Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect
Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic...
Uloženo v:
| Vydáno v: | Trends in immunology Ročník 39; číslo 8; s. 644 - 655 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.08.2018
Elsevier Limited |
| Témata: | |
| ISSN: | 1471-4906, 1471-4981, 1471-4981 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.
Tumor-targeted radiation occasionally elicits immune-mediated systemic tumor regression.
Evidence of synergy between radiotherapy and immune checkpoint blockade (ICB) supports the concept of in situ vaccination by radiation, and ICB combinations together with an optimization of the radiation dose and fractionation offer paths to improved responses.
Radiation alters the balance between immune-activating and -suppressive signals in the tumor microenvironment.
Pathways involved in autoimmunity and microbial immunity are responsible for regulating the induction of type I interferon via cGAS/STING in irradiated tumors and are stimulated upon tumor cell irradiation and activation of the DNA damage response. |
|---|---|
| AbstractList | Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects. Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects. Radiotherapy has been used for over hundred years as a local tumor treatment. The occurrence of systemic anti-tumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects. Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects. Tumor-targeted radiation occasionally elicits immune-mediated systemic tumor regression. Evidence of synergy between radiotherapy and immune checkpoint blockade (ICB) supports the concept of in situ vaccination by radiation, and ICB combinations together with an optimization of the radiation dose and fractionation offer paths to improved responses. Radiation alters the balance between immune-activating and -suppressive signals in the tumor microenvironment. Pathways involved in autoimmunity and microbial immunity are responsible for regulating the induction of type I interferon via cGAS/STING in irradiated tumors and are stimulated upon tumor cell irradiation and activation of the DNA damage response. |
| Author | Vanpouille-Box, Claire Rodríguez-Ruiz, María E. Formenti, Silvia Chiara Demaria, Sandra Melero, Ignacio |
| AuthorAffiliation | 1 Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain 2 Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA 3 Sandra and Edward Meyer Cancer Center, New York, NY, USA 4 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA |
| AuthorAffiliation_xml | – name: 1 Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain – name: 2 Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA – name: 4 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA – name: 3 Sandra and Edward Meyer Cancer Center, New York, NY, USA |
| Author_xml | – sequence: 1 givenname: María E. surname: Rodríguez-Ruiz fullname: Rodríguez-Ruiz, María E. organization: Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain – sequence: 2 givenname: Claire surname: Vanpouille-Box fullname: Vanpouille-Box, Claire organization: Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA – sequence: 3 givenname: Ignacio surname: Melero fullname: Melero, Ignacio organization: Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain – sequence: 4 givenname: Silvia Chiara surname: Formenti fullname: Formenti, Silvia Chiara organization: Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA – sequence: 5 givenname: Sandra surname: Demaria fullname: Demaria, Sandra email: szd3005@med.cornell.edu organization: Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30001871$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1v1DAQxS1URD_gzglF4tJLgu04tsMBqaoKLCpCquBsOfak9ZLYi51U6n-Pw7Yruoc9eSS_3_PMPJ-iIx88IPSW4Ipgwj-sKzdVFBNZYV5hTF6gE8IEKVkrydGuxvwYnaa0zoJGCPEKHdc411KQE_RtNY6zD0O4dUYPxXcwd9q7NKbiBtIm-OS6AYo-xOJGW6cnF3y58nY2YIuLLpmwydRV34OZXqOXvR4SvHk8z9Cvz1c_L7-W1z--rC4vrkvDJJ1KyqixddtKBrS1tdSd7lpNJdhOSltbYzljHDcdtz0zpO-obfq24ZRoXfOO1Gfo09Z3M3cjWAN-inpQm-hGHR9U0E49v_HuTt2Ge8VryhvBssH5o0EMf2ZIkxpdMjAM2kOYk6JYYMpETZa33u9J12GOPo-3qLjkRLQiq97939Gulac1ZwHeCkwMKUXodxKC1ZKkWis3qSVJhbnKVEb4HmLc9G__eSY3HAI_bkHIGdw7iCoZBz4H5mJOSdngDsFyDzaD88vX-A0Ph9G_cXjKJA |
| CitedBy_id | crossref_primary_10_1038_s41416_021_01440_8 crossref_primary_10_3389_fonc_2023_1321326 crossref_primary_10_3390_pharmaceutics16091135 crossref_primary_10_1016_j_canlet_2022_215719 crossref_primary_10_1016_j_canlet_2025_217856 crossref_primary_10_1007_s10549_023_07044_5 crossref_primary_10_1002_adtp_202000134 crossref_primary_10_1016_j_tranon_2020_100889 crossref_primary_10_3389_fimmu_2020_01610 crossref_primary_10_2147_CMAR_S393934 crossref_primary_10_1038_s41598_024_73177_2 crossref_primary_10_1016_j_critrevonc_2020_103180 crossref_primary_10_7759_cureus_72853 crossref_primary_10_3390_immuno3010006 crossref_primary_10_1016_j_ijrobp_2025_03_032 crossref_primary_10_1111_imr_13271 crossref_primary_10_7759_cureus_15712 crossref_primary_10_1038_s41467_022_31601_z crossref_primary_10_1016_j_canlet_2022_215947 crossref_primary_10_1038_s41467_023_36523_y crossref_primary_10_3389_fimmu_2023_1125905 crossref_primary_10_1038_s41417_021_00302_y crossref_primary_10_1038_s41573_019_0043_2 crossref_primary_10_1016_j_lungcan_2020_07_032 crossref_primary_10_3389_fonc_2022_981332 crossref_primary_10_1016_j_canlet_2024_217326 crossref_primary_10_3390_vaccines8020191 crossref_primary_10_1016_j_lungcan_2023_107322 crossref_primary_10_1038_s41419_020_03000_z crossref_primary_10_1155_2021_9344124 crossref_primary_10_3389_fonc_2023_1143335 crossref_primary_10_1111_cns_70102 crossref_primary_10_1007_s12013_024_01423_5 crossref_primary_10_3389_fonc_2021_674596 crossref_primary_10_1016_j_addr_2023_115083 crossref_primary_10_2147_JHC_S491733 crossref_primary_10_1002_ijc_32934 crossref_primary_10_1016_j_intimp_2023_109774 crossref_primary_10_3389_fonc_2021_679262 crossref_primary_10_1093_omcr_omad076 crossref_primary_10_3389_fcell_2020_569219 crossref_primary_10_1007_s00262_020_02587_8 crossref_primary_10_1038_s41416_020_0942_3 crossref_primary_10_3390_cancers15133526 crossref_primary_10_3390_jcm10215124 crossref_primary_10_3390_jcm9124095 crossref_primary_10_1002_adfm_202212510 crossref_primary_10_1038_s41541_025_01132_x crossref_primary_10_1016_j_nantod_2021_101323 crossref_primary_10_1016_j_smim_2021_101474 crossref_primary_10_1038_s41577_021_00568_1 crossref_primary_10_1080_2162402X_2020_1863631 crossref_primary_10_1667_RADE_20_00038_1 crossref_primary_10_1016_j_mednuc_2020_01_001 crossref_primary_10_1007_s00432_022_04399_y crossref_primary_10_1016_j_imlet_2024_106947 crossref_primary_10_1111_ajco_13966 crossref_primary_10_1667_RADE_19_00014_1 crossref_primary_10_1038_s41416_023_02482_w crossref_primary_10_3389_fimmu_2022_1106644 crossref_primary_10_1038_s41389_021_00335_w crossref_primary_10_4049_jimmunol_2000487 crossref_primary_10_1007_s10585_025_10364_z crossref_primary_10_3389_fimmu_2021_662594 crossref_primary_10_1002_1878_0261_13082 crossref_primary_10_1093_jnci_djae137 crossref_primary_10_3390_vaccines7030100 crossref_primary_10_1136_jitc_2020_000966 crossref_primary_10_3390_healthcare7030108 crossref_primary_10_2147_IJN_S428044 crossref_primary_10_1016_j_tjog_2021_07_030 crossref_primary_10_1259_bjr_20200067 crossref_primary_10_3389_fmolb_2024_1409300 crossref_primary_10_1039_D3NR01050C crossref_primary_10_3390_ijms20133212 crossref_primary_10_1038_s41590_020_0641_5 crossref_primary_10_1080_14728214_2022_2113377 crossref_primary_10_3390_ijms232112728 crossref_primary_10_1016_j_semradonc_2024_04_007 crossref_primary_10_1158_1078_0432_CCR_20_3701 crossref_primary_10_1002_adfm_202213425 crossref_primary_10_3390_cancers14174119 crossref_primary_10_1016_j_semradonc_2024_04_005 crossref_primary_10_3390_ijms22126290 crossref_primary_10_1016_j_ymthe_2023_12_012 crossref_primary_10_3389_fimmu_2024_1474343 crossref_primary_10_3390_cancers12030626 crossref_primary_10_1016_j_cpet_2020_09_010 crossref_primary_10_3389_fonc_2020_597702 crossref_primary_10_1002_cac2_12348 crossref_primary_10_1002_cam4_5454 crossref_primary_10_3390_gels8050319 crossref_primary_10_3390_jcm13154296 crossref_primary_10_1016_j_ctro_2018_08_001 crossref_primary_10_3390_ph17121591 crossref_primary_10_1007_s10565_024_09943_9 crossref_primary_10_1186_s12931_019_1194_8 crossref_primary_10_3390_ijms21239324 crossref_primary_10_1177_1758835920936084 crossref_primary_10_1186_s13046_022_02533_9 crossref_primary_10_1158_1078_0432_CCR_24_2522 crossref_primary_10_1002_advs_202500492 crossref_primary_10_3390_cancers13040775 crossref_primary_10_1038_s41585_024_00913_8 crossref_primary_10_3389_fonc_2025_1611036 crossref_primary_10_1016_j_ctrv_2024_102799 crossref_primary_10_1158_1078_0432_CCR_23_3616 crossref_primary_10_1007_s12672_023_00682_7 crossref_primary_10_1016_j_ijrobp_2023_04_025 crossref_primary_10_1038_s41419_025_07921_5 crossref_primary_10_1111_cas_15911 crossref_primary_10_3390_cancers12061546 crossref_primary_10_1016_j_prp_2024_155289 crossref_primary_10_3390_cancers12113173 crossref_primary_10_1016_j_thorsurg_2020_08_004 crossref_primary_10_1186_s12885_025_14542_w crossref_primary_10_3390_ijms222011061 crossref_primary_10_1016_j_apsb_2023_10_003 crossref_primary_10_1136_jitc_2020_000826 crossref_primary_10_3390_jpm11010053 crossref_primary_10_3389_fonc_2021_671044 crossref_primary_10_1007_s12672_022_00540_y crossref_primary_10_3390_ph16121672 crossref_primary_10_1016_j_semradonc_2025_02_008 crossref_primary_10_1002_smll_202006231 crossref_primary_10_53011_JMRO_2021_02_08 crossref_primary_10_1016_j_intimp_2022_109542 crossref_primary_10_3390_cancers15102687 crossref_primary_10_3390_radiation5010003 crossref_primary_10_23938_ASSN_0886 crossref_primary_10_1016_j_semradonc_2019_12_007 crossref_primary_10_1038_s41423_019_0341_y crossref_primary_10_3389_fonc_2023_1256360 crossref_primary_10_1016_j_nantod_2024_102383 crossref_primary_10_1016_j_ijrobp_2021_02_046 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_1016_j_semradonc_2019_12_004 crossref_primary_10_1007_s11431_023_2574_0 crossref_primary_10_1080_14796694_2024_2357063 crossref_primary_10_3892_mco_2021_2395 crossref_primary_10_1186_s40425_019_0520_5 crossref_primary_10_3390_cancers16213656 crossref_primary_10_1007_s11060_024_04843_8 crossref_primary_10_2147_IJN_S333197 crossref_primary_10_1016_j_abb_2024_110138 crossref_primary_10_3389_fimmu_2018_03107 crossref_primary_10_1016_j_medj_2023_09_001 crossref_primary_10_1158_2326_6066_CIR_19_0305 crossref_primary_10_3390_cancers16061196 crossref_primary_10_1016_j_canrad_2020_01_001 crossref_primary_10_1038_s41392_022_01102_y crossref_primary_10_1186_s12865_020_00349_w crossref_primary_10_3390_cancers17152451 crossref_primary_10_1158_1078_0432_CCR_19_1344 crossref_primary_10_1016_j_tranon_2022_101366 crossref_primary_10_2147_IJN_S449975 crossref_primary_10_1016_j_canlet_2018_12_001 crossref_primary_10_1136_jitc_2023_008515 crossref_primary_10_1016_j_zemedi_2023_04_007 crossref_primary_10_1016_j_breast_2018_09_006 crossref_primary_10_3389_fphar_2022_928369 crossref_primary_10_1088_1361_6595_ac604f crossref_primary_10_3389_fonc_2022_809304 crossref_primary_10_3389_fonc_2021_749496 crossref_primary_10_1080_21655979_2021_1899532 crossref_primary_10_1007_s00384_022_04143_5 crossref_primary_10_1016_j_pharmthera_2024_108763 crossref_primary_10_1007_s00270_020_02644_w crossref_primary_10_1158_1078_0432_CCR_20_0473 crossref_primary_10_1016_j_mtbio_2025_101916 crossref_primary_10_1155_2019_3267409 crossref_primary_10_1021_acsnano_4c05065 crossref_primary_10_1016_j_envint_2020_106235 crossref_primary_10_3389_fimmu_2021_627197 crossref_primary_10_4049_jimmunol_2000656 crossref_primary_10_1172_jci_insight_194201 crossref_primary_10_3892_ol_2025_15215 crossref_primary_10_1016_j_ymthe_2020_01_003 crossref_primary_10_3390_cancers15205083 crossref_primary_10_1073_pnas_2010333118 crossref_primary_10_3389_fonc_2020_00004 crossref_primary_10_1016_j_cej_2021_130839 crossref_primary_10_1016_j_cytogfr_2023_11_003 crossref_primary_10_1080_09553002_2022_2078006 crossref_primary_10_1186_s12967_022_03392_w crossref_primary_10_1007_s13346_020_00868_4 crossref_primary_10_1136_jitc_2022_005248 crossref_primary_10_1002_adfm_202418480 crossref_primary_10_1084_jem_20190801 crossref_primary_10_1183_16000617_0024_2019 crossref_primary_10_1080_2162402X_2022_2057892 crossref_primary_10_1039_D2BM01496C crossref_primary_10_1111_cas_15712 crossref_primary_10_1016_j_critrevonc_2024_104325 crossref_primary_10_1007_s00066_023_02122_5 crossref_primary_10_3390_ijms21072335 crossref_primary_10_1016_j_nantod_2022_101656 crossref_primary_10_1080_0284186X_2021_1989629 crossref_primary_10_1016_j_ccell_2023_12_012 crossref_primary_10_1111_febs_15316 crossref_primary_10_3390_diagnostics10121098 crossref_primary_10_1093_jjco_hyab005 crossref_primary_10_1088_1361_6498_ab3101 crossref_primary_10_1038_s41598_021_92942_1 crossref_primary_10_1111_1759_7714_14330 crossref_primary_10_1007_s40257_025_00943_x crossref_primary_10_1093_jrr_rrab037 crossref_primary_10_1038_s41571_019_0272_7 crossref_primary_10_1158_1078_0432_CCR_20_0337 crossref_primary_10_1186_s40364_024_00628_3 crossref_primary_10_1016_j_ijrobp_2019_11_398 crossref_primary_10_1186_s40425_019_0549_5 crossref_primary_10_1007_s12672_025_02914_4 crossref_primary_10_1016_j_pharmthera_2021_107829 crossref_primary_10_2217_imt_2020_0072 crossref_primary_10_1186_s12951_023_02158_w crossref_primary_10_3390_biomedicines13051253 crossref_primary_10_1038_s41467_024_51807_7 crossref_primary_10_3389_fonc_2022_729250 crossref_primary_10_3390_cancers14133144 crossref_primary_10_1093_jrr_rrz095 crossref_primary_10_1245_s10434_023_13778_9 crossref_primary_10_2147_OTT_S410693 crossref_primary_10_1016_j_colsurfb_2025_114874 crossref_primary_10_1038_s41401_022_00953_z crossref_primary_10_1093_jjco_hyaa268 crossref_primary_10_3389_fonc_2019_00811 crossref_primary_10_3390_cancers12092365 crossref_primary_10_1002_hep_31186 crossref_primary_10_1002_mco2_271 crossref_primary_10_2217_fon_2022_1274 crossref_primary_10_2974_kmj_75_97 crossref_primary_10_1038_s41420_021_00731_6 crossref_primary_10_1016_j_semradonc_2024_01_001 crossref_primary_10_3390_cancers14143505 crossref_primary_10_1126_sciimmunol_abl9330 crossref_primary_10_3892_ol_2021_13147 crossref_primary_10_1080_02656736_2024_2335201 crossref_primary_10_1097_CAD_0000000000001684 crossref_primary_10_1038_s41467_021_23442_z crossref_primary_10_3389_fonc_2019_00367 crossref_primary_10_1007_s11864_024_01260_x crossref_primary_10_3389_fimmu_2024_1428584 crossref_primary_10_1016_j_bbrc_2020_04_137 crossref_primary_10_1007_s00795_025_00419_1 crossref_primary_10_1186_s12935_022_02615_w crossref_primary_10_1007_s10549_022_06533_3 crossref_primary_10_1016_j_jvir_2025_01_042 crossref_primary_10_3389_fonc_2019_00922 crossref_primary_10_1186_s13014_025_02692_x crossref_primary_10_3390_cancers14174069 crossref_primary_10_1186_s12951_024_02855_0 crossref_primary_10_1021_acs_analchem_5c04000 crossref_primary_10_1158_1078_0432_CCR_23_3206 crossref_primary_10_1186_s13073_019_0653_7 crossref_primary_10_1016_j_nantod_2024_102447 crossref_primary_10_1038_s41467_020_15676_0 crossref_primary_10_1073_pnas_2102611118 crossref_primary_10_1186_s12967_021_02895_2 crossref_primary_10_1002_cam4_6820 crossref_primary_10_1002_slct_202402903 crossref_primary_10_1186_s13045_022_01307_2 crossref_primary_10_3389_fonc_2024_1428065 crossref_primary_10_1016_j_radonc_2022_07_014 crossref_primary_10_3389_fonc_2021_670464 crossref_primary_10_1016_j_ijrobp_2020_12_031 crossref_primary_10_1016_j_jtcvs_2019_10_122 crossref_primary_10_3390_app12157734 crossref_primary_10_3389_fonc_2021_675354 crossref_primary_10_1016_j_cellimm_2021_104301 crossref_primary_10_3389_fimmu_2024_1433237 crossref_primary_10_3390_ijms20092173 crossref_primary_10_1016_j_mednuc_2019_06_001 crossref_primary_10_1016_j_canlet_2022_215746 crossref_primary_10_1111_resp_13870 crossref_primary_10_1667_RADE_20_00065_1 crossref_primary_10_7759_cureus_29620 crossref_primary_10_1136_jitc_2020_000792 crossref_primary_10_1016_j_nantod_2024_102335 crossref_primary_10_1016_j_ijrobp_2021_08_037 crossref_primary_10_1002_adma_202311291 crossref_primary_10_3390_ijms221910672 crossref_primary_10_15252_emmm_202013412 crossref_primary_10_1172_JCI163452 crossref_primary_10_1097_PPO_0000000000000777 crossref_primary_10_1038_s41572_019_0064_5 crossref_primary_10_1080_1040841X_2024_2311653 crossref_primary_10_1080_15384047_2023_2166763 crossref_primary_10_1259_bjr_20200042 crossref_primary_10_1371_journal_pone_0255798 crossref_primary_10_1016_j_canlet_2024_217095 crossref_primary_10_2217_fon_2020_0701 crossref_primary_10_3389_fonc_2021_690188 crossref_primary_10_1016_j_nantod_2023_102042 crossref_primary_10_3390_cancers13010050 crossref_primary_10_1158_1078_0432_CCR_24_0286 crossref_primary_10_3390_cancers13122924 crossref_primary_10_1016_j_ejcskn_2024_100258 crossref_primary_10_1038_s41416_021_01296_y crossref_primary_10_3389_fimmu_2023_1012799 crossref_primary_10_3389_fimmu_2021_719285 crossref_primary_10_1007_s10143_025_03505_1 crossref_primary_10_3389_fimmu_2019_00698 crossref_primary_10_1016_j_radonc_2024_110442 crossref_primary_10_1088_1361_6560_abbb75 crossref_primary_10_3390_pharmaceutics15071926 crossref_primary_10_3390_cancers15041093 crossref_primary_10_1186_s41747_024_00445_1 crossref_primary_10_1136_jitc_2022_005463 crossref_primary_10_1667_RADE_20_00066_1 crossref_primary_10_3389_fonc_2019_00163 crossref_primary_10_3390_cancers15010021 crossref_primary_10_1136_ijgc_2021_002709 crossref_primary_10_3389_fonc_2024_1397863 crossref_primary_10_1177_10732748241237331 crossref_primary_10_1016_j_canlet_2023_216239 crossref_primary_10_1016_j_cclet_2023_109225 crossref_primary_10_1634_theoncologist_2019_0309 crossref_primary_10_3390_ijms26188844 crossref_primary_10_1038_s43018_022_00401_1 crossref_primary_10_1136_ijgc_2021_003237 crossref_primary_10_2217_imt_2022_0044 crossref_primary_10_1021_acs_jproteome_5c00128 crossref_primary_10_1016_j_ijrobp_2024_09_036 crossref_primary_10_3389_fimmu_2022_918787 crossref_primary_10_1097_HC9_0000000000000653 crossref_primary_10_3322_caac_21626 crossref_primary_10_3390_cancers13133129 |
| Cites_doi | 10.1172/JCI61931 10.1158/1078-0432.CCR-16-1432 10.1056/NEJMoa1112824 10.1016/j.hoc.2006.01.007 10.1038/cr.2007.111 10.1084/jem.20131916 10.1016/j.trecan.2016.05.002 10.1158/0008-5472.CAN-17-0524 10.1038/ncomms15618 10.1158/1078-0432.CCR-16-0037 10.1158/0008-5472.CAN-10-2820 10.1038/nrc.2015.4 10.4161/onci.28133 10.1158/0008-5472.CAN-14-1258 10.1158/2326-6066.CIR-17-0134 10.1016/j.currproblcancer.2015.10.001 10.1016/j.cell.2017.01.017 10.1084/jem.20052494 10.1016/j.cell.2015.03.030 10.1016/S1470-2045(14)70189-5 10.4161/onci.28780 10.1200/jco.2009.27.15_suppl.8071 10.1158/0008-5472.CAN-13-1703 10.1016/j.ijrobp.2012.06.020 10.1016/j.immuni.2014.10.019 10.1093/hmg/ddx283 10.1200/JCO.2011.38.4032 10.18632/oncotarget.8420 10.1200/JCO.2010.28.9793 10.4049/jimmunol.170.12.6338 10.1158/0008-5472.CAN-14-3511 10.1016/S1470-2045(09)70082-8 10.21037/atm.2016.06.19 10.1186/s40425-016-0156-7 10.1038/nature24050 10.1158/0008-5472.CAN-11-2104 10.4049/jimmunol.174.12.7516 10.1038/nature03884 10.1038/mt.2012.19 10.3389/fonc.2014.00070 10.1126/scisignal.2005474 10.1016/j.ijrobp.2014.09.018 10.1126/science.aaa8172 10.1016/j.celrep.2017.03.046 10.1158/0008-5472.CAN-12-3981 10.1158/1078-0432.CCR-13-0525 10.4049/jimmunol.181.5.3099 10.1158/2326-6066.CIR-13-0115 10.1016/j.ccell.2017.10.003 10.1016/j.ccr.2013.09.014 10.1016/S1535-6108(04)00115-1 10.1016/S1470-2045(15)00054-6 10.3389/fonc.2014.00001 10.1038/nature14292 10.1016/j.molcel.2007.02.024 10.1084/jem.20062056 10.1080/15384047.2016.1264543 10.1038/nri.2016.107 10.1158/0008-5472.CAN-13-0992 10.1158/1078-0432.CCR-09-0265 10.1038/nm1622 10.1038/nrc2397 10.1158/1078-0432.CCR-16-0870 10.1016/j.molcel.2013.11.003 10.1016/j.dnarep.2010.09.013 10.1016/S1470-2045(17)30380-7 10.1056/NEJMoa1709937 10.1172/JCI40283 10.1038/nature23449 10.1172/JCI67313 10.1038/sj.cdd.4402201 10.1182/blood-2009-02-206870 10.1016/j.ijrobp.2016.07.005 10.1158/1078-0432.CCR-14-2824 10.1038/nature23470 10.1158/1078-0432.728.11.2 10.1667/RR0695.1 10.1093/annonc/mdx237 10.1016/j.cell.2008.06.032 10.1016/j.molcel.2014.03.040 10.1038/nri.2017.140 10.1016/j.tcb.2015.07.009 10.1038/nature24023 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Aug 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Aug 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7U9 H94 K9. M7N NAPCQ 7X8 5PM |
| DOI | 10.1016/j.it.2018.06.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts Virology and AIDS Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
| DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1471-4981 |
| EndPage | 655 |
| ExternalDocumentID | PMC6326574 30001871 10_1016_j_it_2018_06_001 S1471490618301091 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA198533 – fundername: NCRR NIH HHS grantid: S10 RR027619 – fundername: NCI NIH HHS grantid: R01 CA201246 |
| GroupedDBID | --- --K --M -DZ .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 2KS 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8FE 8FH 8P~ 9M8 AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABEFU ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGEKW AGHFR AGQPQ AGUBO AGYEJ AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BPHCQ BVXVI CJTIS CS3 D0L DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IH2 IHE J1W KOM L7B LK8 LUGTX M41 MO0 MVM N9A O-L O9- O9~ OAUVE OK0 OMK OZT P-8 P-9 PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSI SSZ T5K WOW X7M XJT XPP Y6R Z5R ZCG ZGI ~G- ~HD 3V. 7RV 7X7 8FI AACTN AAIAV ABYKQ AFCTW AFDAS AFKRA AFKWA AHPSJ AJBFU AJOXV AMFUW AZQEC BBNVY BENPR BHPHI FYUFA GUQSH HCIFZ LCYCR M1P M2O M7P RCE RIG VQA XFK ZA5 9DU AAYXX CITATION BNPGV CGR CUY CVF ECM EIF NPM SSH 7T5 7U9 H94 K9. M7N NAPCQ 7X8 5PM |
| ID | FETCH-LOGICAL-c482t-242cd39984e29d38abab9a28edb88d3dcd644605b6df4c1fb2d5f95621aa36b13 |
| ISICitedReferencesCount | 379 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439859400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-4906 1471-4981 |
| IngestDate | Tue Sep 30 16:51:07 EDT 2025 Thu Oct 02 12:04:47 EDT 2025 Tue Oct 07 06:39:45 EDT 2025 Thu Apr 03 07:05:07 EDT 2025 Tue Nov 18 21:16:34 EST 2025 Sat Nov 29 03:31:57 EST 2025 Fri Feb 23 02:15:11 EST 2024 Tue Oct 14 19:24:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | abscopal effect tumor microenvironment antitumor immunity DNA damage ionizing radiation immunotherapy |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c482t-242cd39984e29d38abab9a28edb88d3dcd644605b6df4c1fb2d5f95621aa36b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Co-first authors |
| PMID | 30001871 |
| PQID | 2076861797 |
| PQPubID | 2031073 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6326574 proquest_miscellaneous_2070247311 proquest_journals_2076861797 pubmed_primary_30001871 crossref_primary_10_1016_j_it_2018_06_001 crossref_citationtrail_10_1016_j_it_2018_06_001 elsevier_sciencedirect_doi_10_1016_j_it_2018_06_001 elsevier_clinicalkey_doi_10_1016_j_it_2018_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Trends in immunology |
| PublicationTitleAlternate | Trends Immunol |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Tommelein (bib0175) 2018; 78 Menis (bib0355) 2016; 4 Shrivastav (bib0100) 2008; 18 Brody (bib0285) 2010; 28 Golden, Formenti (bib0395) 2014; 3 Spadaro (bib0180) 2017; 19 Formenti, Demaria (bib0005) 2009; 10 Xu (bib0200) 2013; 73 Burnette (bib0230) 2011; 71 Ranoa (bib0115) 2016; 7 Vanpouille-Box (bib0075) 2017; 8 Shaverdian (bib0360) 2017; 18 Meng (bib0105) 2012; 20 Lam (bib0250) 2014; 74 Formenti, Demaria (bib0290) 2012; 84 Golden (bib0310) 2013; 1 Sharma, Allison (bib0120) 2015; 348 Apetoh (bib0090) 2007; 13 Li (bib0165) 2007; 26 Gasser (bib0245) 2005; 436 Shibata (bib0410) 2014; 53 Sharma (bib0125) 2017; 168 Mackenzie (bib0060) 2017; 548 Dewhirst (bib0135) 2008; 8 Kang (bib0040) 2016; 4 Antonia (bib0390) 2017; 377 Jeggo (bib0050) 2016; 16 Demaria (bib0020) 2005; 11 Deng (bib0025) 2014; 124 Palazon (bib0155) 2017; 32 Koller (bib0365) 2017; 18 Hellevik, Martinez-Zubiaurre (bib0170) 2014; 4 Vanpouille-Box (bib0195) 2015; 75 Klug (bib0240) 2013; 24 Moeller (bib0160) 2004; 5 Ruocco (bib0255) 2012; 122 Chakraborty (bib0260) 2003; 170 Arnoult (bib0415) 2017; 549 Noman (bib0140) 2014; 211 Reits (bib0265) 2006; 203 Kioi (bib0205) 2010; 120 Galluzzi (bib0085) 2017; 17 Grimaldi (bib0035) 2014; 3 Sharma, Allison (bib0015) 2015; 161 Demaria (bib0325) 2016; 2 Jobling (bib0190) 2006; 166 Dovedi (bib0220) 2014; 74 Zatloukal (bib0315) 2009; 27 Golden, Formenti (bib0385) 2015; 91 Golden (bib0305) 2015; 16 Finn (bib0300) 2018; 18 Abuodeh (bib0010) 2016; 40 Sanford (bib0215) 2013; 19 Lee (bib0295) 2009; 114 Cai (bib0070) 2014; 54 Barsoum (bib0150) 2011; 71 Vanpouille-Box (bib0350) 2018; 24 Deng (bib0080) 2014; 41 Barsoum (bib0130) 2014; 74 Rudqvist (bib0270) 2018; 6 Bartsch (bib0065) 2017; 26 Stetson (bib0345) 2008; 134 Tang (bib0370) 2017; 23 Dou (bib0110) 2017; 550 Obeid (bib0095) 2007; 14 Lugade (bib0235) 2005; 174 Harding (bib0055) 2017; 548 Lynch (bib0320) 2012; 30 Matsumura (bib0225) 2008; 181 Zhang (bib0280) 2007; 204 Filatenkov (bib0335) 2015; 21 Voron (bib0145) 2014; 4 Sanchez-Paulete (bib0340) 2017; 28 Goodarzi (bib0405) 2010; 9 Willers, Held (bib0045) 2006; 20 Ceccaldi (bib0400) 2016; 26 Barcellos-Hoff, Cucinotta (bib0185) 2014; 7 Hiniker (bib0375) 2016; 96 Postow (bib0030) 2012; 366 Kalbasi (bib0210) 2017; 23 Kwon (bib0380) 2014; 15 Dewan (bib0330) 2009; 15 Twyman-Saint Victor (bib0275) 2015; 520 Barcellos-Hoff (10.1016/j.it.2018.06.001_bib0185) 2014; 7 Dou (10.1016/j.it.2018.06.001_bib0110) 2017; 550 Matsumura (10.1016/j.it.2018.06.001_bib0225) 2008; 181 Lam (10.1016/j.it.2018.06.001_bib0250) 2014; 74 Vanpouille-Box (10.1016/j.it.2018.06.001_bib0350) 2018; 24 Formenti (10.1016/j.it.2018.06.001_bib0290) 2012; 84 Lynch (10.1016/j.it.2018.06.001_bib0320) 2012; 30 Gasser (10.1016/j.it.2018.06.001_bib0245) 2005; 436 Ruocco (10.1016/j.it.2018.06.001_bib0255) 2012; 122 Lee (10.1016/j.it.2018.06.001_bib0295) 2009; 114 Chakraborty (10.1016/j.it.2018.06.001_bib0260) 2003; 170 Brody (10.1016/j.it.2018.06.001_bib0285) 2010; 28 Goodarzi (10.1016/j.it.2018.06.001_bib0405) 2010; 9 Formenti (10.1016/j.it.2018.06.001_bib0005) 2009; 10 Kioi (10.1016/j.it.2018.06.001_bib0205) 2010; 120 Sharma (10.1016/j.it.2018.06.001_bib0125) 2017; 168 Golden (10.1016/j.it.2018.06.001_bib0395) 2014; 3 Golden (10.1016/j.it.2018.06.001_bib0385) 2015; 91 Kang (10.1016/j.it.2018.06.001_bib0040) 2016; 4 Li (10.1016/j.it.2018.06.001_bib0165) 2007; 26 Galluzzi (10.1016/j.it.2018.06.001_bib0085) 2017; 17 Deng (10.1016/j.it.2018.06.001_bib0025) 2014; 124 Mackenzie (10.1016/j.it.2018.06.001_bib0060) 2017; 548 Sharma (10.1016/j.it.2018.06.001_bib0120) 2015; 348 Klug (10.1016/j.it.2018.06.001_bib0240) 2013; 24 Grimaldi (10.1016/j.it.2018.06.001_bib0035) 2014; 3 Ranoa (10.1016/j.it.2018.06.001_bib0115) 2016; 7 Obeid (10.1016/j.it.2018.06.001_bib0095) 2007; 14 Cai (10.1016/j.it.2018.06.001_bib0070) 2014; 54 Zhang (10.1016/j.it.2018.06.001_bib0280) 2007; 204 Rudqvist (10.1016/j.it.2018.06.001_bib0270) 2018; 6 Barsoum (10.1016/j.it.2018.06.001_bib0130) 2014; 74 Abuodeh (10.1016/j.it.2018.06.001_bib0010) 2016; 40 Barsoum (10.1016/j.it.2018.06.001_bib0150) 2011; 71 Apetoh (10.1016/j.it.2018.06.001_bib0090) 2007; 13 Postow (10.1016/j.it.2018.06.001_bib0030) 2012; 366 Lugade (10.1016/j.it.2018.06.001_bib0235) 2005; 174 Shrivastav (10.1016/j.it.2018.06.001_bib0100) 2008; 18 Zatloukal (10.1016/j.it.2018.06.001_bib0315) 2009; 27 Vanpouille-Box (10.1016/j.it.2018.06.001_bib0075) 2017; 8 Vanpouille-Box (10.1016/j.it.2018.06.001_bib0195) 2015; 75 Dewan (10.1016/j.it.2018.06.001_bib0330) 2009; 15 Stetson (10.1016/j.it.2018.06.001_bib0345) 2008; 134 Moeller (10.1016/j.it.2018.06.001_bib0160) 2004; 5 Hiniker (10.1016/j.it.2018.06.001_bib0375) 2016; 96 Willers (10.1016/j.it.2018.06.001_bib0045) 2006; 20 Hellevik (10.1016/j.it.2018.06.001_bib0170) 2014; 4 Jobling (10.1016/j.it.2018.06.001_bib0190) 2006; 166 Koller (10.1016/j.it.2018.06.001_bib0365) 2017; 18 Arnoult (10.1016/j.it.2018.06.001_bib0415) 2017; 549 Sharma (10.1016/j.it.2018.06.001_bib0015) 2015; 161 Meng (10.1016/j.it.2018.06.001_bib0105) 2012; 20 Reits (10.1016/j.it.2018.06.001_bib0265) 2006; 203 Bartsch (10.1016/j.it.2018.06.001_bib0065) 2017; 26 Demaria (10.1016/j.it.2018.06.001_bib0020) 2005; 11 Golden (10.1016/j.it.2018.06.001_bib0305) 2015; 16 Xu (10.1016/j.it.2018.06.001_bib0200) 2013; 73 Finn (10.1016/j.it.2018.06.001_bib0300) 2018; 18 Tang (10.1016/j.it.2018.06.001_bib0370) 2017; 23 Jeggo (10.1016/j.it.2018.06.001_bib0050) 2016; 16 Burnette (10.1016/j.it.2018.06.001_bib0230) 2011; 71 Harding (10.1016/j.it.2018.06.001_bib0055) 2017; 548 Twyman-Saint Victor (10.1016/j.it.2018.06.001_bib0275) 2015; 520 Dewhirst (10.1016/j.it.2018.06.001_bib0135) 2008; 8 Dovedi (10.1016/j.it.2018.06.001_bib0220) 2014; 74 Spadaro (10.1016/j.it.2018.06.001_bib0180) 2017; 19 Sanchez-Paulete (10.1016/j.it.2018.06.001_bib0340) 2017; 28 Menis (10.1016/j.it.2018.06.001_bib0355) 2016; 4 Ceccaldi (10.1016/j.it.2018.06.001_bib0400) 2016; 26 Demaria (10.1016/j.it.2018.06.001_bib0325) 2016; 2 Shaverdian (10.1016/j.it.2018.06.001_bib0360) 2017; 18 Filatenkov (10.1016/j.it.2018.06.001_bib0335) 2015; 21 Tommelein (10.1016/j.it.2018.06.001_bib0175) 2018; 78 Kwon (10.1016/j.it.2018.06.001_bib0380) 2014; 15 Antonia (10.1016/j.it.2018.06.001_bib0390) 2017; 377 Golden (10.1016/j.it.2018.06.001_bib0310) 2013; 1 Deng (10.1016/j.it.2018.06.001_bib0080) 2014; 41 Shibata (10.1016/j.it.2018.06.001_bib0410) 2014; 53 Noman (10.1016/j.it.2018.06.001_bib0140) 2014; 211 Palazon (10.1016/j.it.2018.06.001_bib0155) 2017; 32 Kalbasi (10.1016/j.it.2018.06.001_bib0210) 2017; 23 Voron (10.1016/j.it.2018.06.001_bib0145) 2014; 4 Sanford (10.1016/j.it.2018.06.001_bib0215) 2013; 19 |
| References_xml | – volume: 2 start-page: 286 year: 2016 end-page: 294 ident: bib0325 article-title: Radiotherapy: changing the game in immunotherapy publication-title: Trends Cancer – volume: 23 start-page: 1388 year: 2017 end-page: 1396 ident: bib0370 article-title: Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells publication-title: Clin. Cancer Res. – volume: 26 start-page: 63 year: 2007 end-page: 74 ident: bib0165 article-title: Regulation of HIF-1alpha stability through S-nitrosylation publication-title: Mol. Cell – volume: 181 start-page: 3099 year: 2008 end-page: 3107 ident: bib0225 article-title: Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells publication-title: J. Immunol. – volume: 170 start-page: 6338 year: 2003 end-page: 6347 ident: bib0260 article-title: Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy publication-title: J. Immunol. – volume: 122 start-page: 3718 year: 2012 end-page: 3730 ident: bib0255 article-title: Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects publication-title: J. Clin. Invest. – volume: 15 start-page: 5379 year: 2009 end-page: 5388 ident: bib0330 article-title: Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody publication-title: Clin. Cancer Res. – volume: 548 start-page: 466 year: 2017 end-page: 470 ident: bib0055 article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei publication-title: Nature – volume: 8 year: 2017 ident: bib0075 article-title: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity publication-title: Nat. Commun. – volume: 1 start-page: 365 year: 2013 end-page: 372 ident: bib0310 article-title: An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer publication-title: Cancer Immunol. Res. – volume: 74 start-page: 2193 year: 2014 end-page: 2203 ident: bib0250 article-title: RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma publication-title: Cancer Res. – volume: 84 start-page: 879 year: 2012 end-page: 880 ident: bib0290 article-title: Radiation therapy to convert the tumor into an publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 7 start-page: 26496 year: 2016 end-page: 26515 ident: bib0115 article-title: Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs publication-title: Oncotarget – volume: 348 start-page: 56 year: 2015 end-page: 61 ident: bib0120 article-title: The future of immune checkpoint therapy publication-title: Science – volume: 53 start-page: 7 year: 2014 end-page: 18 ident: bib0410 article-title: DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities publication-title: Mol. Cell – volume: 14 start-page: 1848 year: 2007 end-page: 1850 ident: bib0095 article-title: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis publication-title: Cell Death Differ. – volume: 18 start-page: 134 year: 2008 end-page: 147 ident: bib0100 article-title: Regulation of DNA double-strand break repair pathway choice publication-title: Cell Res. – volume: 24 start-page: 259 year: 2018 end-page: 265 ident: bib0350 article-title: Toward precision radiotherapy for use with immune checkpoint blockers publication-title: Clin. Cancer Res. – volume: 18 start-page: 36 year: 2017 end-page: 42 ident: bib0365 article-title: Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone publication-title: Cancer Biol. Ther. – volume: 40 start-page: 25 year: 2016 end-page: 37 ident: bib0010 article-title: Systematic review of case reports on the abscopal effect publication-title: Curr. Probl. Cancer – volume: 4 start-page: 70 year: 2014 ident: bib0145 article-title: Control of the immune response by pro-angiogenic factors publication-title: Front. Oncol. – volume: 16 start-page: 795 year: 2015 end-page: 803 ident: bib0305 article-title: Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial publication-title: Lancet Oncol. – volume: 8 start-page: 425 year: 2008 end-page: 437 ident: bib0135 article-title: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response publication-title: Nat. Rev. Cancer – volume: 166 start-page: 839 year: 2006 end-page: 848 ident: bib0190 article-title: Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species publication-title: Radiat. Res. – volume: 78 start-page: 659 year: 2018 end-page: 670 ident: bib0175 article-title: Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation publication-title: Cancer Res. – volume: 9 start-page: 1273 year: 2010 end-page: 1282 ident: bib0405 article-title: The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax publication-title: DNA Repair (Amst) – volume: 24 start-page: 589 year: 2013 end-page: 602 ident: bib0240 article-title: Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy publication-title: Cancer Cell – volume: 211 start-page: 781 year: 2014 end-page: 790 ident: bib0140 article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation publication-title: J. Exp. Med. – volume: 18 start-page: 895 year: 2017 end-page: 903 ident: bib0360 article-title: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial publication-title: Lancet Oncol. – volume: 161 start-page: 205 year: 2015 end-page: 214 ident: bib0015 article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential publication-title: Cell – volume: 26 start-page: 3960 year: 2017 end-page: 3972 ident: bib0065 article-title: Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy publication-title: Hum. Mol. Genet. – volume: 5 start-page: 429 year: 2004 end-page: 441 ident: bib0160 article-title: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules publication-title: Cancer Cell – volume: 75 start-page: 2232 year: 2015 end-page: 2242 ident: bib0195 article-title: TGFbeta is a master regulator of radiation therapy-induced antitumor immunity publication-title: Cancer Res. – volume: 366 start-page: 925 year: 2012 end-page: 931 ident: bib0030 article-title: Immunologic correlates of the abscopal effect in a patient with melanoma publication-title: N. Engl. J. Med. – volume: 4 start-page: 267 year: 2016 ident: bib0355 article-title: The European Organization for Research and Treatment of Cancer perspective on designing clinical trials with immune therapeutics publication-title: Ann. Transl. Med. – volume: 4 start-page: 1 year: 2014 ident: bib0170 article-title: Radiotherapy and the tumor stroma: the importance of dose and fractionation publication-title: Front. Oncol. – volume: 174 start-page: 7516 year: 2005 end-page: 7523 ident: bib0235 article-title: Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor publication-title: J. Immunol. – volume: 520 start-page: 373 year: 2015 end-page: 377 ident: bib0275 article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer publication-title: Nature – volume: 71 start-page: 7433 year: 2011 end-page: 7441 ident: bib0150 article-title: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide publication-title: Cancer Res. – volume: 27 start-page: 8071 year: 2009 ident: bib0315 article-title: Randomized phase II clinical trial comparing tremelimumab (CP-675, 206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC) publication-title: J. Clin. Oncol. – volume: 74 start-page: 665 year: 2014 end-page: 674 ident: bib0130 article-title: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells publication-title: Cancer Res. – volume: 168 start-page: 707 year: 2017 end-page: 723 ident: bib0125 article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy publication-title: Cell – volume: 16 start-page: 35 year: 2016 end-page: 42 ident: bib0050 article-title: DNA repair, genome stability and cancer: a historical perspective publication-title: Nat. Rev. Cancer – volume: 550 start-page: 402 year: 2017 end-page: 406 ident: bib0110 article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer publication-title: Nature – volume: 71 start-page: 2488 year: 2011 end-page: 2496 ident: bib0230 article-title: The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity publication-title: Cancer Res. – volume: 20 start-page: 1 year: 2006 end-page: 24 ident: bib0045 article-title: Introduction to clinical radiation biology publication-title: Hematol. Oncol. Clin. North Am. – volume: 41 start-page: 843 year: 2014 end-page: 852 ident: bib0080 article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors publication-title: Immunity – volume: 549 start-page: 548 year: 2017 end-page: 552 ident: bib0415 article-title: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN publication-title: Nature – volume: 114 start-page: 589 year: 2009 end-page: 595 ident: bib0295 article-title: Therapeutic effects of ablative radiation on local tumor require CD8 publication-title: Blood – volume: 13 start-page: 1050 year: 2007 end-page: 1059 ident: bib0090 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. – volume: 28 start-page: xii44 year: 2017 end-page: xii55 ident: bib0340 article-title: Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy publication-title: Ann. Oncol. – volume: 73 start-page: 2782 year: 2013 end-page: 2794 ident: bib0200 article-title: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer publication-title: Cancer Res. – volume: 6 start-page: 139 year: 2018 end-page: 150 ident: bib0270 article-title: Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells publication-title: Cancer Immunol. Res. – volume: 18 start-page: 183 year: 2018 end-page: 194 ident: bib0300 article-title: The dawn of vaccines for cancer prevention publication-title: Nat. Rev. Immunol. – volume: 74 start-page: 5458 year: 2014 end-page: 5468 ident: bib0220 article-title: Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade publication-title: Cancer Res. – volume: 548 start-page: 461 year: 2017 end-page: 465 ident: bib0060 article-title: cGAS surveillance of micronuclei links genome instability to innate immunity publication-title: Nature – volume: 204 start-page: 49 year: 2007 end-page: 55 ident: bib0280 article-title: Induced sensitization of tumor stroma leads to eradication of established cancer by T cells publication-title: J. Exp. Med. – volume: 134 start-page: 587 year: 2008 end-page: 598 ident: bib0345 article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity publication-title: Cell – volume: 10 start-page: 718 year: 2009 end-page: 726 ident: bib0005 article-title: Systemic effects of local radiotherapy publication-title: Lancet Oncol. – volume: 436 start-page: 1186 year: 2005 end-page: 1190 ident: bib0245 article-title: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor publication-title: Nature – volume: 20 start-page: 1046 year: 2012 end-page: 1055 ident: bib0105 article-title: Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine publication-title: Mol. Ther. – volume: 28 start-page: 4324 year: 2010 end-page: 4332 ident: bib0285 article-title: In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study publication-title: J. Clin. Oncol. – volume: 26 start-page: 52 year: 2016 end-page: 64 ident: bib0400 article-title: Repair pathway choices and consequences at the double-strand break publication-title: Trends Cell Biol. – volume: 32 year: 2017 ident: bib0155 article-title: An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression publication-title: Cancer Cell – volume: 11 start-page: 728 year: 2005 end-page: 734 ident: bib0020 article-title: Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer publication-title: Clin. Cancer Res. – volume: 30 start-page: 2046 year: 2012 end-page: 2054 ident: bib0320 article-title: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study publication-title: J. Clin. Oncol. – volume: 96 start-page: 578 year: 2016 end-page: 588 ident: bib0375 article-title: A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 7 year: 2014 ident: bib0185 article-title: New tricks for an old fox: impact of TGFbeta on the DNA damage response and genomic stability publication-title: Sci. Signal. – volume: 3 year: 2014 ident: bib0395 article-title: Is tumor (R)ejection by the immune system the ‘5th R’ of radiobiology? publication-title: Oncoimmunology – volume: 19 start-page: 225 year: 2017 end-page: 234 ident: bib0180 article-title: IGF1 shapes macrophage activation in response to immunometabolic challenge publication-title: Cell Rep. – volume: 23 start-page: 137 year: 2017 end-page: 148 ident: bib0210 article-title: Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma publication-title: Clin. Cancer Res. – volume: 15 start-page: 700 year: 2014 end-page: 712 ident: bib0380 article-title: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial publication-title: Lancet Oncol. – volume: 17 start-page: 97 year: 2017 end-page: 111 ident: bib0085 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat. Rev. Immunol. – volume: 19 start-page: 3404 year: 2013 end-page: 3415 ident: bib0215 article-title: Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis publication-title: Clin. Cancer Res. – volume: 4 start-page: 51 year: 2016 ident: bib0040 article-title: Current clinical trials testing the combination of immunotherapy with radiotherapy publication-title: J. Immunother. Cancer – volume: 120 start-page: 694 year: 2010 end-page: 705 ident: bib0205 article-title: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice publication-title: J. Clin. Invest. – volume: 21 start-page: 3727 year: 2015 end-page: 3739 ident: bib0335 article-title: Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions publication-title: Clin. Cancer Res. – volume: 91 start-page: 252 year: 2015 end-page: 254 ident: bib0385 article-title: Radiation therapy and immunotherapy: growing pains publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 124 start-page: 687 year: 2014 end-page: 695 ident: bib0025 article-title: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice publication-title: J. Clin. Invest. – volume: 54 start-page: 289 year: 2014 end-page: 296 ident: bib0070 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell – volume: 3 year: 2014 ident: bib0035 article-title: Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy publication-title: Oncoimmunology – volume: 203 start-page: 1259 year: 2006 end-page: 1271 ident: bib0265 article-title: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy publication-title: J. Exp. Med. – volume: 377 start-page: 1919 year: 2017 end-page: 1929 ident: bib0390 article-title: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer publication-title: N. Engl. J. Med. – volume: 122 start-page: 3718 year: 2012 ident: 10.1016/j.it.2018.06.001_bib0255 article-title: Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects publication-title: J. Clin. Invest. doi: 10.1172/JCI61931 – volume: 23 start-page: 1388 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0370 article-title: Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-1432 – volume: 366 start-page: 925 year: 2012 ident: 10.1016/j.it.2018.06.001_bib0030 article-title: Immunologic correlates of the abscopal effect in a patient with melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1112824 – volume: 20 start-page: 1 year: 2006 ident: 10.1016/j.it.2018.06.001_bib0045 article-title: Introduction to clinical radiation biology publication-title: Hematol. Oncol. Clin. North Am. doi: 10.1016/j.hoc.2006.01.007 – volume: 18 start-page: 134 year: 2008 ident: 10.1016/j.it.2018.06.001_bib0100 article-title: Regulation of DNA double-strand break repair pathway choice publication-title: Cell Res. doi: 10.1038/cr.2007.111 – volume: 211 start-page: 781 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0140 article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation publication-title: J. Exp. Med. doi: 10.1084/jem.20131916 – volume: 2 start-page: 286 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0325 article-title: Radiotherapy: changing the game in immunotherapy publication-title: Trends Cancer doi: 10.1016/j.trecan.2016.05.002 – volume: 78 start-page: 659 year: 2018 ident: 10.1016/j.it.2018.06.001_bib0175 article-title: Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0524 – volume: 8 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0075 article-title: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity publication-title: Nat. Commun. doi: 10.1038/ncomms15618 – volume: 24 start-page: 259 year: 2018 ident: 10.1016/j.it.2018.06.001_bib0350 article-title: Toward precision radiotherapy for use with immune checkpoint blockers publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-0037 – volume: 71 start-page: 2488 year: 2011 ident: 10.1016/j.it.2018.06.001_bib0230 article-title: The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2820 – volume: 16 start-page: 35 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0050 article-title: DNA repair, genome stability and cancer: a historical perspective publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2015.4 – volume: 3 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0395 article-title: Is tumor (R)ejection by the immune system the ‘5th R’ of radiobiology? publication-title: Oncoimmunology doi: 10.4161/onci.28133 – volume: 74 start-page: 5458 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0220 article-title: Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-1258 – volume: 6 start-page: 139 year: 2018 ident: 10.1016/j.it.2018.06.001_bib0270 article-title: Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0134 – volume: 40 start-page: 25 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0010 article-title: Systematic review of case reports on the abscopal effect publication-title: Curr. Probl. Cancer doi: 10.1016/j.currproblcancer.2015.10.001 – volume: 168 start-page: 707 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0125 article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy publication-title: Cell doi: 10.1016/j.cell.2017.01.017 – volume: 203 start-page: 1259 year: 2006 ident: 10.1016/j.it.2018.06.001_bib0265 article-title: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy publication-title: J. Exp. Med. doi: 10.1084/jem.20052494 – volume: 161 start-page: 205 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0015 article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential publication-title: Cell doi: 10.1016/j.cell.2015.03.030 – volume: 15 start-page: 700 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0380 article-title: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70189-5 – volume: 3 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0035 article-title: Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy publication-title: Oncoimmunology doi: 10.4161/onci.28780 – volume: 27 start-page: 8071 year: 2009 ident: 10.1016/j.it.2018.06.001_bib0315 article-title: Randomized phase II clinical trial comparing tremelimumab (CP-675, 206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC) publication-title: J. Clin. Oncol. doi: 10.1200/jco.2009.27.15_suppl.8071 – volume: 74 start-page: 2193 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0250 article-title: RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1703 – volume: 84 start-page: 879 year: 2012 ident: 10.1016/j.it.2018.06.001_bib0290 article-title: Radiation therapy to convert the tumor into an in situ vaccine publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2012.06.020 – volume: 41 start-page: 843 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0080 article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors publication-title: Immunity doi: 10.1016/j.immuni.2014.10.019 – volume: 26 start-page: 3960 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0065 article-title: Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx283 – volume: 30 start-page: 2046 year: 2012 ident: 10.1016/j.it.2018.06.001_bib0320 article-title: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2011.38.4032 – volume: 7 start-page: 26496 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0115 article-title: Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs publication-title: Oncotarget doi: 10.18632/oncotarget.8420 – volume: 28 start-page: 4324 year: 2010 ident: 10.1016/j.it.2018.06.001_bib0285 article-title: In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2010.28.9793 – volume: 170 start-page: 6338 year: 2003 ident: 10.1016/j.it.2018.06.001_bib0260 article-title: Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy publication-title: J. Immunol. doi: 10.4049/jimmunol.170.12.6338 – volume: 75 start-page: 2232 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0195 article-title: TGFbeta is a master regulator of radiation therapy-induced antitumor immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3511 – volume: 10 start-page: 718 year: 2009 ident: 10.1016/j.it.2018.06.001_bib0005 article-title: Systemic effects of local radiotherapy publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(09)70082-8 – volume: 4 start-page: 267 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0355 article-title: The European Organization for Research and Treatment of Cancer perspective on designing clinical trials with immune therapeutics publication-title: Ann. Transl. Med. doi: 10.21037/atm.2016.06.19 – volume: 4 start-page: 51 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0040 article-title: Current clinical trials testing the combination of immunotherapy with radiotherapy publication-title: J. Immunother. Cancer doi: 10.1186/s40425-016-0156-7 – volume: 550 start-page: 402 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0110 article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer publication-title: Nature doi: 10.1038/nature24050 – volume: 71 start-page: 7433 year: 2011 ident: 10.1016/j.it.2018.06.001_bib0150 article-title: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2104 – volume: 174 start-page: 7516 year: 2005 ident: 10.1016/j.it.2018.06.001_bib0235 article-title: Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor publication-title: J. Immunol. doi: 10.4049/jimmunol.174.12.7516 – volume: 436 start-page: 1186 year: 2005 ident: 10.1016/j.it.2018.06.001_bib0245 article-title: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor publication-title: Nature doi: 10.1038/nature03884 – volume: 20 start-page: 1046 year: 2012 ident: 10.1016/j.it.2018.06.001_bib0105 article-title: Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine publication-title: Mol. Ther. doi: 10.1038/mt.2012.19 – volume: 4 start-page: 70 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0145 article-title: Control of the immune response by pro-angiogenic factors publication-title: Front. Oncol. doi: 10.3389/fonc.2014.00070 – volume: 7 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0185 article-title: New tricks for an old fox: impact of TGFbeta on the DNA damage response and genomic stability publication-title: Sci. Signal. doi: 10.1126/scisignal.2005474 – volume: 91 start-page: 252 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0385 article-title: Radiation therapy and immunotherapy: growing pains publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2014.09.018 – volume: 348 start-page: 56 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0120 article-title: The future of immune checkpoint therapy publication-title: Science doi: 10.1126/science.aaa8172 – volume: 19 start-page: 225 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0180 article-title: IGF1 shapes macrophage activation in response to immunometabolic challenge publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.03.046 – volume: 73 start-page: 2782 year: 2013 ident: 10.1016/j.it.2018.06.001_bib0200 article-title: CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3981 – volume: 19 start-page: 3404 year: 2013 ident: 10.1016/j.it.2018.06.001_bib0215 article-title: Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-0525 – volume: 181 start-page: 3099 year: 2008 ident: 10.1016/j.it.2018.06.001_bib0225 article-title: Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.181.5.3099 – volume: 1 start-page: 365 year: 2013 ident: 10.1016/j.it.2018.06.001_bib0310 article-title: An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0115 – volume: 32 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0155 article-title: An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.10.003 – volume: 24 start-page: 589 year: 2013 ident: 10.1016/j.it.2018.06.001_bib0240 article-title: Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.09.014 – volume: 5 start-page: 429 year: 2004 ident: 10.1016/j.it.2018.06.001_bib0160 article-title: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules publication-title: Cancer Cell doi: 10.1016/S1535-6108(04)00115-1 – volume: 16 start-page: 795 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0305 article-title: Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(15)00054-6 – volume: 4 start-page: 1 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0170 article-title: Radiotherapy and the tumor stroma: the importance of dose and fractionation publication-title: Front. Oncol. doi: 10.3389/fonc.2014.00001 – volume: 520 start-page: 373 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0275 article-title: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer publication-title: Nature doi: 10.1038/nature14292 – volume: 26 start-page: 63 year: 2007 ident: 10.1016/j.it.2018.06.001_bib0165 article-title: Regulation of HIF-1alpha stability through S-nitrosylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.02.024 – volume: 204 start-page: 49 year: 2007 ident: 10.1016/j.it.2018.06.001_bib0280 article-title: Induced sensitization of tumor stroma leads to eradication of established cancer by T cells publication-title: J. Exp. Med. doi: 10.1084/jem.20062056 – volume: 18 start-page: 36 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0365 article-title: Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone publication-title: Cancer Biol. Ther. doi: 10.1080/15384047.2016.1264543 – volume: 17 start-page: 97 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0085 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.107 – volume: 74 start-page: 665 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0130 article-title: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-0992 – volume: 15 start-page: 5379 year: 2009 ident: 10.1016/j.it.2018.06.001_bib0330 article-title: Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-0265 – volume: 13 start-page: 1050 year: 2007 ident: 10.1016/j.it.2018.06.001_bib0090 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. doi: 10.1038/nm1622 – volume: 8 start-page: 425 year: 2008 ident: 10.1016/j.it.2018.06.001_bib0135 article-title: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2397 – volume: 23 start-page: 137 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0210 article-title: Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-0870 – volume: 53 start-page: 7 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0410 article-title: DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.11.003 – volume: 9 start-page: 1273 year: 2010 ident: 10.1016/j.it.2018.06.001_bib0405 article-title: The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2010.09.013 – volume: 18 start-page: 895 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0360 article-title: Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30380-7 – volume: 377 start-page: 1919 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0390 article-title: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1709937 – volume: 120 start-page: 694 year: 2010 ident: 10.1016/j.it.2018.06.001_bib0205 article-title: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI40283 – volume: 548 start-page: 461 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0060 article-title: cGAS surveillance of micronuclei links genome instability to innate immunity publication-title: Nature doi: 10.1038/nature23449 – volume: 124 start-page: 687 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0025 article-title: Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI67313 – volume: 14 start-page: 1848 year: 2007 ident: 10.1016/j.it.2018.06.001_bib0095 article-title: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402201 – volume: 114 start-page: 589 year: 2009 ident: 10.1016/j.it.2018.06.001_bib0295 article-title: Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment publication-title: Blood doi: 10.1182/blood-2009-02-206870 – volume: 96 start-page: 578 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0375 article-title: A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2016.07.005 – volume: 21 start-page: 3727 year: 2015 ident: 10.1016/j.it.2018.06.001_bib0335 article-title: Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-2824 – volume: 548 start-page: 466 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0055 article-title: Mitotic progression following DNA damage enables pattern recognition within micronuclei publication-title: Nature doi: 10.1038/nature23470 – volume: 11 start-page: 728 year: 2005 ident: 10.1016/j.it.2018.06.001_bib0020 article-title: Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.728.11.2 – volume: 166 start-page: 839 year: 2006 ident: 10.1016/j.it.2018.06.001_bib0190 article-title: Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species publication-title: Radiat. Res. doi: 10.1667/RR0695.1 – volume: 28 start-page: xii44 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0340 article-title: Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx237 – volume: 134 start-page: 587 year: 2008 ident: 10.1016/j.it.2018.06.001_bib0345 article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity publication-title: Cell doi: 10.1016/j.cell.2008.06.032 – volume: 54 start-page: 289 year: 2014 ident: 10.1016/j.it.2018.06.001_bib0070 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.040 – volume: 18 start-page: 183 year: 2018 ident: 10.1016/j.it.2018.06.001_bib0300 article-title: The dawn of vaccines for cancer prevention publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.140 – volume: 26 start-page: 52 year: 2016 ident: 10.1016/j.it.2018.06.001_bib0400 article-title: Repair pathway choices and consequences at the double-strand break publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.07.009 – volume: 549 start-page: 548 year: 2017 ident: 10.1016/j.it.2018.06.001_bib0415 article-title: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN publication-title: Nature doi: 10.1038/nature24023 |
| SSID | ssj0015777 |
| Score | 2.6757348 |
| SecondaryResourceType | review_article |
| Snippet | Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of... Radiotherapy has been used for over hundred years as a local tumor treatment. The occurrence of systemic anti-tumor effects manifesting as regression of tumors... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 644 |
| SubjectTerms | abscopal effect Animals Antitumor activity antitumor immunity Apoptosis Breast cancer Cancer Cancer therapies Combined Modality Therapy Deoxyribonucleic acid DNA DNA damage Humans Immune checkpoint Immune system Immunology Immunotherapy Immunotherapy - methods ionizing radiation Kinases Lymphocyte Activation Lymphocytes Lymphocytes T Mutation Neoplasm Metastasis Neoplasms - radiotherapy Proteins Radiation therapy Radiotherapy - methods T-Lymphocytes - immunology Tumor Burden tumor microenvironment Tumors |
| Title | Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1471490618301091 https://dx.doi.org/10.1016/j.it.2018.06.001 https://www.ncbi.nlm.nih.gov/pubmed/30001871 https://www.proquest.com/docview/2076861797 https://www.proquest.com/docview/2070247311 https://pubmed.ncbi.nlm.nih.gov/PMC6326574 |
| Volume | 39 |
| WOSCitedRecordID | wos000439859400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1471-4981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015777 issn: 1471-4906 databaseCode: AIEXJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6Daa9IBhfhTEFiRceAkuc1M5jgSE2aROqBupb5NjulqlLq35p7B_g3-Yu_mhKtQEPvERVHDtp7pfznf27O0Le0FRpHVMagimchklBo7DQWEMjkQnOEQMmeV1sgp2e8n4_-9pq_XSxMIshqyp-fZ2N_6uo4RwIG0Nn_0HcflA4Ab9B6HAEscPxrwR_hBEfXqWdaAztLadXGA9i6bBDk-i7h2kJ8DlCrN-BPIAubuGOMdNwzfJoGq5L7mzpxveL8b2RMhvun87n-ibszcsbGwZkzopluMN3UY1Hc4w_DD_YCsdD0STgwixoIm-OzishDUnMVhGpiU31am05XJQCWSRiIprLFhH3pDmYdYyqhWkxTDJTsMXpYpPYyGKONxRrx2SJXFP4Zu3h8l2JvNjI5GI1t2mIenxVy5oe1CUIo-XU5wmJrmmDbMUszUA9bnWPDvvHfkMqZYzZXW5DD1y94Q7ZdkPcZuCsOzC_83Abhs3ZQ_LAeiRB1yDpEWnpapfcNzVKf-yS7RPLvnhMjlegFSyhFTSgFQC0gjVoBQ5agYHWE_Lt8-HZxy-hrcURyoTHM2QOSAXGLE90nCnKRSGKTMRcq4JzRZVUICFwjYuOGiQyGhSxSgfge8eRELRTRPQp2axGlX5OAsHBixWFEhpTY4pOwVMda5nVW_DyIGmT9-4F5tImqsd6KcPcMRIv83KW49vPDSmzTd76HmOTpOWOayMnk9wFH8N0mQOg7uhDfR9rmBqD8w-99pzIc6sfptAO_j14DRlrk9e-GVQ67tOJSo_m9TVgOTMawRDPDEL833IoaxO2gh1_AaaLX22pyos6bXwHPLWUJS9uHfMl2Vl-qXtkczaZ61fknlzMyulkn2ywPt-338Uvc8baKw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunological+Mechanisms+Responsible+for+Radiation-Induced+Abscopal+Effect&rft.jtitle=Trends+in+immunology&rft.au=Rodr%C3%ADguez-Ruiz%2C+Mar%C3%ADa+E&rft.au=Vanpouille-Box%2C+Claire&rft.au=Melero%2C+Ignacio&rft.au=Formenti%2C+Silvia+Chiara&rft.date=2018-08-01&rft.eissn=1471-4981&rft.volume=39&rft.issue=8&rft.spage=644&rft_id=info:doi/10.1016%2Fj.it.2018.06.001&rft_id=info%3Apmid%2F30001871&rft.externalDocID=30001871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4906&client=summon |