The matrix ridge approximation: algorithms and applications
We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation . In particular, we define the matrix ridge approximation as...
Uložené v:
| Vydané v: | Machine learning Ročník 97; číslo 3; s. 227 - 258 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2014
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call
matrix ridge approximation
. In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful. |
|---|---|
| AbstractList | We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation. In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful. We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation. In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful.[PUBLICATION ABSTRACT] We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods. We discuss an approximation approach that we call matrix ridge approximation . In particular, we define the matrix ridge approximation as an incomplete matrix factorization plus a ridge term. Moreover, we present probabilistic interpretations using a normal latent variable model and a Wishart model for this approximation approach. The idea behind the latent variable model in turn leads us to an efficient EM iterative method for handling the matrix ridge approximation problem. Finally, we illustrate the applications of the approximation approach in multivariate data analysis. Empirical studies in spectral clustering and Gaussian process regression show that the matrix ridge approximation with the EM iteration is potentially useful. |
| Author | Zhang, Zhihua |
| Author_xml | – sequence: 1 givenname: Zhihua surname: Zhang fullname: Zhang, Zhihua email: zhihua@sjtu.edu.cn organization: MOE-Microsoft Key Lab for Intelligent Computing and Intelligent Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28885666$$DView record in Pascal Francis |
| BookMark | eNqFkU1LAzEQhoNUsK3-AG8LInhZzWw-V09S_IKCl3oOaTbbpmx3a7KF9t-bdotIQT0NZJ53ZvK-A9Srm9oidAn4FjAWdwFwntMUA0kZJZBuT1AfmCApZpz1UB9LyVIOGTtDgxAWGOOMS95HD5O5TZa69W6TeFfMbKJXK99sXHxzTX2f6GrWeNfOlyHRdbHrVs7se-EcnZa6CvbiUIfo4_lpMnpNx-8vb6PHcWqozNoUQJBSE2olE6Yg0moxtbRgJeCSQ24ETAmFnIOUGkDnglFWTokwmgssMSVDdNPNjYd9rm1o1dIFY6tK17ZZBwWCEQZZJuF_lGd5XCZlHtGrI3TRrH0dPxIpoNGrHFikrg-UDkZXpde1cUGtfDTIb1Umo6-c88hBxxnfhOBt-Y0AVruEVJeQigmpXUJqGzXiSGNcu7e29dpVfyqzThnilnpm_Y_bfxV9AZo7pRI |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2015_03_001 crossref_primary_10_1007_s00180_023_01368_y |
| Cites_doi | 10.1111/1467-9868.00196 10.1198/016214501753208690 10.1162/089976603321043694 10.1080/01621459.1977.10480998 10.1162/089976601300014439 10.1109/34.868688 10.1007/s10994-006-6130-8 10.1080/01621459.1971.10482356 10.1007/BF01202265 10.1137/1015032 10.1007/BF01896809 10.1080/00401706.2000.10485983 10.2307/2981865 10.1214/08-STS266 10.1214/aos/1176346060 10.7551/mitpress/7496.003.0011 10.1111/j.2517-6161.1977.tb01600.x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014 2015 INIST-CNRS |
| Copyright_xml | – notice: The Author(s) 2014 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-013-5431-y |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences Mathematics |
| EISSN | 1573-0565 |
| EndPage | 258 |
| ExternalDocumentID | 3467313871 28885666 10_1007_s10994_013_5431_y |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U PUEGO |
| ID | FETCH-LOGICAL-c482t-1173fa34e857cd38ea7be4d5f10f619c71b34196188a11a97545fb37ca6708043 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Thu Sep 04 16:30:05 EDT 2025 Fri Sep 05 08:36:57 EDT 2025 Tue Nov 04 22:28:10 EST 2025 Wed Apr 02 07:26:57 EDT 2025 Tue Nov 18 22:42:17 EST 2025 Sat Nov 29 01:43:26 EST 2025 Fri Feb 21 02:28:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Expectation maximization algorithms Incomplete matrix factorization Probabilistic models Positive semidefinite matrices Matrix ridge approximation Cluster analysis Iterative method Matrix factorization Approximation algorithm Multivariate analysis Modeling Multidimensional analysis Data analysis Spectral method Probabilistic interpretation Probabilistic approach Empirical method Latent variable model Regression analysis Matrix decomposition Symmetric matrix Positive semidefinite matrix Non linear effect EM algorithm Artificial intelligence |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c482t-1173fa34e857cd38ea7be4d5f10f619c71b34196188a11a97545fb37ca6708043 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1614612915 |
| PQPubID | 23500 |
| PageCount | 32 |
| ParticipantIDs | proquest_miscellaneous_1753512281 proquest_miscellaneous_1629341889 proquest_journals_1614612915 pascalfrancis_primary_28885666 crossref_primary_10_1007_s10994_013_5431_y crossref_citationtrail_10_1007_s10994_013_5431_y springer_journals_10_1007_s10994_013_5431_y |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Heidelberg – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2014 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Lázaro-Gredilla, Qui nonero Candela, Rasmussen, Figueiras-Vidal (CR15) 2010; 11 Rasmussen, Williams (CR25) 2006 Magnus, Neudecker (CR17) 1999 Roweis (CR27) 1998 Rahimi, Recht (CR22) 2008 Ramsay (CR23) 1982; 145 Wu (CR34) 1983; 11 Rosipal, Girolami (CR26) 2001; 13 Zhang, Jordan (CR36) 2008; 23 Harville (CR11) 1977; 72 Hoerl, Kennard (CR12) 1970; 42 Le, Sarlós, Smola (CR16) 2013 Ng, Jordan, Weiss (CR19) 2001 Schölkopf, Smola (CR28) 2002 Fine, Scheinberg, Cristianini, Shawe-Taylor, Williamson (CR5) 2001; 2 Yang, Li, Mahdavi, Jin, Zhou (CR35) 2012 Zhang, Kwok, Yeung (CR37) 2006; 63 Achlioptas, McSherry, Schölkopf (CR1) 2001 Gower, Legendre (CR8) 1986; 3 Ahn, Oh (CR2) 2003; 15 Rand (CR24) 1971; 66 Oh, Raftery (CR20) 2001; 96 Groenen, Mathar, Heiser (CR9) 1995; 12 Golub (CR6) 1973; 15 Shi, Malik (CR29) 2000; 22 Tipping, Bishop (CR32) 1999; 61 Golub, Van Loan (CR7) 1996 Gupta, Nagar (CR10) 2000 Dempster, Laird, Rubin (CR4) 1977; 39 Lawrence (CR14) 2004 Anderson (CR3) 1984 Shi, Petterson, Dror, Langford, Smola, Vishwanathan (CR30) 2009; 10 Smola, Schölkopf (CR31) 2000 Quiñonero-Candela, Rasmussen, Williams, Bottou, Chapelle, DeCoste, Weston (CR21) 2007 Jolliffe (CR13) 2002 Mardia, Kent, Bibby (CR18) 1979 Williams, Seeger (CR33) 2001 S. Roweis (5431_CR27) 1998 B. Schölkopf (5431_CR28) 2002 R. Rosipal (5431_CR26) 2001; 13 N. D. Lawrence (5431_CR14) 2004 J. H. Ahn (5431_CR2) 2003; 15 T. W. Anderson (5431_CR3) 1984 J. O. Ramsay (5431_CR23) 1982; 145 Q. Shi (5431_CR30) 2009; 10 C. F. J. Wu (5431_CR34) 1983; 11 C. E. Rasmussen (5431_CR25) 2006 P. J. F. Groenen (5431_CR9) 1995; 12 Z. Zhang (5431_CR36) 2008; 23 W. M. Rand (5431_CR24) 1971; 66 M. E. Tipping (5431_CR32) 1999; 61 J. R. Magnus (5431_CR17) 1999 K. V. Mardia (5431_CR18) 1979 J. Quiñonero-Candela (5431_CR21) 2007 G. H. Golub (5431_CR7) 1996 A. P. Dempster (5431_CR4) 1977; 39 M.-H. Oh (5431_CR20) 2001; 96 A. Rahimi (5431_CR22) 2008 D. A. Harville (5431_CR11) 1977; 72 C. K. I. Williams (5431_CR33) 2001 S. Fine (5431_CR5) 2001; 2 M. Lázaro-Gredilla (5431_CR15) 2010; 11 Q. Le (5431_CR16) 2013 Z. Zhang (5431_CR37) 2006; 63 J. C. Gower (5431_CR8) 1986; 3 A. Y. Ng (5431_CR19) 2001 D. Achlioptas (5431_CR1) 2001 A. J. Smola (5431_CR31) 2000 G. H. Golub (5431_CR6) 1973; 15 A. K. Gupta (5431_CR10) 2000 J. Shi (5431_CR29) 2000; 22 I. T. Jolliffe (5431_CR13) 2002 A. E. Hoerl (5431_CR12) 1970; 42 T. Yang (5431_CR35) 2012 |
| References_xml | – year: 2012 ident: CR35 article-title: Nyström method vs random Fourier features: a theoretical and empirical comparison publication-title: Advances in neural information processing systems – volume: 61 start-page: 611 issue: 3 year: 1999 end-page: 622 ident: CR32 article-title: Probabilistic principal component analysis publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00196 – year: 2000 ident: CR31 article-title: Sparse greedy matrix approximation for machine learning publication-title: The 17th international conference on machine learning – year: 1996 ident: CR7 publication-title: Matrix computations – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 ident: CR4 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B – volume: 96 start-page: 1031 issue: 455 year: 2001 end-page: 1044 ident: CR20 article-title: Bayesian multidimensional scaling and choice of dimension publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753208690 – year: 2013 ident: CR16 article-title: Fastfood—approximating kernel expansions in loglinear time publication-title: The 30th international conference on machine learning – volume: 10 start-page: 2615 year: 2009 end-page: 2637 ident: CR30 article-title: Hash kernels for structured data publication-title: Journal of Machine Learning Research – year: 2000 ident: CR10 publication-title: Matrix variate distributions – start-page: 203 year: 2007 end-page: 223 ident: CR21 article-title: Approximation methods for Gaussian process regression publication-title: Large-scale kernel machine – volume: 15 start-page: 57 year: 2003 end-page: 65 ident: CR2 article-title: A constrained EM algorithm for principal component analysis publication-title: Neural Computation doi: 10.1162/089976603321043694 – volume: 72 start-page: 320 issue: 358 year: 1977 end-page: 338 ident: CR11 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1977.10480998 – volume: 13 start-page: 505 year: 2001 end-page: 510 ident: CR26 article-title: An expectation-maximization approach to nonlinear component analysis publication-title: Neural Computation doi: 10.1162/089976601300014439 – year: 2001 ident: CR33 article-title: Using the Nyström method to speed up kernel machines publication-title: Advances in neural information processing systems – year: 2002 ident: CR28 publication-title: Learning with kernels – volume: 22 start-page: 888 issue: 8 year: 2000 end-page: 905 ident: CR29 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – volume: 63 start-page: 69 issue: 1 year: 2006 end-page: 101 ident: CR37 article-title: Model-based transductive learning of the kernel matrix publication-title: Machine Learning doi: 10.1007/s10994-006-6130-8 – volume: 66 start-page: 846 year: 1971 end-page: 850 ident: CR24 article-title: Objective criteria for the evaluation of clustering methods publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1971.10482356 – volume: 11 start-page: 1865 year: 2010 end-page: 1881 ident: CR15 article-title: Sparse spectrum Gaussian process regression publication-title: Journal of Machine Learning Research – volume: 12 start-page: 3 year: 1995 end-page: 19 ident: CR9 article-title: The majorization approach to multidimensional scaling for Minkowski distance publication-title: Journal of Classification doi: 10.1007/BF01202265 – year: 2002 ident: CR13 publication-title: Principal component analysis – volume: 2 start-page: 243 year: 2001 end-page: 264 ident: CR5 article-title: Efficient SVM training using low-rank kernel representations publication-title: Journal of Machine Learning Research – volume: 15 start-page: 318 issue: 2 year: 1973 end-page: 334 ident: CR6 article-title: Some modified matrix eigenvalue problems publication-title: SIAM Review doi: 10.1137/1015032 – volume: 3 start-page: 5 year: 1986 end-page: 48 ident: CR8 article-title: Metric and Euclidean properties of dissimilarities coefficients publication-title: Journal of Classification doi: 10.1007/BF01896809 – year: 1979 ident: CR18 publication-title: Multivariate analysis – volume: 42 start-page: 80 issue: 1 year: 1970 end-page: 86 ident: CR12 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.2000.10485983 – year: 2008 ident: CR22 article-title: Random features for large-scale kernel machines publication-title: Advances in neural information processing systems – year: 1984 ident: CR3 publication-title: An introduction to multivariate statistical analysis – year: 2006 ident: CR25 publication-title: Gaussian processes for machine learning – volume: 145 start-page: 285 year: 1982 end-page: 312 ident: CR23 article-title: Some statistical approaches to multidimensional scaling data publication-title: Journal of the Royal Statistical Society, Series A doi: 10.2307/2981865 – volume: 23 start-page: 383 issue: 2 year: 2008 end-page: 403 ident: CR36 article-title: Multiway spectral clustering: a margin-based perspective publication-title: Statistical Science doi: 10.1214/08-STS266 – year: 2001 ident: CR1 article-title: Sampling techniques for kernel methods publication-title: Advances in neural information processing systems – year: 1998 ident: CR27 article-title: EM algorithms for PCA and SPCA publication-title: Advances in neural information processing systems – volume: 11 start-page: 95 year: 1983 end-page: 103 ident: CR34 article-title: On the convergence properties of the EM algorithm publication-title: The Annals of Statistics doi: 10.1214/aos/1176346060 – year: 2001 ident: CR19 article-title: On spectral clustering: analysis and an algorithm publication-title: Advances in neural information processing systems – year: 2004 ident: CR14 article-title: Gaussian process latent variable models for visualisation of high dimensional data publication-title: Advances in neural information processing systems – year: 1999 ident: CR17 publication-title: Matrix calculus with applications in statistics and econometric – volume-title: The 30th international conference on machine learning year: 2013 ident: 5431_CR16 – volume-title: Advances in neural information processing systems year: 2001 ident: 5431_CR33 – volume: 15 start-page: 57 year: 2003 ident: 5431_CR2 publication-title: Neural Computation doi: 10.1162/089976603321043694 – volume-title: Matrix variate distributions year: 2000 ident: 5431_CR10 – volume-title: Advances in neural information processing systems year: 2008 ident: 5431_CR22 – volume-title: Advances in neural information processing systems year: 1998 ident: 5431_CR27 – volume-title: Advances in neural information processing systems year: 2012 ident: 5431_CR35 – volume: 145 start-page: 285 year: 1982 ident: 5431_CR23 publication-title: Journal of the Royal Statistical Society, Series A doi: 10.2307/2981865 – volume: 63 start-page: 69 issue: 1 year: 2006 ident: 5431_CR37 publication-title: Machine Learning doi: 10.1007/s10994-006-6130-8 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 5431_CR29 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – start-page: 203 volume-title: Large-scale kernel machine year: 2007 ident: 5431_CR21 doi: 10.7551/mitpress/7496.003.0011 – volume-title: Advances in neural information processing systems year: 2001 ident: 5431_CR19 – volume-title: Learning with kernels year: 2002 ident: 5431_CR28 – volume: 61 start-page: 611 issue: 3 year: 1999 ident: 5431_CR32 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00196 – volume-title: Principal component analysis year: 2002 ident: 5431_CR13 – volume-title: Advances in neural information processing systems year: 2004 ident: 5431_CR14 – volume-title: An introduction to multivariate statistical analysis year: 1984 ident: 5431_CR3 – volume: 13 start-page: 505 year: 2001 ident: 5431_CR26 publication-title: Neural Computation doi: 10.1162/089976601300014439 – volume-title: Gaussian processes for machine learning year: 2006 ident: 5431_CR25 – volume: 3 start-page: 5 year: 1986 ident: 5431_CR8 publication-title: Journal of Classification doi: 10.1007/BF01896809 – volume: 12 start-page: 3 year: 1995 ident: 5431_CR9 publication-title: Journal of Classification doi: 10.1007/BF01202265 – volume: 10 start-page: 2615 year: 2009 ident: 5431_CR30 publication-title: Journal of Machine Learning Research – volume: 11 start-page: 95 year: 1983 ident: 5431_CR34 publication-title: The Annals of Statistics doi: 10.1214/aos/1176346060 – volume: 42 start-page: 80 issue: 1 year: 1970 ident: 5431_CR12 publication-title: Technometrics doi: 10.1080/00401706.2000.10485983 – volume: 66 start-page: 846 year: 1971 ident: 5431_CR24 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1971.10482356 – volume-title: The 17th international conference on machine learning year: 2000 ident: 5431_CR31 – volume: 11 start-page: 1865 year: 2010 ident: 5431_CR15 publication-title: Journal of Machine Learning Research – volume-title: Multivariate analysis year: 1979 ident: 5431_CR18 – volume: 23 start-page: 383 issue: 2 year: 2008 ident: 5431_CR36 publication-title: Statistical Science doi: 10.1214/08-STS266 – volume: 96 start-page: 1031 issue: 455 year: 2001 ident: 5431_CR20 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753208690 – volume-title: Advances in neural information processing systems year: 2001 ident: 5431_CR1 – volume: 15 start-page: 318 issue: 2 year: 1973 ident: 5431_CR6 publication-title: SIAM Review doi: 10.1137/1015032 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 5431_CR4 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume-title: Matrix computations year: 1996 ident: 5431_CR7 – volume-title: Matrix calculus with applications in statistics and econometric year: 1999 ident: 5431_CR17 – volume: 2 start-page: 243 year: 2001 ident: 5431_CR5 publication-title: Journal of Machine Learning Research – volume: 72 start-page: 320 issue: 358 year: 1977 ident: 5431_CR11 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1977.10480998 |
| SSID | ssj0002686 |
| Score | 2.1690292 |
| Snippet | We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 227 |
| SubjectTerms | Algebra Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Approximation Artificial Intelligence Computer Science Computer science; control theory; systems Control Data processing. List processing. Character string processing Exact sciences and technology Iterative methods Linear and multilinear algebra, matrix theory Machine learning Machinery Mathematical analysis Mathematical models Mathematics Matrix Mechatronics Memory organisation. Data processing Natural Language Processing (NLP) Regression Ridges Robotics Sciences and techniques of general use Simulation and Modeling Software Theoretical computing |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-iCI8xOrc0TwSSksTdp0-iTi8GkIfrC3krSpDrZurJts_72XfsxNdKDPvaThPnK_43J3ABeuUlGk0JBQ2LHNuYv3IDoa2-SANHMbnk_DbNiEaLf9Tqf5WNRxp-Vr9zIlmd3UC8VuWRtbapL5jNqzddhwTbMZE6I_vc6vX8fLxjui9bi2cd9lKvOnLZac0fZQpsiXOB9osYQ4vyVJM9_Tqv7r1LuwU0BNcpvrxh6s6WQfquUYB1JY9QHcoKqQvmnVPyVZ-RbJGo1Pu3lV4zWRvbfBqDt-76dEJhFZzHkfwkvr_vnuwS5mKtgh952xTalgsWRc-64II-ZrKZTmkRvTRoyxVCioMh3ePOr7klLZFIiwYsVEKD2B4JKzI6gkg0QfAwmZ5lzEiircj0lHaoXe38xIUFojqrKgUTI3CIuG42buRS_4apVsmBMgcwLDnGBmweV8yTDvtrGKuL4ksfkKB6N6RKmeBbVShEFhmWmACJejWjSpa8H5_DPalEmUyEQPJoYGQRBHFjRX0GCch2DJ8akFV6XoF37z26lP_kR9CluI0Hj-fqYGlfFoos9gM_wYd9NRPVP8T1VP_EQ priority: 102 providerName: Springer Nature |
| Title | The matrix ridge approximation: algorithms and applications |
| URI | https://link.springer.com/article/10.1007/s10994-013-5431-y https://www.proquest.com/docview/1614612915 https://www.proquest.com/docview/1629341889 https://www.proquest.com/docview/1753512281 |
| Volume | 97 |
| WOSCitedRecordID | wos000344173100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BywMSGhsfWjZWedKeQBZ17MTpeEAwFSEhqqoDhHiJbMdhSJAW0k7w3--cj5ZOoi-85CW24_h8vp995_sB_Ai0ThKNioTCTqkQAa6DaGio8wFZHrTDiJmCbEL2etH1dadfHbjlVVhlvSYWC3UyNO6MfB-RiUBr3GHB4eiROtYo512tKDSWoYnIhrmQrnO_P12J_bBgekRFCqiz5LVXs7w6VyTFZS40gDP6MmeX1kYqxyFKS26LOfD5n7-0MEMn6-_9gY_woQKg5KicMZ9gyWYbsF6TO5BK1zfhACcQeXAJ_J9JcamLFOnHn-_Ku44_ibq_xebHfx5yorKEvPaEb8HlSffi1ymtmBaoEZE_poxJnioubBRIk_DIKqmtSIKUtVPcYRnJtMv7FrIoUoypjkTclWoujQolQk7Bt6GRDTP7GYjhVgiZaqaxPa58ZTViAsecoK1FrOVBux7n2FRpyB0bxn08S6DsRBOjaGInmvjFg91plVGZg2NR4dac8KY1fNzrI3YNPdip5RNX-prHM-F48H36GjXNuU9UZocTVwahkcAh6Cwog7s_hFB-xDzYq2fKq8-81esvizv1FVYRqIkyjGYHGuOnif0GK-bv-C5_akHzuNvrD1qwfCZpq1ABfPaDG3wOfl_9A5a-Cok |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD5i3aRNQrBxEWGMedL2AoqoY6d2Nk3TtA2BYBUPTKp4CbbjjEqQFlIY_VP8xh3nBkVa3_qw5ziOL985_pxjnw_gfah1kmg0JJzs1Oc8RD-IC43vYkCWhe2OpKYQmxDdruz1oqM5uKvvwrhjlbVPLBx1MjDuH_kOMhOOq3FEwy_DS9-pRrnoai2hUcLiwI7_4JYt_7z_Hef3QxDs_jj-tudXqgK-4TIY-ZQKlirGrQyFSZi0SmjLkzCl7RR3E0ZQ7XKcdaiUilIVCeQYqWbCqI5AesUZ1vsEnnIetJ1iwlF40nj-oFMoS6Lhhr5jDnUUtbyqVyThpe4oAqP-eGIdnB-qHKckLbU0Jsjuo_hsseztLv5vA_YSFiqCTb6WFvEK5my2BIu1eAWpfNkyfEIDIRdOoOCWFJfWSJFe_bZf3uX8SNT5b-zO6OwiJypLyMNI_wr8mkkXVqGVDTK7BsQwy7lINdVYH1OBsho5j1OG0NYil_SgXc9rbKo0607t4zy-TxDtoBAjFGIHhXjswVbzyrDMMTKt8OYEWJo3Aomww82oBxs1HuLKH-XxPRg8eNc8Rk_iwkMqs4NrVwapH8chiKaUwd0tUsRAUg-2a2Q--My_Wr0-vVFv4fne8c_D-HC_e_AaXiAp5eWRoQ1oja6u7Rt4Zm5G_fxqszA4AqezBuxfcnFgig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bThsxEB3RUFVIVbkUxFIuRoKXVivitTd2ihDiFhVRRRGiEm-L7fUCEmxSNlDya_26jvcSCBJ546HP6736zMzxzngOwEaodRxrNCSc7MTnPEQ_iIHGdzkgy8J6Q1KTi02Idluenzc7E_C32gvjyiorn5g76rhr3D_yLWQmHKNxk4ZbSVkW0Tls7fZ--05BymVaKzmNAiIndvAHl2_ZzvEhzvVmELSOzg5--KXCgG-4DPo-pYIlinErQ2FiJq0S2vI4TGg9wZWFEVS7fmcNKqWiVDUF8o1EM2FUQyDV4gyv-w4mBcNFTw0m94_andNhHAgauc4kmnHoOx5R5VSLjXt5S17qChMY9QcjUfFjT2U4QUmhrDFCfV9ka_Mg2Jr-nz_fDHwqqTfZK2xlFiZsOgfTlawFKb3cZ9hG0yG3TrrgkeTb2UjeeP3xutjl-Z2om0t8nf7VbUZUGpPnNQDz8OtNXmEBamk3tYtADLOci0RTjddjKlBWIxtymhHaWmSZHtSrOY5M2YDd6YDcRE-tox0sIoRF5GARDTz4OjylV3QfGTd4dQQ4wzMCiRDEZaoHyxU2otJTZdETMDxYHx5GH-MSRyq13Xs3Bkkhx0_QHDMG171IHgNJPfhWofTZbV576qXxD7UGHxCn0c_j9skXmEK2yotaomWo9e_u7Qq8Nw_96-xutbQ-Ahdvjdh_bjRqiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+matrix+ridge+approximation%3A+algorithms+and+applications&rft.jtitle=Machine+learning&rft.au=Zhang%2C+Zhihua&rft.date=2014-12-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=97&rft.issue=3&rft.spage=227&rft.epage=258&rft_id=info:doi/10.1007%2Fs10994-013-5431-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |