_2023_109774
crossref_primary_10_3389_fonc_2021_679262
crossref_primary_10_1093_omcr_omad076
crossref_primary_10_3389_fcell_2020_569219
crossref_primary_10_1007_s00262_020_02587_8
crossref_primary_10_1038_s41416_020_0942_3
crossref_primary_10_3390_cancers15133526
crossref_primary_10_3390_jcm10215124
crossref_primary_10_3390_jcm9124095
crossref_primary_10_1002_adfm_202212510
crossref_primary_10_1038_s41541_025_01132_x
crossref_primary_10_1016_j_nantod_2021_101323
crossref_primary_10_1016_j_smim_2021_101474
crossref_primary_10_1038_s41577_021_00568_1
crossref_primary_10_1080_2162402X_2020_1863631
crossref_primary_10_1667_RADE_20_00038_1
crossref_primary_10_1016_j_mednuc_2020_01_001
crossref_primary_10_1007_s00432_022_04399_y
crossref_primary_10_1016_j_imlet_2024_106947
crossref_primary_10_1111_ajco_13966
crossref_primary_10_1667_RADE_19_00014_1
crossref_primary_10_1038_s41416_023_02482_w
crossref_primary_10_3389_fimmu_2022_1106644
crossref_primary_10_1038_s41389_021_00335_w
crossref_primary_10_4049_jimmunol_2000487
crossref_primary_10_1007_s10585_025_10364_z
crossref_primary_10_3389_fimmu_2021_662594
crossref_primary_10_1002_1878_0261_13082
crossref_primary_10_1093_jnci_djae137
crossref_primary_10_3390_vaccines7030100
crossref_primary_10_1136_jitc_2020_000966
crossref_primary_10_3390_healthcare7030108
crossref_primary_10_2147_IJN_S428044
crossref_primary_10_1016_j_tjog_2021_07_030
crossref_primary_10_1259_bjr_20200067
crossref_primary_10_3389_fmolb_2024_1409300
crossref_primary_10_1039_D3NR01050C
crossref_primary_10_3390_ijms20133212
crossref_primary_10_1038_s41590_020_0641_5
crossref_primary_10_1080_14728214_2022_2113377
crossref_primary_10_3390_ijms232112728
crossref_primary_10_1016_j_semradonc_2024_04_007
crossref_primary_10_1158_1078_0432_CCR_20_3701
crossref_primary_10_1002_adfm_202213425
crossref_primary_10_3390_cancers14174119
crossref_primary_10_1016_j_semradonc_2024_04_005
crossref_primary_10_3390_ijms22126290
crossref_primary_10_1016_j_ymthe_2023_12_012
crossref_primary_10_3389_fimmu_2024_1474343
crossref_primary_10_3390_cancers12030626
crossref_primary_10_1016_j_cpet_2020_09_010
crossref_primary_10_3389_fonc_2020_597702
crossref_primary_10_1002_cac2_12348
crossref_primary_10_1002_cam4_5454
crossref_primary_10_3390_gels8050319
crossref_primary_10_3390_jcm13154296
crossref_primary_10_1016_j_ctro_2018_08_001
crossref_primary_10_3390_ph17121591
crossref_primary_10_1007_s10565_024_09943_9
crossref_primary_10_1186_s12931_019_1194_8
crossref_primary_10_3390_ijms21239324
crossref_primary_10_1177_1758835920936084
crossref_primary_10_1186_s13046_022_02533_9
crossref_primary_10_1158_1078_0432_CCR_24_2522
crossref_primary_10_1002_advs_202500492
crossref_primary_10_3390_cancers13040775
crossref_primary_10_1038_s41585_024_00913_8
crossref_primary_10_3389_fonc_2025_1611036
crossref_primary_10_1016_j_ctrv_2024_102799
crossref_primary_10_1158_1078_0432_CCR_23_3616
crossref_primary_10_1007_s12672_023_00682_7
crossref_primary_10_1016_j_ijrobp_2023_04_025
crossref_primary_10_1038_s41419_025_07921_5
crossref_primary_10_1111_cas_15911
crossref_primary_10_3390_cancers12061546
crossref_primary_10_1016_j_prp_2024_155289
crossref_primary_10_3390_cancers12113173
crossref_primary_10_1016_j_thorsurg_2020_08_004
crossref_primary_10_1186_s12885_025_14542_w
crossref_primary_10_3390_ijms222011061
crossref_primary_10_1016_j_apsb_2023_10_003
crossref_primary_10_1136_jitc_2020_000826
crossref_primary_10_3390_jpm11010053
crossref_primary_10_3389_fonc_2021_671044
crossref_primary_10_1007_s12672_022_00540_y
crossref_primary_10_3390_ph16121672
crossref_primary_10_1016_j_semradonc_2025_02_008
crossref_primary_10_1002_smll_202006231
crossref_primary_10_53011_JMRO_2021_02_08
crossref_primary_10_1016_j_intimp_2022_109542
crossref_primary_10_3390_cancers15102687
crossref_primary_10_3390_radiation5010003
crossref_primary_10_23938_ASSN_0886
crossref_primary_10_1016_j_semradonc_2019_12_007
crossref_primary_10_1038_s41423_019_0341_y
crossref_primary_10_3389_fonc_2023_1256360
crossref_primary_10_1016_j_nantod_2024_102383
crossref_primary_10_1016_j_ijrobp_2021_02_046
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_1016_j_semradonc_2019_12_004
crossref_primary_10_1007_s11431_023_2574_0
crossref_primary_10_1080_14796694_2024_2357063
crossref_primary_10_3892_mco_2021_2395
crossref_primary_10_1186_s40425_019_0520_5
crossref_primary_10_3390_cancers16213656
crossref_primary_10_1007_s11060_024_04843_8
crossref_primary_10_2147_IJN_S333197
crossref_primary_10_1016_j_abb_2024_110138
crossref_primary_10_3389_fimmu_2018_03107
crossref_primary_10_1016_j_medj_2023_09_001
crossref_primary_10_1158_2326_6066_CIR_19_0305
crossref_primary_10_3390_cancers16061196
crossref_primary_10_1016_j_canrad_2020_01_001
crossref_primary_10_1038_s41392_022_01102_y
crossref_primary_10_1186_s12865_020_00349_w
crossref_primary_10_3390_cancers17152451
crossref_primary_10_1158_1078_0432_CCR_19_1344
crossref_primary_10_1016_j_tranon_2022_101366
crossref_primary_10_2147_IJN_S449975
crossref_primary_10_1016_j_canlet_2018_12_001
crossref_primary_10_1136_jitc_2023_008515
crossref_primary_10_1016_j_zemedi_2023_04_007
crossref_primary_10_1016_j_breast_2018_09_006
crossref_primary_10_3389_fphar_2022_928369
crossref_primary_10_1088_1361_6595_ac604f
crossref_primary_10_3389_fonc_2022_809304
crossref_primary_10_3389_fonc_2021_749496
crossref_primary_10_1080_21655979_2021_1899532
crossref_primary_10_1007_s00384_022_04143_5
crossref_primary_10_1016_j_pharmthera_2024_108763
crossref_primary_10_1007_s00270_020_02644_w
crossref_primary_10_1158_1078_0432_CCR_20_0473
crossref_primary_10_1016_j_mtbio_2025_101916
crossref_primary_10_1155_2019_3267409
crossref_primary_10_1021_acsnano_4c05065
crossref_primary_10_1016_j_envint_2020_106235
crossref_primary_10_3389_fimmu_2021_627197
crossref_primary_10_4049_jimmunol_2000656
crossref_primary_10_1172_jci_insight_194201
crossref_primary_10_3892_ol_2025_15215
crossref_primary_10_1016_j_ymthe_2020_01_003
crossref_primary_10_3390_cancers15205083
crossref_primary_10_1073_pnas_2010333118
crossref_primary_10_3389_fonc_2020_00004
crossref_primary_10_1016_j_cej_2021_130839
crossref_primary_10_1016_j_cytogfr_2023_11_003
crossref_primary_10_1080_09553002_2022_2078006
crossref_primary_10_1186_s12967_022_03392_w
crossref_primary_10_1007_s13346_020_00868_4
crossref_primary_10_1136_jitc_2022_005248
crossref_primary_10_1002_adfm_202418480
crossref_primary_10_1084_jem_20190801
crossref_primary_10_1183_16000617_0024_2019
crossref_primary_10_1080_2162402X_2022_2057892
crossref_primary_10_1039_D2BM01496C
crossref_primary_10_1111_cas_15712
crossref_primary_10_1016_j_critrevonc_2024_104325
crossref_primary_10_1007_s00066_023_02122_5
crossref_primary_10_3390_ijms21072335
crossref_primary_10_1016_j_nantod_2022_101656
crossref_primary_10_1080_0284186X_2021_1989629
crossref_primary_10_1016_j_ccell_2023_12_012
crossref_primary_10_1111_febs_15316
crossref_primary_10_3390_diagnostics10121098
crossref_primary_10_1093_jjco_hyab005
crossref_primary_10_1088_1361_6498_ab3101
crossref_primary_10_1038_s41598_021_92942_1
crossref_primary_10_1111_1759_7714_14330
crossref_primary_10_1007_s40257_025_00943_x
crossref_primary_10_1093_jrr_rrab037
crossref_primary_10_1038_s41571_019_0272_7
crossref_primary_10_1158_1078_0432_CCR_20_0337
crossref_primary_10_1186_s40364_024_00628_3
crossref_primary_10_1016_j_ijrobp_2019_11_398
crossref_primary_10_1186_s40425_019_0549_5
crossref_primary_10_1007_s12672_025_02914_4
crossref_primary_10_1016_j_pharmthera_2021_107829
crossref_primary_10_2217_imt_2020_0072
crossref_primary_10_1186_s12951_023_02158_w
crossref_primary_10_3390_biomedicines13051253
crossref_primary_10_1038_s41467_024_51807_7
crossref_primary_10_3389_fonc_2022_729250
crossref_primary_10_3390_cancers14133144
crossref_primary_10_1093_jrr_rrz095
crossref_primary_10_1245_s10434_023_13778_9
crossref_primary_10_2147_OTT_S410693
crossref_primary_10_1016_j_colsurfb_2025_114874
crossref_primary_10_1038_s41401_022_00953_z
crossref_primary_10_1093_jjco_hyaa268
crossref_primary_10_3389_fonc_2019_00811
crossref_primary_10_3390_cancers12092365
crossref_primary_10_1002_hep_31186
crossref_primary_10_1002_mco2_271
crossref_primary_10_2217_fon_2022_1274
crossref_primary_10_2974_kmj_75_97
crossref_primary_10_1038_s41420_021_00731_6
crossref_primary_10_1016_j_semradonc_2024_01_001
crossref_primary_10_3390_cancers14143505
crossref_primary_10_1126_sciimmunol_abl9330
crossref_primary_10_3892_ol_2021_13147
crossref_primary_10_1080_02656736_2024_2335201
crossref_primary_10_1097_CAD_0000000000001684
crossref_primary_10_1038_s41467_021_23442_z
crossref_primary_10_3389_fonc_2019_00367
crossref_primary_10_1007_s11864_024_01260_x
crossref_primary_10_3389_fimmu_2024_1428584
crossref_primary_10_1016_j_bbrc_2020_04_137
crossref_primary_10_1007_s00795_025_00419_1
crossref_primary_10_1186_s12935_022_02615_w
crossref_primary_10_1007_s10549_022_06533_3
crossref_primary_10_1016_j_jvir_2025_01_042
crossref_primary_10_3389_fonc_2019_00922
crossref_primary_10_1186_s13014_025_02692_x
crossref_primary_10_3390_cancers14174069
crossref_primary_10_1186_s12951_024_02855_0
crossref_primary_10_1021_acs_analchem_5c04000
crossref_primary_10_1158_1078_0432_CCR_23_3206
crossref_primary_10_1186_s13073_019_0653_7
crossref_primary_10_1016_j_nantod_2024_102447
crossref_primary_10_1038_s41467_020_15676_0
crossref_primary_10_1073_pnas_2102611118
crossref_primary_10_1186_s12967_021_02895_2
crossref_primary_10_1002_cam4_6820
crossref_primary_10_1002_slct_202402903
crossref_primary_10_1186_s13045_022_01307_2
crossref_primary_10_3389_fonc_2024_1428065
crossref_primary_10_1016_j_radonc_2022_07_014
crossref_primary_10_3389_fonc_2021_670464
crossref_primary_10_1016_j_ijrobp_2020_12_031
crossref_primary_10_1016_j_jtcvs_2019_10_122
crossref_primary_10_3390_app12157734
crossref_primary_10_3389_fonc_2021_675354
crossref_primary_10_1016_j_cellimm_2021_104301
crossref_primary_10_3389_fimmu_2024_1433237
crossref_primary_10_3390_ijms20092173
crossref_primary_10_1016_j_mednuc_2019_06_001
crossref_primary_10_1016_j_canlet_2022_215746
crossref_primary_10_1111_resp_13870
crossref_primary_10_1667_RADE_20_00065_1
crossref_primary_10_7759_cureus_29620
crossref_primary_10_1136_jitc_2020_000792
crossref_primary_10_1016_j_nantod_2024_102335
crossref_primary_10_1016_j_ijrobp_2021_08_037
crossref_primary_10_1002_adma_202311291
crossref_primary_10_3390_ijms221910672
crossref_primary_10_15252_emmm_202013412
crossref_primary_10_1172_JCI163452
crossref_primary_10_1097_PPO_0000000000000777
crossref_primary_10_1038_s41572_019_0064_5
crossref_primary_10_1080_1040841X_2024_2311653
crossref_primary_10_1080_15384047_2023_2166763
crossref_primary_10_1259_bjr_20200042
crossref_primary_10_1371_journal_pone_0255798
crossref_primary_10_1016_j_canlet_2024_217095
crossref_primary_10_2217_fon_2020_0701
crossref_primary_10_3389_fonc_2021_690188
crossref_primary_10_1016_j_nantod_2023_102042
crossref_primary_10_3390_cancers13010050
crossref_primary_10_1158_1078_0432_CCR_24_0286
crossref_primary_10_3390_cancers13122924
crossref_primary_10_1016_j_ejcskn_2024_100258
crossref_primary_10_1038_s41416_021_01296_y
crossref_primary_10_3389_fimmu_2023_1012799
crossref_primary_10_3389_fimmu_2021_719285
crossref_primary_10_1007_s10143_025_03505_1
crossref_primary_10_3389_fimmu_2019_00698
crossref_primary_10_1016_j_radonc_2024_110442
crossref_primary_10_1088_1361_6560_abbb75
crossref_primary_10_3390_pharmaceutics15071926
crossref_primary_10_3390_cancers15041093
crossref_primary_10_1186_s41747_024_00445_1
crossref_primary_10_1136_jitc_2022_005463
crossref_primary_10_1667_RADE_20_00066_1
crossref_primary_10_3389_fonc_2019_00163
crossref_primary_10_3390_cancers15010021
crossref_primary_10_1136_ijgc_2021_002709
crossref_primary_10_3389_fonc_2024_1397863
crossref_primary_10_1177_10732748241237331
crossref_primary_10_1016_j_canlet_2023_216239
crossref_primary_10_1016_j_cclet_2023_109225
crossref_primary_10_1634_theoncologist_2019_0309
crossref_primary_10_3390_ijms26188844
crossref_primary_10_1038_s43018_022_00401_1
crossref_primary_10_1136_ijgc_2021_003237
crossref_primary_10_2217_imt_2022_0044
crossref_primary_10_1021_acs_jproteome_5c00128
crossref_primary_10_1016_j_ijrobp_2024_09_036
crossref_primary_10_3389_fimmu_2022_918787
crossref_primary_10_1097_HC9_0000000000000653
crossref_primary_10_3322_caac_21626
crossref_primary_10_3390_cancers13133129
Cites_doi 10.1172/JCI61931
10.1158/1078-0432.CCR-16-1432
10.1056/NEJMoa1112824
10.1016/j.hoc.2006.01.007
10.1038/cr.2007.111
10.1084/jem.20131916
10.1016/j.trecan.2016.05.002
10.1158/0008-5472.CAN-17-0524
10.1038/ncomms15618
10.1158/1078-0432.CCR-16-0037
10.1158/0008-5472.CAN-10-2820
10.1038/nrc.2015.4
10.4161/onci.28133
10.1158/0008-5472.CAN-14-1258
10.1158/2326-6066.CIR-17-0134
10.1016/j.currproblcancer.2015.10.001
10.1016/j.cell.2017.01.017
10.1084/jem.20052494
10.1016/j.cell.2015.03.030
10.1016/S1470-2045(14)70189-5
10.4161/onci.28780
10.1200/jco.2009.27.15_suppl.8071
10.1158/0008-5472.CAN-13-1703
10.1016/j.ijrobp.2012.06.020
10.1016/j.immuni.2014.10.019
10.1093/hmg/ddx283
10.1200/JCO.2011.38.4032
10.18632/oncotarget.8420
10.1200/JCO.2010.28.9793
10.4049/jimmunol.170.12.6338
10.1158/0008-5472.CAN-14-3511
10.1016/S1470-2045(09)70082-8
10.21037/atm.2016.06.19
10.1186/s40425-016-0156-7
10.1038/nature24050
10.1158/0008-5472.CAN-11-2104
10.4049/jimmunol.174.12.7516
10.1038/nature03884
10.1038/mt.2012.19
10.3389/fonc.2014.00070
10.1126/scisignal.2005474
10.1016/j.ijrobp.2014.09.018
10.1126/science.aaa8172
10.1016/j.celrep.2017.03.046
10.1158/0008-5472.CAN-12-3981
10.1158/1078-0432.CCR-13-0525
10.4049/jimmunol.181.5.3099
10.1158/2326-6066.CIR-13-0115
10.1016/j.ccell.2017.10.003
10.1016/j.ccr.2013.09.014
10.1016/S1535-6108(04)00115-1
10.1016/S1470-2045(15)00054-6
10.3389/fonc.2014.00001
10.1038/nature14292
10.1016/j.molcel.2007.02.024
10.1084/jem.20062056
10.1080/15384047.2016.1264543
10.1038/nri.2016.107
10.1158/0008-5472.CAN-13-0992
10.1158/1078-0432.CCR-09-0265
10.1038/nm1622
10.1038/nrc2397
10.1158/1078-0432.CCR-16-0870
10.1016/j.molcel.2013.11.003
10.1016/j.dnarep.2010.09.013
10.1016/S1470-2045(17)30380-7
10.1056/NEJMoa1709937
10.1172/JCI40283
10.1038/nature23449
10.1172/JCI67313
10.1038/sj.cdd.4402201
10.1182/blood-2009-02-206870
10.1016/j.ijrobp.2016.07.005
10.1158/1078-0432.CCR-14-2824
10.1038/nature23470
10.1158/1078-0432.728.11.2
10.1667/RR0695.1
10.1093/annonc/mdx237
10.1016/j.cell.2008.06.032
10.1016/j.molcel.2014.03.040
10.1038/nri.2017.140
10.1016/j.tcb.2015.07.009
10.1038/nature24023
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Aug 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Aug 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
K9.
M7N
NAPCQ
7X8
5PM
DOI 10.1016/j.it.2018.06.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
Virology and AIDS Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1471-4981
EndPage 655
ExternalDocumentID PMC6326574
30001871
10_1016_j_it_2018_06_001
S1471490618301091
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA198533
– fundername: NCRR NIH HHS
  grantid: S10 RR027619
– fundername: NCI NIH HHS
  grantid: R01 CA201246
GroupedDBID ---
--K
--M
-DZ
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
2KS
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8FE
8FH
8P~
9M8
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BPHCQ
BVXVI
CJTIS
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IH2
IHE
J1W
KOM
L7B
LK8
LUGTX
M41
MO0
MVM
N9A
O-L
O9-
O9~
OAUVE
OK0
OMK
OZT
P-8
P-9
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSI
SSZ
T5K
WOW
X7M
XJT
XPP
Y6R
Z5R
ZCG
ZGI
~G-
~HD
3V.
7RV
7X7
8FI
AACTN
AAIAV
ABYKQ
AFCTW
AFDAS
AFKRA
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
BHPHI
FYUFA
GUQSH
HCIFZ
LCYCR
M1P
M2O
M7P
RCE
RIG
VQA
XFK
ZA5
9DU
AAYXX
CITATION
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7T5
7U9
H94
K9.
M7N
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c482t-242cd39984e29d38abab9a28edb88d3dcd644605b6df4c1fb2d5f95621aa36b13
ISICitedReferencesCount 379
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439859400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-4906
1471-4981
IngestDate Tue Sep 30 16:51:07 EDT 2025
Thu Oct 02 12:04:47 EDT 2025
Tue Oct 07 06:39:45 EDT 2025
Thu Apr 03 07:05:07 EDT 2025
Tue Nov 18 21:16:34 EST 2025
Sat Nov 29 03:31:57 EST 2025
Fri Feb 23 02:15:11 EST 2024
Tue Oct 14 19:24:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords abscopal effect
tumor microenvironment
antitumor immunity
DNA damage
ionizing radiation
immunotherapy
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c482t-242cd39984e29d38abab9a28edb88d3dcd644605b6df4c1fb2d5f95621aa36b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Co-first authors
PMID 30001871
PQID 2076861797
PQPubID 2031073
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6326574
proquest_miscellaneous_2070247311
proquest_journals_2076861797
pubmed_primary_30001871
crossref_primary_10_1016_j_it_2018_06_001
crossref_citationtrail_10_1016_j_it_2018_06_001
elsevier_sciencedirect_doi_10_1016_j_it_2018_06_001
elsevier_clinicalkey_doi_10_1016_j_it_2018_06_001
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Trends in immunology
PublicationTitleAlternate Trends Immunol
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Tommelein (bib0175) 2018; 78
Menis (bib0355) 2016; 4
Shrivastav (bib0100) 2008; 18
Brody (bib0285) 2010; 28
Golden, Formenti (bib0395) 2014; 3
Spadaro (bib0180) 2017; 19
Formenti, Demaria (bib0005) 2009; 10
Xu (bib0200) 2013; 73
Burnette (bib0230) 2011; 71
Ranoa (bib0115) 2016; 7
Vanpouille-Box (bib0075) 2017; 8
Shaverdian (bib0360) 2017; 18
Meng (bib0105) 2012; 20
Lam (bib0250) 2014; 74
Formenti, Demaria (bib0290) 2012; 84
Golden (bib0310) 2013; 1
Sharma, Allison (bib0120) 2015; 348
Apetoh (bib0090) 2007; 13
Li (bib0165) 2007; 26
Gasser (bib0245) 2005; 436
Shibata (bib0410) 2014; 53
Sharma (bib0125) 2017; 168
Mackenzie (bib0060) 2017; 548
Dewhirst (bib0135) 2008; 8
Kang (bib0040) 2016; 4
Antonia (bib0390) 2017; 377
Jeggo (bib0050) 2016; 16
Demaria (bib0020) 2005; 11
Deng (bib0025) 2014; 124
Palazon (bib0155) 2017; 32
Koller (bib0365) 2017; 18
Hellevik, Martinez-Zubiaurre (bib0170) 2014; 4
Vanpouille-Box (bib0195) 2015; 75
Klug (bib0240) 2013; 24
Moeller (bib0160) 2004; 5
Ruocco (bib0255) 2012; 122
Chakraborty (bib0260) 2003; 170
Arnoult (bib0415) 2017; 549
Noman (bib0140) 2014; 211
Reits (bib0265) 2006; 203
Kioi (bib0205) 2010; 120
Galluzzi (bib0085) 2017; 17
Grimaldi (bib0035) 2014; 3
Sharma, Allison (bib0015) 2015; 161
Demaria (bib0325) 2016; 2
Jobling (bib0190) 2006; 166
Dovedi (bib0220) 2014; 74
Zatloukal (bib0315) 2009; 27
Golden, Formenti (bib0385) 2015; 91
Golden (bib0305) 2015; 16
Finn (bib0300) 2018; 18
Abuodeh (bib0010) 2016; 40
Sanford (bib0215) 2013; 19
Lee (bib0295) 2009; 114
Cai (bib0070) 2014; 54
Barsoum (bib0150) 2011; 71
Vanpouille-Box (bib0350) 2018; 24
Deng (bib0080) 2014; 41
Barsoum (bib0130) 2014; 74
Rudqvist (bib0270) 2018; 6
Bartsch (bib0065) 2017; 26
Stetson (bib0345) 2008; 134
Tang (bib0370) 2017; 23
Dou (bib0110) 2017; 550
Obeid (bib0095) 2007; 14
Lugade (bib0235) 2005; 174
Harding (bib0055) 2017; 548
Lynch (bib0320) 2012; 30
Matsumura (bib0225) 2008; 181
Zhang (bib0280) 2007; 204
Filatenkov (bib0335) 2015; 21
Voron (bib0145) 2014; 4
Sanchez-Paulete (bib0340) 2017; 28
Goodarzi (bib0405) 2010; 9
Willers, Held (bib0045) 2006; 20
Ceccaldi (bib0400) 2016; 26
Barcellos-Hoff, Cucinotta (bib0185) 2014; 7
Hiniker (bib0375) 2016; 96
Postow (bib0030) 2012; 366
Kalbasi (bib0210) 2017; 23
Kwon (bib0380) 2014; 15
Dewan (bib0330) 2009; 15
Twyman-Saint Victor (bib0275) 2015; 520
Barcellos-Hoff (10.1016/j.it.2018.06.001_bib0185) 2014; 7
Dou (10.1016/j.it.2018.06.001_bib0110) 2017; 550
Matsumura (10.1016/j.it.2018.06.001_bib0225) 2008; 181
Lam (10.1016/j.it.2018.06.001_bib0250) 2014; 74
Vanpouille-Box (10.1016/j.it.2018.06.001_bib0350) 2018; 24
Formenti (10.1016/j.it.2018.06.001_bib0290) 2012; 84
Lynch (10.1016/j.it.2018.06.001_bib0320) 2012; 30
Gasser (10.1016/j.it.2018.06.001_bib0245) 2005; 436
Ruocco (10.1016/j.it.2018.06.001_bib0255) 2012; 122
Lee (10.1016/j.it.2018.06.001_bib0295) 2009; 114
Chakraborty (10.1016/j.it.2018.06.001_bib0260) 2003; 170
Brody (10.1016/j.it.2018.06.001_bib0285) 2010; 28
Goodarzi (10.1016/j.it.2018.06.001_bib0405) 2010; 9
Formenti (10.1016/j.it.2018.06.001_bib0005) 2009; 10
Kioi (10.1016/j.it.2018.06.001_bib0205) 2010; 120
Sharma (10.1016/j.it.2018.06.001_bib0125) 2017; 168
Golden (10.1016/j.it.2018.06.001_bib0395) 2014; 3
Golden (10.1016/j.it.2018.06.001_bib0385) 2015; 91
Kang (10.1016/j.it.2018.06.001_bib0040) 2016; 4
Li (10.1016/j.it.2018.06.001_bib0165) 2007; 26
Galluzzi (10.1016/j.it.2018.06.001_bib0085) 2017; 17
Deng (10.1016/j.it.2018.06.001_bib0025) 2014; 124
Mackenzie (10.1016/j.it.2018.06.001_bib0060) 2017; 548
Sharma (10.1016/j.it.2018.06.001_bib0120) 2015; 348
Klug (10.1016/j.it.2018.06.001_bib0240) 2013; 24
Grimaldi (10.1016/j.it.2018.06.001_bib0035) 2014; 3
Ranoa (10.1016/j.it.2018.06.001_bib0115) 2016; 7
Obeid (10.1016/j.it.2018.06.001_bib0095) 2007; 14
Cai (10.1016/j.it.2018.06.001_bib0070) 2014; 54
Zhang (10.1016/j.it.2018.06.001_bib0280) 2007; 204
Rudqvist (10.1016/j.it.2018.06.001_bib0270) 2018; 6
Barsoum (10.1016/j.it.2018.06.001_bib0130) 2014; 74
Abuodeh (10.1016/j.it.2018.06.001_bib0010) 2016; 40
Barsoum (10.1016/j.it.2018.06.001_bib0150) 2011; 71
Apetoh (10.1016/j.it.2018.06.001_bib0090) 2007; 13
Postow (10.1016/j.it.2018.06.001_bib0030) 2012; 366
Lugade (10.1016/j.it.2018.06.001_bib0235) 2005; 174
Shrivastav (10.1016/j.it.2018.06.001_bib0100) 2008; 18
Zatloukal (10.1016/j.it.2018.06.001_bib0315) 2009; 27
Vanpouille-Box (10.1016/j.it.2018.06.001_bib0075) 2017; 8
Vanpouille-Box (10.1016/j.it.2018.06.001_bib0195) 2015; 75
Dewan (10.1016/j.it.2018.06.001_bib0330) 2009; 15
Stetson (10.1016/j.it.2018.06.001_bib0345) 2008; 134
Moeller (10.1016/j.it.2018.06.001_bib0160) 2004; 5
Hiniker (10.1016/j.it.2018.06.001_bib0375) 2016; 96
Willers (10.1016/j.it.2018.06.001_bib0045) 2006; 20
Hellevik (10.1016/j.it.2018.06.001_bib0170) 2014; 4
Jobling (10.1016/j.it.2018.06.001_bib0190) 2006; 166
Koller (10.1016/j.it.2018.06.001_bib0365) 2017; 18
Arnoult (10.1016/j.it.2018.06.001_bib0415) 2017; 549
Sharma (10.1016/j.it.2018.06.001_bib0015) 2015; 161
Meng (10.1016/j.it.2018.06.001_bib0105) 2012; 20
Reits (10.1016/j.it.2018.06.001_bib0265) 2006; 203
Bartsch (10.1016/j.it.2018.06.001_bib0065) 2017; 26
Demaria (10.1016/j.it.2018.06.001_bib0020) 2005; 11
Golden (10.1016/j.it.2018.06.001_bib0305) 2015; 16
Xu (10.1016/j.it.2018.06.001_bib0200) 2013; 73
Finn (10.1016/j.it.2018.06.001_bib0300) 2018; 18
Tang (10.1016/j.it.2018.06.001_bib0370) 2017; 23
Jeggo (10.1016/j.it.2018.06.001_bib0050) 2016; 16
Burnette (10.1016/j.it.2018.06.001_bib0230) 2011; 71
Harding (10.1016/j.it.2018.06.001_bib0055) 2017; 548
Twyman-Saint Victor (10.1016/j.it.2018.06.001_bib0275) 2015; 520
Dewhirst (10.1016/j.it.2018.06.001_bib0135) 2008; 8
Dovedi (10.1016/j.it.2018.06.001_bib0220) 2014; 74
Spadaro (10.1016/j.it.2018.06.001_bib0180) 2017; 19
Sanchez-Paulete (10.1016/j.it.2018.06.001_bib0340) 2017; 28
Menis (10.1016/j.it.2018.06.001_bib0355) 2016; 4
Ceccaldi (10.1016/j.it.2018.06.001_bib0400) 2016; 26
Demaria (10.1016/j.it.2018.06.001_bib0325) 2016; 2
Shaverdian (10.1016/j.it.2018.06.001_bib0360) 2017; 18
Filatenkov (10.1016/j.it.2018.06.001_bib0335) 2015; 21
Tommelein (10.1016/j.it.2018.06.001_bib0175) 2018; 78
Kwon (10.1016/j.it.2018.06.001_bib0380) 2014; 15
Antonia (10.1016/j.it.2018.06.001_bib0390) 2017; 377
Golden (10.1016/j.it.2018.06.001_bib0310) 2013; 1
Deng (10.1016/j.it.2018.06.001_bib0080) 2014; 41
Shibata (10.1016/j.it.2018.06.001_bib0410) 2014; 53
Noman (10.1016/j.it.2018.06.001_bib0140) 2014; 211
Palazon (10.1016/j.it.2018.06.001_bib0155) 2017; 32
Kalbasi (10.1016/j.it.2018.06.001_bib0210) 2017; 23
Voron (10.1016/j.it.2018.06.001_bib0145) 2014; 4
Sanford (10.1016/j.it.2018.06.001_bib0215) 2013; 19
References_xml – volume: 2
  start-page: 286
  year: 2016
  end-page: 294
  ident: bib0325
  article-title: Radiotherapy: changing the game in immunotherapy
  publication-title: Trends Cancer
– volume: 23
  start-page: 1388
  year: 2017
  end-page: 1396
  ident: bib0370
  article-title: Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells
  publication-title: Clin. Cancer Res.
– volume: 26
  start-page: 63
  year: 2007
  end-page: 74
  ident: bib0165
  article-title: Regulation of HIF-1alpha stability through S-nitrosylation
  publication-title: Mol. Cell
– volume: 181
  start-page: 3099
  year: 2008
  end-page: 3107
  ident: bib0225
  article-title: Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells
  publication-title: J. Immunol.
– volume: 170
  start-page: 6338
  year: 2003
  end-page: 6347
  ident: bib0260
  article-title: Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy
  publication-title: J. Immunol.
– volume: 122
  start-page: 3718
  year: 2012
  end-page: 3730
  ident: bib0255
  article-title: Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects
  publication-title: J. Clin. Invest.
– volume: 15
  start-page: 5379
  year: 2009
  end-page: 5388
  ident: bib0330
  article-title: Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody
  publication-title: Clin. Cancer Res.
– volume: 548
  start-page: 466
  year: 2017
  end-page: 470
  ident: bib0055
  article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei
  publication-title: Nature
– volume: 8
  year: 2017
  ident: bib0075
  article-title: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity
  publication-title: Nat. Commun.
– volume: 1
  start-page: 365
  year: 2013
  end-page: 372
  ident: bib0310
  article-title: An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer
  publication-title: Cancer Immunol. Res.
– volume: 74
  start-page: 2193
  year: 2014
  end-page: 2203
  ident: bib0250
  article-title: RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma
  publication-title: Cancer Res.
– volume: 84
  start-page: 879
  year: 2012
  end-page: 880
  ident: bib0290
  article-title: Radiation therapy to convert the tumor into an
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 7
  start-page: 26496
  year: 2016
  end-page: 26515
  ident: bib0115
  article-title: Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs
  publication-title: Oncotarget
– volume: 348
  start-page: 56
  year: 2015
  end-page: 61
  ident: bib0120
  article-title: The future of immune checkpoint therapy
  publication-title: Science
– volume: 53
  start-page: 7
  year: 2014
  end-page: 18
  ident: bib0410
  article-title: DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities
  publication-title: Mol. Cell
– volume: 14
  start-page: 1848
  year: 2007
  end-page: 1850
  ident: bib0095
  article-title: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis
  publication-title: Cell Death Differ.
– volume: 18
  start-page: 134
  year: 2008
  end-page: 147
  ident: bib0100
  article-title: Regulation of DNA double-strand break repair pathway choice
  publication-title: Cell Res.
– volume: 24
  start-page: 259
  year: 2018
  end-page: 265
  ident: bib0350
  article-title: Toward precision radiotherapy for use with immune checkpoint blockers
  publication-title: Clin. Cancer Res.
– volume: 18
  start-page: 36
  year: 2017
  end-page: 42
  ident: bib0365
  article-title: Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone
  publication-title: Cancer Biol. Ther.
– volume: 40
  start-page: 25
  year: 2016
  end-page: 37
  ident: bib0010
  article-title: Systematic review of case reports on the abscopal effect
  publication-title: Curr. Probl. Cancer
– volume: 4
  start-page: 70
  year: 2014
  ident: bib0145
  article-title: Control of the immune response by pro-angiogenic factors
  publication-title: Front. Oncol.
– volume: 16
  start-page: 795
  year: 2015
  end-page: 803
  ident: bib0305
  article-title: Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial
  publication-title: Lancet Oncol.
– volume: 8
  start-page: 425
  year: 2008
  end-page: 437
  ident: bib0135
  article-title: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response
  publication-title: Nat. Rev. Cancer
– volume: 166
  start-page: 839
  year: 2006
  end-page: 848
  ident: bib0190
  article-title: Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species
  publication-title: Radiat. Res.
– volume: 78
  start-page: 659
  year: 2018
  end-page: 670
  ident: bib0175
  article-title: Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation
  publication-title: Cancer Res.
– volume: 9
  start-page: 1273
  year: 2010
  end-page: 1282
  ident: bib0405
  article-title: The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax
  publication-title: DNA Repair (Amst)
– volume: 24
  start-page: 589
  year: 2013
  end-page: 602
  ident: bib0240
  article-title: Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy
  publication-title: Cancer Cell
– volume: 211
  start-page: 781
  year: 2014
  end-page: 790
  ident: bib0140
  article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation
  publication-title: J. Exp. Med.
– volume: 18
  start-page: 895
  year: 2017
  end-page: 903
  ident: bib0360
  article-title: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial
  publication-title: Lancet Oncol.
– volume: 161
  start-page: 205
  year: 2015
  end-page: 214
  ident: bib0015
  article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential
  publication-title: Cell
– volume: 26
  start-page: 3960
  year: 2017
  end-page: 3972
  ident: bib0065
  article-title: Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy
  publication-title: Hum. Mol. Genet.
– volume: 5
  start-page: 429
  year: 2004
  end-page: 441
  ident: bib0160
  article-title: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules
  publication-title: Cancer Cell
– volume: 75
  start-page: 2232
  year: 2015
  end-page: 2242
  ident: bib0195
  article-title: TGFbeta is a master regulator of radiation therapy-induced antitumor immunity
  publication-title: Cancer Res.
– volume: 366
  start-page: 925
  year: 2012
  end-page: 931
  ident: bib0030
  article-title: Immunologic correlates of the abscopal effect in a patient with melanoma
  publication-title: N. Engl. J. Med.
– volume: 4
  start-page: 267
  year: 2016
  ident: bib0355
  article-title: The European Organization for Research and Treatment of Cancer perspective on designing clinical trials with immune therapeutics
  publication-title: Ann. Transl. Med.
– volume: 4
  start-page: 1
  year: 2014
  ident: bib0170
  article-title: Radiotherapy and the tumor stroma: the importance of dose and fractionation
  publication-title: Front. Oncol.
– volume: 174
  start-page: 7516
  year: 2005
  end-page: 7523
  ident: bib0235
  article-title: Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor
  publication-title: J. Immunol.
– volume: 520
  start-page: 373
  year: 2015
  end-page: 377
  ident: bib0275
  article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer
  publication-title: Nature
– volume: 71
  start-page: 7433
  year: 2011
  end-page: 7441
  ident: bib0150
  article-title: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide
  publication-title: Cancer Res.
– volume: 27
  start-page: 8071
  year: 2009
  ident: bib0315
  article-title: Randomized phase II clinical trial comparing tremelimumab (CP-675, 206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC)
  publication-title: J. Clin. Oncol.
– volume: 74
  start-page: 665
  year: 2014
  end-page: 674
  ident: bib0130
  article-title: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells
  publication-title: Cancer Res.
– volume: 168
  start-page: 707
  year: 2017
  end-page: 723
  ident: bib0125
  article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy
  publication-title: Cell
– volume: 16
  start-page: 35
  year: 2016
  end-page: 42
  ident: bib0050
  article-title: DNA repair, genome stability and cancer: a historical perspective
  publication-title: Nat. Rev. Cancer
– volume: 550
  start-page: 402
  year: 2017
  end-page: 406
  ident: bib0110
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature
– volume: 71
  start-page: 2488
  year: 2011
  end-page: 2496
  ident: bib0230
  article-title: The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity
  publication-title: Cancer Res.
– volume: 20
  start-page: 1
  year: 2006
  end-page: 24
  ident: bib0045
  article-title: Introduction to clinical radiation biology
  publication-title: Hematol. Oncol. Clin. North Am.
– volume: 41
  start-page: 843
  year: 2014
  end-page: 852
  ident: bib0080
  article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors
  publication-title: Immunity
– volume: 549
  start-page: 548
  year: 2017
  end-page: 552
  ident: bib0415
  article-title: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN
  publication-title: Nature
– volume: 114
  start-page: 589
  year: 2009
  end-page: 595
  ident: bib0295
  article-title: Therapeutic effects of ablative radiation on local tumor require CD8
  publication-title: Blood
– volume: 13
  start-page: 1050
  year: 2007
  end-page: 1059
  ident: bib0090
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
– volume: 28
  start-page: xii44
  year: 2017
  end-page: xii55
  ident: bib0340
  article-title: Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy
  publication-title: Ann. Oncol.
– volume: 73
  start-page: 2782
  year: 2013
  end-page: 2794
  ident: bib0200
  article-title: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer
  publication-title: Cancer Res.
– volume: 6
  start-page: 139
  year: 2018
  end-page: 150
  ident: bib0270
  article-title: Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells
  publication-title: Cancer Immunol. Res.
– volume: 18
  start-page: 183
  year: 2018
  end-page: 194
  ident: bib0300
  article-title: The dawn of vaccines for cancer prevention
  publication-title: Nat. Rev. Immunol.
– volume: 74
  start-page: 5458
  year: 2014
  end-page: 5468
  ident: bib0220
  article-title: Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade
  publication-title: Cancer Res.
– volume: 548
  start-page: 461
  year: 2017
  end-page: 465
  ident: bib0060
  article-title: cGAS surveillance of micronuclei links genome instability to innate immunity
  publication-title: Nature
– volume: 204
  start-page: 49
  year: 2007
  end-page: 55
  ident: bib0280
  article-title: Induced sensitization of tumor stroma leads to eradication of established cancer by T cells
  publication-title: J. Exp. Med.
– volume: 134
  start-page: 587
  year: 2008
  end-page: 598
  ident: bib0345
  article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity
  publication-title: Cell
– volume: 10
  start-page: 718
  year: 2009
  end-page: 726
  ident: bib0005
  article-title: Systemic effects of local radiotherapy
  publication-title: Lancet Oncol.
– volume: 436
  start-page: 1186
  year: 2005
  end-page: 1190
  ident: bib0245
  article-title: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor
  publication-title: Nature
– volume: 20
  start-page: 1046
  year: 2012
  end-page: 1055
  ident: bib0105
  article-title: Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine
  publication-title: Mol. Ther.
– volume: 28
  start-page: 4324
  year: 2010
  end-page: 4332
  ident: bib0285
  article-title: In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study
  publication-title: J. Clin. Oncol.
– volume: 26
  start-page: 52
  year: 2016
  end-page: 64
  ident: bib0400
  article-title: Repair pathway choices and consequences at the double-strand break
  publication-title: Trends Cell Biol.
– volume: 32
  year: 2017
  ident: bib0155
  article-title: An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression
  publication-title: Cancer Cell
– volume: 11
  start-page: 728
  year: 2005
  end-page: 734
  ident: bib0020
  article-title: Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer
  publication-title: Clin. Cancer Res.
– volume: 30
  start-page: 2046
  year: 2012
  end-page: 2054
  ident: bib0320
  article-title: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study
  publication-title: J. Clin. Oncol.
– volume: 96
  start-page: 578
  year: 2016
  end-page: 588
  ident: bib0375
  article-title: A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 7
  year: 2014
  ident: bib0185
  article-title: New tricks for an old fox: impact of TGFbeta on the DNA damage response and genomic stability
  publication-title: Sci. Signal.
– volume: 3
  year: 2014
  ident: bib0395
  article-title: Is tumor (R)ejection by the immune system the ‘5th R’ of radiobiology?
  publication-title: Oncoimmunology
– volume: 19
  start-page: 225
  year: 2017
  end-page: 234
  ident: bib0180
  article-title: IGF1 shapes macrophage activation in response to immunometabolic challenge
  publication-title: Cell Rep.
– volume: 23
  start-page: 137
  year: 2017
  end-page: 148
  ident: bib0210
  article-title: Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma
  publication-title: Clin. Cancer Res.
– volume: 15
  start-page: 700
  year: 2014
  end-page: 712
  ident: bib0380
  article-title: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial
  publication-title: Lancet Oncol.
– volume: 17
  start-page: 97
  year: 2017
  end-page: 111
  ident: bib0085
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat. Rev. Immunol.
– volume: 19
  start-page: 3404
  year: 2013
  end-page: 3415
  ident: bib0215
  article-title: Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis
  publication-title: Clin. Cancer Res.
– volume: 4
  start-page: 51
  year: 2016
  ident: bib0040
  article-title: Current clinical trials testing the combination of immunotherapy with radiotherapy
  publication-title: J. Immunother. Cancer
– volume: 120
  start-page: 694
  year: 2010
  end-page: 705
  ident: bib0205
  article-title: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 3727
  year: 2015
  end-page: 3739
  ident: bib0335
  article-title: Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions
  publication-title: Clin. Cancer Res.
– volume: 91
  start-page: 252
  year: 2015
  end-page: 254
  ident: bib0385
  article-title: Radiation therapy and immunotherapy: growing pains
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 124
  start-page: 687
  year: 2014
  end-page: 695
  ident: bib0025
  article-title: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice
  publication-title: J. Clin. Invest.
– volume: 54
  start-page: 289
  year: 2014
  end-page: 296
  ident: bib0070
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell
– volume: 3
  year: 2014
  ident: bib0035
  article-title: Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy
  publication-title: Oncoimmunology
– volume: 203
  start-page: 1259
  year: 2006
  end-page: 1271
  ident: bib0265
  article-title: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy
  publication-title: J. Exp. Med.
– volume: 377
  start-page: 1919
  year: 2017
  end-page: 1929
  ident: bib0390
  article-title: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
– volume: 122
  start-page: 3718
  year: 2012
  ident: 10.1016/j.it.2018.06.001_bib0255
  article-title: Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI61931
– volume: 23
  start-page: 1388
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0370
  article-title: Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-1432
– volume: 366
  start-page: 925
  year: 2012
  ident: 10.1016/j.it.2018.06.001_bib0030
  article-title: Immunologic correlates of the abscopal effect in a patient with melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1112824
– volume: 20
  start-page: 1
  year: 2006
  ident: 10.1016/j.it.2018.06.001_bib0045
  article-title: Introduction to clinical radiation biology
  publication-title: Hematol. Oncol. Clin. North Am.
  doi: 10.1016/j.hoc.2006.01.007
– volume: 18
  start-page: 134
  year: 2008
  ident: 10.1016/j.it.2018.06.001_bib0100
  article-title: Regulation of DNA double-strand break repair pathway choice
  publication-title: Cell Res.
  doi: 10.1038/cr.2007.111
– volume: 211
  start-page: 781
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0140
  article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131916
– volume: 2
  start-page: 286
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0325
  article-title: Radiotherapy: changing the game in immunotherapy
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2016.05.002
– volume: 78
  start-page: 659
  year: 2018
  ident: 10.1016/j.it.2018.06.001_bib0175
  article-title: Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0524
– volume: 8
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0075
  article-title: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15618
– volume: 24
  start-page: 259
  year: 2018
  ident: 10.1016/j.it.2018.06.001_bib0350
  article-title: Toward precision radiotherapy for use with immune checkpoint blockers
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-0037
– volume: 71
  start-page: 2488
  year: 2011
  ident: 10.1016/j.it.2018.06.001_bib0230
  article-title: The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2820
– volume: 16
  start-page: 35
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0050
  article-title: DNA repair, genome stability and cancer: a historical perspective
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2015.4
– volume: 3
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0395
  article-title: Is tumor (R)ejection by the immune system the ‘5th R’ of radiobiology?
  publication-title: Oncoimmunology
  doi: 10.4161/onci.28133
– volume: 74
  start-page: 5458
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0220
  article-title: Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-1258
– volume: 6
  start-page: 139
  year: 2018
  ident: 10.1016/j.it.2018.06.001_bib0270
  article-title: Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0134
– volume: 40
  start-page: 25
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0010
  article-title: Systematic review of case reports on the abscopal effect
  publication-title: Curr. Probl. Cancer
  doi: 10.1016/j.currproblcancer.2015.10.001
– volume: 168
  start-page: 707
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0125
  article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.017
– volume: 203
  start-page: 1259
  year: 2006
  ident: 10.1016/j.it.2018.06.001_bib0265
  article-title: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20052494
– volume: 161
  start-page: 205
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0015
  article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.030
– volume: 15
  start-page: 700
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0380
  article-title: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(14)70189-5
– volume: 3
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0035
  article-title: Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy
  publication-title: Oncoimmunology
  doi: 10.4161/onci.28780
– volume: 27
  start-page: 8071
  year: 2009
  ident: 10.1016/j.it.2018.06.001_bib0315
  article-title: Randomized phase II clinical trial comparing tremelimumab (CP-675, 206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/jco.2009.27.15_suppl.8071
– volume: 74
  start-page: 2193
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0250
  article-title: RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1703
– volume: 84
  start-page: 879
  year: 2012
  ident: 10.1016/j.it.2018.06.001_bib0290
  article-title: Radiation therapy to convert the tumor into an in situ vaccine
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2012.06.020
– volume: 41
  start-page: 843
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0080
  article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.10.019
– volume: 26
  start-page: 3960
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0065
  article-title: Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx283
– volume: 30
  start-page: 2046
  year: 2012
  ident: 10.1016/j.it.2018.06.001_bib0320
  article-title: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2011.38.4032
– volume: 7
  start-page: 26496
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0115
  article-title: Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8420
– volume: 28
  start-page: 4324
  year: 2010
  ident: 10.1016/j.it.2018.06.001_bib0285
  article-title: In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2010.28.9793
– volume: 170
  start-page: 6338
  year: 2003
  ident: 10.1016/j.it.2018.06.001_bib0260
  article-title: Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.12.6338
– volume: 75
  start-page: 2232
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0195
  article-title: TGFbeta is a master regulator of radiation therapy-induced antitumor immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3511
– volume: 10
  start-page: 718
  year: 2009
  ident: 10.1016/j.it.2018.06.001_bib0005
  article-title: Systemic effects of local radiotherapy
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(09)70082-8
– volume: 4
  start-page: 267
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0355
  article-title: The European Organization for Research and Treatment of Cancer perspective on designing clinical trials with immune therapeutics
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2016.06.19
– volume: 4
  start-page: 51
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0040
  article-title: Current clinical trials testing the combination of immunotherapy with radiotherapy
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-016-0156-7
– volume: 550
  start-page: 402
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0110
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature
  doi: 10.1038/nature24050
– volume: 71
  start-page: 7433
  year: 2011
  ident: 10.1016/j.it.2018.06.001_bib0150
  article-title: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2104
– volume: 174
  start-page: 7516
  year: 2005
  ident: 10.1016/j.it.2018.06.001_bib0235
  article-title: Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.12.7516
– volume: 436
  start-page: 1186
  year: 2005
  ident: 10.1016/j.it.2018.06.001_bib0245
  article-title: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor
  publication-title: Nature
  doi: 10.1038/nature03884
– volume: 20
  start-page: 1046
  year: 2012
  ident: 10.1016/j.it.2018.06.001_bib0105
  article-title: Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.19
– volume: 4
  start-page: 70
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0145
  article-title: Control of the immune response by pro-angiogenic factors
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00070
– volume: 7
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0185
  article-title: New tricks for an old fox: impact of TGFbeta on the DNA damage response and genomic stability
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2005474
– volume: 91
  start-page: 252
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0385
  article-title: Radiation therapy and immunotherapy: growing pains
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2014.09.018
– volume: 348
  start-page: 56
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0120
  article-title: The future of immune checkpoint therapy
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 19
  start-page: 225
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0180
  article-title: IGF1 shapes macrophage activation in response to immunometabolic challenge
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.03.046
– volume: 73
  start-page: 2782
  year: 2013
  ident: 10.1016/j.it.2018.06.001_bib0200
  article-title: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3981
– volume: 19
  start-page: 3404
  year: 2013
  ident: 10.1016/j.it.2018.06.001_bib0215
  article-title: Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-0525
– volume: 181
  start-page: 3099
  year: 2008
  ident: 10.1016/j.it.2018.06.001_bib0225
  article-title: Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.5.3099
– volume: 1
  start-page: 365
  year: 2013
  ident: 10.1016/j.it.2018.06.001_bib0310
  article-title: An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0115
– volume: 32
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0155
  article-title: An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.10.003
– volume: 24
  start-page: 589
  year: 2013
  ident: 10.1016/j.it.2018.06.001_bib0240
  article-title: Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.09.014
– volume: 5
  start-page: 429
  year: 2004
  ident: 10.1016/j.it.2018.06.001_bib0160
  article-title: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(04)00115-1
– volume: 16
  start-page: 795
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0305
  article-title: Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(15)00054-6
– volume: 4
  start-page: 1
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0170
  article-title: Radiotherapy and the tumor stroma: the importance of dose and fractionation
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00001
– volume: 520
  start-page: 373
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0275
  article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer
  publication-title: Nature
  doi: 10.1038/nature14292
– volume: 26
  start-page: 63
  year: 2007
  ident: 10.1016/j.it.2018.06.001_bib0165
  article-title: Regulation of HIF-1alpha stability through S-nitrosylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.02.024
– volume: 204
  start-page: 49
  year: 2007
  ident: 10.1016/j.it.2018.06.001_bib0280
  article-title: Induced sensitization of tumor stroma leads to eradication of established cancer by T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20062056
– volume: 18
  start-page: 36
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0365
  article-title: Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone
  publication-title: Cancer Biol. Ther.
  doi: 10.1080/15384047.2016.1264543
– volume: 17
  start-page: 97
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0085
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.107
– volume: 74
  start-page: 665
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0130
  article-title: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-0992
– volume: 15
  start-page: 5379
  year: 2009
  ident: 10.1016/j.it.2018.06.001_bib0330
  article-title: Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-0265
– volume: 13
  start-page: 1050
  year: 2007
  ident: 10.1016/j.it.2018.06.001_bib0090
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1622
– volume: 8
  start-page: 425
  year: 2008
  ident: 10.1016/j.it.2018.06.001_bib0135
  article-title: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2397
– volume: 23
  start-page: 137
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0210
  article-title: Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-0870
– volume: 53
  start-page: 7
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0410
  article-title: DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.11.003
– volume: 9
  start-page: 1273
  year: 2010
  ident: 10.1016/j.it.2018.06.001_bib0405
  article-title: The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2010.09.013
– volume: 18
  start-page: 895
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0360
  article-title: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30380-7
– volume: 377
  start-page: 1919
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0390
  article-title: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1709937
– volume: 120
  start-page: 694
  year: 2010
  ident: 10.1016/j.it.2018.06.001_bib0205
  article-title: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI40283
– volume: 548
  start-page: 461
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0060
  article-title: cGAS surveillance of micronuclei links genome instability to innate immunity
  publication-title: Nature
  doi: 10.1038/nature23449
– volume: 124
  start-page: 687
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0025
  article-title: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI67313
– volume: 14
  start-page: 1848
  year: 2007
  ident: 10.1016/j.it.2018.06.001_bib0095
  article-title: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402201
– volume: 114
  start-page: 589
  year: 2009
  ident: 10.1016/j.it.2018.06.001_bib0295
  article-title: Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment
  publication-title: Blood
  doi: 10.1182/blood-2009-02-206870
– volume: 96
  start-page: 578
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0375
  article-title: A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2016.07.005
– volume: 21
  start-page: 3727
  year: 2015
  ident: 10.1016/j.it.2018.06.001_bib0335
  article-title: Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2824
– volume: 548
  start-page: 466
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0055
  article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei
  publication-title: Nature
  doi: 10.1038/nature23470
– volume: 11
  start-page: 728
  year: 2005
  ident: 10.1016/j.it.2018.06.001_bib0020
  article-title: Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.728.11.2
– volume: 166
  start-page: 839
  year: 2006
  ident: 10.1016/j.it.2018.06.001_bib0190
  article-title: Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species
  publication-title: Radiat. Res.
  doi: 10.1667/RR0695.1
– volume: 28
  start-page: xii44
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0340
  article-title: Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdx237
– volume: 134
  start-page: 587
  year: 2008
  ident: 10.1016/j.it.2018.06.001_bib0345
  article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 54
  start-page: 289
  year: 2014
  ident: 10.1016/j.it.2018.06.001_bib0070
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.040
– volume: 18
  start-page: 183
  year: 2018
  ident: 10.1016/j.it.2018.06.001_bib0300
  article-title: The dawn of vaccines for cancer prevention
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.140
– volume: 26
  start-page: 52
  year: 2016
  ident: 10.1016/j.it.2018.06.001_bib0400
  article-title: Repair pathway choices and consequences at the double-strand break
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.07.009
– volume: 549
  start-page: 548
  year: 2017
  ident: 10.1016/j.it.2018.06.001_bib0415
  article-title: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN
  publication-title: Nature
  doi: 10.1038/nature24023
SSID ssj0015777
Score 2.6757348
SecondaryResourceType review_article
Snippet Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of...
Radiotherapy has been used for over hundred years as a local tumor treatment. The occurrence of systemic anti-tumor effects manifesting as regression of tumors...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 644
SubjectTerms abscopal effect
Animals
Antitumor activity
antitumor immunity
Apoptosis
Breast cancer
Cancer
Cancer therapies
Combined Modality Therapy
Deoxyribonucleic acid
DNA
DNA damage
Humans
Immune checkpoint
Immune system
Immunology
Immunotherapy
Immunotherapy - methods
ionizing radiation
Kinases
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Mutation
Neoplasm Metastasis
Neoplasms - radiotherapy
Proteins
Radiation therapy
Radiotherapy - methods
T-Lymphocytes - immunology
Tumor Burden
tumor microenvironment
Tumors
Title Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1471490618301091
https://dx.doi.org/10.1016/j.it.2018.06.001
https://www.ncbi.nlm.nih.gov/pubmed/30001871
https://www.proquest.com/docview/2076861797
https://www.proquest.com/docview/2070247311
https://pubmed.ncbi.nlm.nih.gov/PMC6326574
Volume 39
WOSCitedRecordID wos000439859400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-4981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015777
  issn: 1471-4906
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DRAvCMatMKYgISQeArnbfizQiU5dQVWH-hY5tjsylbT0prFfxM_kOHbclIoCD7xEkR3ndj7b59jfOQehFyKJJSjKxBUhZW7E4Iww4qlkZoxyTClnpaS7uNcjwyH91Gj8qHxhVmNcFOTqik7_q6ihDIStXGf_Qdz2plAA5yB0OILY4fhXgu8ojw87pJ1J5dqbz78qfxBDhx3rQN99FZZAvYer8ncoHkBLbeFOVaThkuVRV1zX3Nm8ur9djO9PhN5wf3-xlNduf5lfGzcgXcrW7g6fWTGdLJX_ofvWZDgeszoBF2ZB7XnTuSgY1yQxVVGymsql2ny8ypmikLAZq69Z-MQy5sxCWuVMs-XE5cNcCTjxTHTsepnO7FIN2joCkgEnqY3AiQ4nuTUz6EWKy9e5ItD6OmireaWNINy9j-nJebebDtrDwcvpN1flJ1P7-CZZyx46CHBMYfw8aHXaw1O7YxXjMsun_QCzJa65hJsP_Z0KtG3i_MrUrak-g7vojrFZnJbG2j3UkMUhuqmzmH4_RLfODD_jPjrdAJ-zBp9TA58D4HO2wOdU4HM0-B6g85P24N0H12TrcHlEgoXiFnDo8JREMqAiJCxjGYW-L0VGiAgFFyAaMJ6zRIwi7o-yQMQjsM4Dn7EwyfzwIdovJoV8jJzMGzHCuaQyERHYVVSIMGBR4ImYBxkXTfSm-oEpN6HsVUaVcVpxFi_TfJGqX55q2mYTvbItpjqMy45r_UomaeWeDBNqCkja0Sa0bYzqqlXSP7Q6qkSemhFkDvU4IWBXUNxEz201DPpqJ48VcrIsrwHdGoc-3OKRRoj9rNArE21CDd7Ajr1ABZTfrCnyL2Vg-QRsuRhHT3a_1lN0e92nj9D-YraUz9ANvlrk89kx2sNDcmx6x09MuOt9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunological+Mechanisms+Responsible+for+Radiation-Induced+Abscopal+Effect&rft.jtitle=Trends+in+immunology&rft.au=Rodr%C3%ADguez-Ruiz%2C+Mar%C3%ADa+E&rft.au=Vanpouille-Box%2C+Claire&rft.au=Melero%2C+Ignacio&rft.au=menti%2C+Silvia+Chiara&rft.date=2018-08-01&rft.pub=Elsevier+Limited&rft.issn=1471-4906&rft.eissn=1471-4981&rft.volume=39&rft.issue=8&rft.spage=644&rft_id=info:doi/10.1016%2Fj.it.2018.06.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4906&client=summon