HLALA—HLA typing from linearly projected graph alignments
Abstract Summary HLA*LA implements a new graph alignment model for human leukocyte antigen (HLA) type inference, based on the projection of linear alignments onto a variation graph. It enables accurate HLA type inference from whole-genome (99% accuracy) and whole-exome (93% accuracy) Illumina data;...
Saved in:
| Published in: | Bioinformatics Vol. 35; no. 21; pp. 4394 - 4396 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
01.11.2019
Oxford University Press (OUP) |
| Subjects: | |
| ISSN: | 1367-4803, 1367-4811, 1460-2059, 1367-4811 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract
Summary
HLA*LA implements a new graph alignment model for human leukocyte antigen (HLA) type inference, based on the projection of linear alignments onto a variation graph. It enables accurate HLA type inference from whole-genome (99% accuracy) and whole-exome (93% accuracy) Illumina data; from long-read Oxford Nanopore and Pacific Biosciences data (98% accuracy for whole-genome and targeted data) and from genome assemblies. Computational requirements for a typical sample vary between 0.7 and 14 CPU hours per sample.
Availability and implementation
HLA*LA is implemented in C++ and Perl and freely available as a bioconda package or from https://github.com/DiltheyLab/HLA-LA (GPL v3).
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC6821427 |
| ISSN: | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI: | 10.1093/bioinformatics/btz235 |