The matrix ridge approximation: algorithms and applications

We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation . In particular, we define the matrix ridge approximation as...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning Ročník 97; číslo 3; s. 227 - 258
Hlavný autor: Zhang, Zhihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2014
Springer
Springer Nature B.V
Predmet:
ISSN:0885-6125, 1573-0565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation . In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful.
AbstractList We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation. In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful.
We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation. In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful.[PUBLICATION ABSTRACT]
We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation . In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful.
Author Zhang, Zhihua
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Zhang
  fullname: Zhang, Zhihua
  email: zhihua@sjtu.edu.cn
  organization: MOE-Microsoft Key Lab for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28885666$$DView record in Pascal Francis
BookMark eNqFkU1LAzEQhoNUsK3-AG8LInhZzWw-V09S_IKCl3oOaTbbpmx3a7KF9t-bdotIQT0NZJ53ZvK-A9Srm9oidAn4FjAWdwFwntMUA0kZJZBuT1AfmCApZpz1UB9LyVIOGTtDgxAWGOOMS95HD5O5TZa69W6TeFfMbKJXK99sXHxzTX2f6GrWeNfOlyHRdbHrVs7se-EcnZa6CvbiUIfo4_lpMnpNx-8vb6PHcWqozNoUQJBSE2olE6Yg0moxtbRgJeCSQ24ETAmFnIOUGkDnglFWTokwmgssMSVDdNPNjYd9rm1o1dIFY6tK17ZZBwWCEQZZJuF_lGd5XCZlHtGrI3TRrH0dPxIpoNGrHFikrg-UDkZXpde1cUGtfDTIb1Umo6-c88hBxxnfhOBt-Y0AVruEVJeQigmpXUJqGzXiSGNcu7e29dpVfyqzThnilnpm_Y_bfxV9AZo7pRI
CitedBy_id crossref_primary_10_1016_j_inffus_2015_03_001
crossref_primary_10_1007_s00180_023_01368_y
Cites_doi 10.1111/1467-9868.00196
10.1198/016214501753208690
10.1162/089976603321043694
10.1080/01621459.1977.10480998
10.1162/089976601300014439
10.1109/34.868688
10.1007/s10994-006-6130-8
10.1080/01621459.1971.10482356
10.1007/BF01202265
10.1137/1015032
10.1007/BF01896809
10.1080/00401706.2000.10485983
10.2307/2981865
10.1214/08-STS266
10.1214/aos/1176346060
10.7551/mitpress/7496.003.0011
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright The Author(s) 2014
2015 INIST-CNRS
Copyright_xml – notice: The Author(s) 2014
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-013-5431-y
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1573-0565
EndPage 258
ExternalDocumentID 3467313871
28885666
10_1007_s10994_013_5431_y
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c482t-1173fa34e857cd38ea7be4d5f10f619c71b34196188a11a97545fb37ca6708043
IEDL.DBID M2P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Thu Sep 04 16:30:05 EDT 2025
Fri Sep 05 08:36:57 EDT 2025
Tue Nov 04 22:28:10 EST 2025
Wed Apr 02 07:26:57 EDT 2025
Tue Nov 18 22:42:17 EST 2025
Sat Nov 29 01:43:26 EST 2025
Fri Feb 21 02:28:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Expectation maximization algorithms
Incomplete matrix factorization
Probabilistic models
Positive semidefinite matrices
Matrix ridge approximation
Cluster analysis
Iterative method
Matrix factorization
Approximation algorithm
Multivariate analysis
Modeling
Multidimensional analysis
Data analysis
Spectral method
Probabilistic interpretation
Probabilistic approach
Empirical method
Latent variable model
Regression analysis
Matrix decomposition
Symmetric matrix
Positive semidefinite matrix
Non linear effect
EM algorithm
Artificial intelligence
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-1173fa34e857cd38ea7be4d5f10f619c71b34196188a11a97545fb37ca6708043
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1614612915
PQPubID 23500
PageCount 32
ParticipantIDs proquest_miscellaneous_1753512281
proquest_miscellaneous_1629341889
proquest_journals_1614612915
pascalfrancis_primary_28885666
crossref_primary_10_1007_s10994_013_5431_y
crossref_citationtrail_10_1007_s10994_013_5431_y
springer_journals_10_1007_s10994_013_5431_y
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2014
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Lázaro-Gredilla, Qui nonero Candela, Rasmussen, Figueiras-Vidal (CR15) 2010; 11
Rasmussen, Williams (CR25) 2006
Magnus, Neudecker (CR17) 1999
Roweis (CR27) 1998
Rahimi, Recht (CR22) 2008
Ramsay (CR23) 1982; 145
Wu (CR34) 1983; 11
Rosipal, Girolami (CR26) 2001; 13
Zhang, Jordan (CR36) 2008; 23
Harville (CR11) 1977; 72
Hoerl, Kennard (CR12) 1970; 42
Le, Sarlós, Smola (CR16) 2013
Ng, Jordan, Weiss (CR19) 2001
Schölkopf, Smola (CR28) 2002
Fine, Scheinberg, Cristianini, Shawe-Taylor, Williamson (CR5) 2001; 2
Yang, Li, Mahdavi, Jin, Zhou (CR35) 2012
Zhang, Kwok, Yeung (CR37) 2006; 63
Achlioptas, McSherry, Schölkopf (CR1) 2001
Gower, Legendre (CR8) 1986; 3
Ahn, Oh (CR2) 2003; 15
Rand (CR24) 1971; 66
Oh, Raftery (CR20) 2001; 96
Groenen, Mathar, Heiser (CR9) 1995; 12
Golub (CR6) 1973; 15
Shi, Malik (CR29) 2000; 22
Tipping, Bishop (CR32) 1999; 61
Golub, Van Loan (CR7) 1996
Gupta, Nagar (CR10) 2000
Dempster, Laird, Rubin (CR4) 1977; 39
Lawrence (CR14) 2004
Anderson (CR3) 1984
Shi, Petterson, Dror, Langford, Smola, Vishwanathan (CR30) 2009; 10
Smola, Schölkopf (CR31) 2000
Quiñonero-Candela, Rasmussen, Williams, Bottou, Chapelle, DeCoste, Weston (CR21) 2007
Jolliffe (CR13) 2002
Mardia, Kent, Bibby (CR18) 1979
Williams, Seeger (CR33) 2001
S. Roweis (5431_CR27) 1998
B. Schölkopf (5431_CR28) 2002
R. Rosipal (5431_CR26) 2001; 13
N. D. Lawrence (5431_CR14) 2004
J. H. Ahn (5431_CR2) 2003; 15
T. W. Anderson (5431_CR3) 1984
J. O. Ramsay (5431_CR23) 1982; 145
Q. Shi (5431_CR30) 2009; 10
C. F. J. Wu (5431_CR34) 1983; 11
C. E. Rasmussen (5431_CR25) 2006
P. J. F. Groenen (5431_CR9) 1995; 12
Z. Zhang (5431_CR36) 2008; 23
W. M. Rand (5431_CR24) 1971; 66
M. E. Tipping (5431_CR32) 1999; 61
J. R. Magnus (5431_CR17) 1999
K. V. Mardia (5431_CR18) 1979
J. Quiñonero-Candela (5431_CR21) 2007
G. H. Golub (5431_CR7) 1996
A. P. Dempster (5431_CR4) 1977; 39
M.-H. Oh (5431_CR20) 2001; 96
A. Rahimi (5431_CR22) 2008
D. A. Harville (5431_CR11) 1977; 72
C. K. I. Williams (5431_CR33) 2001
S. Fine (5431_CR5) 2001; 2
M. Lázaro-Gredilla (5431_CR15) 2010; 11
Q. Le (5431_CR16) 2013
Z. Zhang (5431_CR37) 2006; 63
J. C. Gower (5431_CR8) 1986; 3
A. Y. Ng (5431_CR19) 2001
D. Achlioptas (5431_CR1) 2001
A. J. Smola (5431_CR31) 2000
G. H. Golub (5431_CR6) 1973; 15
A. K. Gupta (5431_CR10) 2000
J. Shi (5431_CR29) 2000; 22
I. T. Jolliffe (5431_CR13) 2002
A. E. Hoerl (5431_CR12) 1970; 42
T. Yang (5431_CR35) 2012
References_xml – year: 2012
  ident: CR35
  article-title: Nyström method vs random Fourier features: a theoretical and empirical comparison
  publication-title: Advances in neural information processing systems
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  end-page: 622
  ident: CR32
  article-title: Probabilistic principal component analysis
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00196
– year: 2000
  ident: CR31
  article-title: Sparse greedy matrix approximation for machine learning
  publication-title: The 17th international conference on machine learning
– year: 1996
  ident: CR7
  publication-title: Matrix computations
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  ident: CR4
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 96
  start-page: 1031
  issue: 455
  year: 2001
  end-page: 1044
  ident: CR20
  article-title: Bayesian multidimensional scaling and choice of dimension
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753208690
– year: 2013
  ident: CR16
  article-title: Fastfood—approximating kernel expansions in loglinear time
  publication-title: The 30th international conference on machine learning
– volume: 10
  start-page: 2615
  year: 2009
  end-page: 2637
  ident: CR30
  article-title: Hash kernels for structured data
  publication-title: Journal of Machine Learning Research
– year: 2000
  ident: CR10
  publication-title: Matrix variate distributions
– start-page: 203
  year: 2007
  end-page: 223
  ident: CR21
  article-title: Approximation methods for Gaussian process regression
  publication-title: Large-scale kernel machine
– volume: 15
  start-page: 57
  year: 2003
  end-page: 65
  ident: CR2
  article-title: A constrained EM algorithm for principal component analysis
  publication-title: Neural Computation
  doi: 10.1162/089976603321043694
– volume: 72
  start-page: 320
  issue: 358
  year: 1977
  end-page: 338
  ident: CR11
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1977.10480998
– volume: 13
  start-page: 505
  year: 2001
  end-page: 510
  ident: CR26
  article-title: An expectation-maximization approach to nonlinear component analysis
  publication-title: Neural Computation
  doi: 10.1162/089976601300014439
– year: 2001
  ident: CR33
  article-title: Using the Nyström method to speed up kernel machines
  publication-title: Advances in neural information processing systems
– year: 2002
  ident: CR28
  publication-title: Learning with kernels
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  ident: CR29
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– volume: 63
  start-page: 69
  issue: 1
  year: 2006
  end-page: 101
  ident: CR37
  article-title: Model-based transductive learning of the kernel matrix
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6130-8
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  ident: CR24
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1971.10482356
– volume: 11
  start-page: 1865
  year: 2010
  end-page: 1881
  ident: CR15
  article-title: Sparse spectrum Gaussian process regression
  publication-title: Journal of Machine Learning Research
– volume: 12
  start-page: 3
  year: 1995
  end-page: 19
  ident: CR9
  article-title: The majorization approach to multidimensional scaling for Minkowski distance
  publication-title: Journal of Classification
  doi: 10.1007/BF01202265
– year: 2002
  ident: CR13
  publication-title: Principal component analysis
– volume: 2
  start-page: 243
  year: 2001
  end-page: 264
  ident: CR5
  article-title: Efficient SVM training using low-rank kernel representations
  publication-title: Journal of Machine Learning Research
– volume: 15
  start-page: 318
  issue: 2
  year: 1973
  end-page: 334
  ident: CR6
  article-title: Some modified matrix eigenvalue problems
  publication-title: SIAM Review
  doi: 10.1137/1015032
– volume: 3
  start-page: 5
  year: 1986
  end-page: 48
  ident: CR8
  article-title: Metric and Euclidean properties of dissimilarities coefficients
  publication-title: Journal of Classification
  doi: 10.1007/BF01896809
– year: 1979
  ident: CR18
  publication-title: Multivariate analysis
– volume: 42
  start-page: 80
  issue: 1
  year: 1970
  end-page: 86
  ident: CR12
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485983
– year: 2008
  ident: CR22
  article-title: Random features for large-scale kernel machines
  publication-title: Advances in neural information processing systems
– year: 1984
  ident: CR3
  publication-title: An introduction to multivariate statistical analysis
– year: 2006
  ident: CR25
  publication-title: Gaussian processes for machine learning
– volume: 145
  start-page: 285
  year: 1982
  end-page: 312
  ident: CR23
  article-title: Some statistical approaches to multidimensional scaling data
  publication-title: Journal of the Royal Statistical Society, Series A
  doi: 10.2307/2981865
– volume: 23
  start-page: 383
  issue: 2
  year: 2008
  end-page: 403
  ident: CR36
  article-title: Multiway spectral clustering: a margin-based perspective
  publication-title: Statistical Science
  doi: 10.1214/08-STS266
– year: 2001
  ident: CR1
  article-title: Sampling techniques for kernel methods
  publication-title: Advances in neural information processing systems
– year: 1998
  ident: CR27
  article-title: EM algorithms for PCA and SPCA
  publication-title: Advances in neural information processing systems
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  ident: CR34
  article-title: On the convergence properties of the EM algorithm
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346060
– year: 2001
  ident: CR19
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Advances in neural information processing systems
– year: 2004
  ident: CR14
  article-title: Gaussian process latent variable models for visualisation of high dimensional data
  publication-title: Advances in neural information processing systems
– year: 1999
  ident: CR17
  publication-title: Matrix calculus with applications in statistics and econometric
– volume-title: The 30th international conference on machine learning
  year: 2013
  ident: 5431_CR16
– volume-title: Advances in neural information processing systems
  year: 2001
  ident: 5431_CR33
– volume: 15
  start-page: 57
  year: 2003
  ident: 5431_CR2
  publication-title: Neural Computation
  doi: 10.1162/089976603321043694
– volume-title: Matrix variate distributions
  year: 2000
  ident: 5431_CR10
– volume-title: Advances in neural information processing systems
  year: 2008
  ident: 5431_CR22
– volume-title: Advances in neural information processing systems
  year: 1998
  ident: 5431_CR27
– volume-title: Advances in neural information processing systems
  year: 2012
  ident: 5431_CR35
– volume: 145
  start-page: 285
  year: 1982
  ident: 5431_CR23
  publication-title: Journal of the Royal Statistical Society, Series A
  doi: 10.2307/2981865
– volume: 63
  start-page: 69
  issue: 1
  year: 2006
  ident: 5431_CR37
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6130-8
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 5431_CR29
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– start-page: 203
  volume-title: Large-scale kernel machine
  year: 2007
  ident: 5431_CR21
  doi: 10.7551/mitpress/7496.003.0011
– volume-title: Advances in neural information processing systems
  year: 2001
  ident: 5431_CR19
– volume-title: Learning with kernels
  year: 2002
  ident: 5431_CR28
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  ident: 5431_CR32
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00196
– volume-title: Principal component analysis
  year: 2002
  ident: 5431_CR13
– volume-title: Advances in neural information processing systems
  year: 2004
  ident: 5431_CR14
– volume-title: An introduction to multivariate statistical analysis
  year: 1984
  ident: 5431_CR3
– volume: 13
  start-page: 505
  year: 2001
  ident: 5431_CR26
  publication-title: Neural Computation
  doi: 10.1162/089976601300014439
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: 5431_CR25
– volume: 3
  start-page: 5
  year: 1986
  ident: 5431_CR8
  publication-title: Journal of Classification
  doi: 10.1007/BF01896809
– volume: 12
  start-page: 3
  year: 1995
  ident: 5431_CR9
  publication-title: Journal of Classification
  doi: 10.1007/BF01202265
– volume: 10
  start-page: 2615
  year: 2009
  ident: 5431_CR30
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 95
  year: 1983
  ident: 5431_CR34
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346060
– volume: 42
  start-page: 80
  issue: 1
  year: 1970
  ident: 5431_CR12
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485983
– volume: 66
  start-page: 846
  year: 1971
  ident: 5431_CR24
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1971.10482356
– volume-title: The 17th international conference on machine learning
  year: 2000
  ident: 5431_CR31
– volume: 11
  start-page: 1865
  year: 2010
  ident: 5431_CR15
  publication-title: Journal of Machine Learning Research
– volume-title: Multivariate analysis
  year: 1979
  ident: 5431_CR18
– volume: 23
  start-page: 383
  issue: 2
  year: 2008
  ident: 5431_CR36
  publication-title: Statistical Science
  doi: 10.1214/08-STS266
– volume: 96
  start-page: 1031
  issue: 455
  year: 2001
  ident: 5431_CR20
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753208690
– volume-title: Advances in neural information processing systems
  year: 2001
  ident: 5431_CR1
– volume: 15
  start-page: 318
  issue: 2
  year: 1973
  ident: 5431_CR6
  publication-title: SIAM Review
  doi: 10.1137/1015032
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 5431_CR4
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume-title: Matrix computations
  year: 1996
  ident: 5431_CR7
– volume-title: Matrix calculus with applications in statistics and econometric
  year: 1999
  ident: 5431_CR17
– volume: 2
  start-page: 243
  year: 2001
  ident: 5431_CR5
  publication-title: Journal of Machine Learning Research
– volume: 72
  start-page: 320
  issue: 358
  year: 1977
  ident: 5431_CR11
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1977.10480998
SSID ssj0002686
Score 2.1690292
Snippet We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 227
SubjectTerms Algebra
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Approximation
Artificial Intelligence
Computer Science
Computer science; control theory; systems
Control
Data processing. List processing. Character string processing
Exact sciences and technology
Iterative methods
Linear and multilinear algebra, matrix theory
Machine learning
Machinery
Mathematical analysis
Mathematical models
Mathematics
Matrix
Mechatronics
Memory organisation. Data processing
Natural Language Processing (NLP)
Regression
Ridges
Robotics
Sciences and techniques of general use
Simulation and Modeling
Software
Theoretical computing
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-iCI8xOrc0TwSSksTdp0-iTi8GkIfrC3krSpDrZurJts_72XfsxNdKDPvaThPnK_43J3ABeuUlGk0JBQ2LHNuYv3IDoa2-SANHMbnk_DbNiEaLf9Tqf5WNRxp-Vr9zIlmd3UC8VuWRtbapL5jNqzddhwTbMZE6I_vc6vX8fLxjui9bi2cd9lKvOnLZac0fZQpsiXOB9osYQ4vyVJM9_Tqv7r1LuwU0BNcpvrxh6s6WQfquUYB1JY9QHcoKqQvmnVPyVZ-RbJGo1Pu3lV4zWRvbfBqDt-76dEJhFZzHkfwkvr_vnuwS5mKtgh952xTalgsWRc-64II-ZrKZTmkRvTRoyxVCioMh3ePOr7klLZFIiwYsVEKD2B4JKzI6gkg0QfAwmZ5lzEiircj0lHaoXe38xIUFojqrKgUTI3CIuG42buRS_4apVsmBMgcwLDnGBmweV8yTDvtrGKuL4ksfkKB6N6RKmeBbVShEFhmWmACJejWjSpa8H5_DPalEmUyEQPJoYGQRBHFjRX0GCch2DJ8akFV6XoF37z26lP_kR9CluI0Hj-fqYGlfFoos9gM_wYd9NRPVP8T1VP_EQ
  priority: 102
  providerName: Springer Nature
Title The matrix ridge approximation: algorithms and applications
URI https://link.springer.com/article/10.1007/s10994-013-5431-y
https://www.proquest.com/docview/1614612915
https://www.proquest.com/docview/1629341889
https://www.proquest.com/docview/1753512281
Volume 97
WOSCitedRecordID wos000344173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BywMSGhsfWjZWedKeQBZ17MTpeEAwFSEhqqoDhHiJbMdhSJAW0k7w3--cj5ZOoi-85CW24_h8vp995_sB_Ai0ThKNioTCTqkQAa6DaGio8wFZHrTDiJmCbEL2etH1dadfHbjlVVhlvSYWC3UyNO6MfB-RiUBr3GHB4eiROtYo512tKDSWoYnIhrmQrnO_P12J_bBgekRFCqiz5LVXs7w6VyTFZS40gDP6MmeX1kYqxyFKS26LOfD5n7-0MEMn6-_9gY_woQKg5KicMZ9gyWYbsF6TO5BK1zfhACcQeXAJ_J9JcamLFOnHn-_Ku44_ibq_xebHfx5yorKEvPaEb8HlSffi1ymtmBaoEZE_poxJnioubBRIk_DIKqmtSIKUtVPcYRnJtMv7FrIoUoypjkTclWoujQolQk7Bt6GRDTP7GYjhVgiZaqaxPa58ZTViAsecoK1FrOVBux7n2FRpyB0bxn08S6DsRBOjaGInmvjFg91plVGZg2NR4dac8KY1fNzrI3YNPdip5RNX-prHM-F48H36GjXNuU9UZocTVwahkcAh6Cwog7s_hFB-xDzYq2fKq8-81esvizv1FVYRqIkyjGYHGuOnif0GK-bv-C5_akHzuNvrD1qwfCZpq1ABfPaDG3wOfl_9A5a-Cok
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD5i3aRNQrBxEWGMedL2AoqoY6d2Nk3TtA2BYBUPTKp4CbbjjEqQFlIY_VP8xh3nBkVa3_qw5ziOL985_pxjnw_gfah1kmg0JJzs1Oc8RD-IC43vYkCWhe2OpKYQmxDdruz1oqM5uKvvwrhjlbVPLBx1MjDuH_kOMhOOq3FEwy_DS9-pRrnoai2hUcLiwI7_4JYt_7z_Hef3QxDs_jj-tudXqgK-4TIY-ZQKlirGrQyFSZi0SmjLkzCl7RR3E0ZQ7XKcdaiUilIVCeQYqWbCqI5AesUZ1vsEnnIetJ1iwlF40nj-oFMoS6Lhhr5jDnUUtbyqVyThpe4oAqP-eGIdnB-qHKckLbU0Jsjuo_hsseztLv5vA_YSFiqCTb6WFvEK5my2BIu1eAWpfNkyfEIDIRdOoOCWFJfWSJFe_bZf3uX8SNT5b-zO6OwiJypLyMNI_wr8mkkXVqGVDTK7BsQwy7lINdVYH1OBsho5j1OG0NYil_SgXc9rbKo0607t4zy-TxDtoBAjFGIHhXjswVbzyrDMMTKt8OYEWJo3Aomww82oBxs1HuLKH-XxPRg8eNc8Rk_iwkMqs4NrVwapH8chiKaUwd0tUsRAUg-2a2Q--My_Wr0-vVFv4fne8c_D-HC_e_AaXiAp5eWRoQ1oja6u7Rt4Zm5G_fxqszA4AqezBuxfcnFgig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bThsxEB3RUFVIVbkUxFIuRoKXVivitTd2ihDiFhVRRRGiEm-L7fUCEmxSNlDya_26jvcSCBJ546HP6736zMzxzngOwEaodRxrNCSc7MTnPEQ_iIHGdzkgy8J6Q1KTi02Idluenzc7E_C32gvjyiorn5g76rhr3D_yLWQmHKNxk4ZbSVkW0Tls7fZ--05BymVaKzmNAiIndvAHl2_ZzvEhzvVmELSOzg5--KXCgG-4DPo-pYIlinErQ2FiJq0S2vI4TGg9wZWFEVS7fmcNKqWiVDUF8o1EM2FUQyDV4gyv-w4mBcNFTw0m94_andNhHAgauc4kmnHoOx5R5VSLjXt5S17qChMY9QcjUfFjT2U4QUmhrDFCfV9ka_Mg2Jr-nz_fDHwqqTfZK2xlFiZsOgfTlawFKb3cZ9hG0yG3TrrgkeTb2UjeeP3xutjl-Z2om0t8nf7VbUZUGpPnNQDz8OtNXmEBamk3tYtADLOci0RTjddjKlBWIxtymhHaWmSZHtSrOY5M2YDd6YDcRE-tox0sIoRF5GARDTz4OjylV3QfGTd4dQQ4wzMCiRDEZaoHyxU2otJTZdETMDxYHx5GH-MSRyq13Xs3Bkkhx0_QHDMG171IHgNJPfhWofTZbV576qXxD7UGHxCn0c_j9skXmEK2yotaomWo9e_u7Qq8Nw_96-xutbQ-Ahdvjdh_bjRqiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+matrix+ridge+approximation%3A+algorithms+and+applications&rft.jtitle=Machine+learning&rft.au=Zhang%2C+Zhihua&rft.date=2014-12-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=97&rft.issue=3&rft.spage=227&rft.epage=258&rft_id=info:doi/10.1007%2Fs10994-013-5431-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon