New Bounds on the Size of Optimal Meshes

The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a maximal such sizing function called the feature size. This paper presents...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 31; číslo 5; s. 1627 - 1635
Hlavní autor: Sheehy, Donald R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.08.2012
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a maximal such sizing function called the feature size. This paper presents a way to bound the feature size integral in terms of an easy to compute property of a suitable ordering of the point set. The key idea is to consider the pacing of an ordered point set, a measure of the rate of change in the feature size as points are added one at a time. In previous work, Miller et al. showed that if an ordered point set has pacing ϕ, then the number of vertices in an optimal mesh will be O(ϕdn), where d is the input dimension. We give a new analysis of this integral showing that the output size is only θ(n+nlogϕ). The new analysis tightens bounds from several previous results and provides matching lower bounds. Moreover, it precisely characterizes inputs that yield outputs of size O(n).
AbstractList The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a maximal such sizing function called the feature size. This paper presents a way to bound the feature size integral in terms of an easy to compute property of a suitable ordering of the point set. The key idea is to consider the pacing of an ordered point set, a measure of the rate of change in the feature size as points are added one at a time. In previous work, Miller et al. showed that if an ordered point set has pacing ϕ, then the number of vertices in an optimal mesh will be O(ϕ d n ), where d is the input dimension. We give a new analysis of this integral showing that the output size is only θ( n + n logϕ). The new analysis tightens bounds from several previous results and provides matching lower bounds. Moreover, it precisely characterizes inputs that yield outputs of size O( n ).
The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a maximal such sizing function called the feature size. This paper presents a way to bound the feature size integral in terms of an easy to compute property of a suitable ordering of the point set. The key idea is to consider the pacing of an ordered point set, a measure of the rate of change in the feature size as points are added one at a time. In previous work, Miller et al. showed that if an ordered point set has pacing phi , then the number of vertices in an optimal mesh will be O( phi dn), where d is the input dimension. We give a new analysis of this integral showing that the output size is only [thetas](n+nlog phi ). The new analysis tightens bounds from several previous results and provides matching lower bounds. Moreover, it precisely characterizes inputs that yield outputs of size O(n).
The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a maximal such sizing function called the feature size. This paper presents a way to bound the feature size integral in terms of an easy to compute property of a suitable ordering of the point set. The key idea is to consider the pacing of an ordered point set, a measure of the rate of change in the feature size as points are added one at a time. In previous work, Miller et al. showed that if an ordered point set has pacing , then the number of vertices in an optimal mesh will be O(dn), where d is the input dimension. We give a new analysis of this integral showing that the output size is only [theta](n+nlog). The new analysis tightens bounds from several previous results and provides matching lower bounds. Moreover, it precisely characterizes inputs that yield outputs of size O(n). [PUBLICATION ABSTRACT]
The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a maximal such sizing function called the feature size. This paper presents a way to bound the feature size integral in terms of an easy to compute property of a suitable ordering of the point set. The key idea is to consider the pacing of an ordered point set, a measure of the rate of change in the feature size as points are added one at a time. In previous work, Miller et al. showed that if an ordered point set has pacing ϕ, then the number of vertices in an optimal mesh will be O(ϕdn), where d is the input dimension. We give a new analysis of this integral showing that the output size is only θ(n+nlogϕ). The new analysis tightens bounds from several previous results and provides matching lower bounds. Moreover, it precisely characterizes inputs that yield outputs of size O(n).
Author Sheehy, Donald R.
Author_xml – sequence: 1
  givenname: Donald R.
  surname: Sheehy
  fullname: Sheehy, Donald R.
  organization: INRIA Saclay
BookMark eNqNkE9PwkAQxTcGExH9Dk28cGnd3W6324MmChaNCIn457gp7TS0li52SwA_vVtrOHBiLjPJ_t6b2XeOOqUqASGLYIeYus4dwrhvC-4FDsWEOtglXDjbE9TdP3RQFxMz-9jzztC51jnGmPnc66L-BDbWvVqXibZUadULsGbZD1gqtaarOltGhfUCegH6Ap2mUaHh8r_30Hv48DZ4tMfT0dPgbmzHTFBhQywET0gQuXORCiZSlnoBYRBgmjDKGPiUAVDgOA4YTSDivsAxgTmlvmvud3uo3_quKvW9Bl3LZaZjKIqoBLXWkmBBKeGYCINeHaC5Wleluc5QLqGeEIwaSrRUXCmtK0jlqjL_qnYGkk2EMpdNUrJJSjYRyr8I5dZIbw-kcVZHdabKuoqy4hiDm9ZgkxWwO3qxHIzCZjJ6u9VnuobtXh9VX5L7ru_Jz8lIDsMhfX0OZ_LD_QWyU5gt
CitedBy_id crossref_primary_10_1109_TVCG_2025_3587642
crossref_primary_10_1145_3508372
crossref_primary_10_1007_s00454_014_9629_y
crossref_primary_10_1016_j_comgeo_2017_02_001
crossref_primary_10_1145_3197517_3201353
crossref_primary_10_1145_3386569_3392385
Cites_doi 10.3390/a2041327
10.1137/S0097539796314124
10.1145/1137856.1137876
10.1145/218013.218078
10.1145/1998196.1998252
10.1145/355483.355487
10.1145/225058.225286
10.1016/S0022-0000(05)80059-5
10.1145/1810959.1811006
10.1137/1.9781611973068.113
10.1016/S0304-3975(02)00437-1
10.1007/s10208-011-9098-0
10.1016/j.comgeo.2008.06.002
10.1007/s00454-004-1089-3
10.1145/1073204.1073238
10.1007/978-3-540-75103-8_19
10.1145/2010324.1964998
10.1006/jagm.1995.1021
10.1145/378583.378636
ContentType Journal Article
Copyright 2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2012.03168.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Technology Research Database
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 1635
ExternalDocumentID 2729764771
10_1111_j_1467_8659_2012_03168_x
CGF3168
ark_67375_WNG_DFD2RKFS_V
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4828-ec886d19a3b8f848f4f5914e902d4244e724ee2e60c942dea6780c1eb22732013
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307307500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Oct 02 06:46:56 EDT 2025
Sun Nov 30 05:18:50 EST 2025
Sat Nov 29 03:41:08 EST 2025
Tue Nov 18 21:56:27 EST 2025
Wed Jan 22 16:49:50 EST 2025
Tue Nov 11 03:33:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4828-ec886d19a3b8f848f4f5914e902d4244e724ee2e60c942dea6780c1eb22732013
Notes ark:/67375/WNG-DFD2RKFS-V
ArticleID:CGF3168
istex:E4E9CE791060A97C2B4FD83570F7BAD16D886055
This work was partially supported by the National Science Foundation under grant number CCF‐1065106, by GIGA grant ANR‐09‐BLAN‐0331‐01, and by the European project CG‐Learning No. 255827.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1031258842
PQPubID 30877
PageCount 9
ParticipantIDs proquest_miscellaneous_1082216018
proquest_journals_1031258842
crossref_primary_10_1111_j_1467_8659_2012_03168_x
crossref_citationtrail_10_1111_j_1467_8659_2012_03168_x
wiley_primary_10_1111_j_1467_8659_2012_03168_x_CGF3168
istex_primary_ark_67375_WNG_DFD2RKFS_V
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Mitchell S. A., Vavasis S. A.: Quality mesh generation in higher dimensions. SIAM J. Comput. 29, 4 (2000), 1334-1370 (electronic). 3.
Li X.-Y.: Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296, 1 (2003), 145-165. 3.
ÜNgör A.: Off-centers: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations. Comput. Geom. 42, 2 (2009), 109-118. 2.
Bern M. W., Eppstein D., Gilbert J. R.: Provably good mesh generation. J. Computer & Systems Sciences 48, 3 (June 1994), 384-409. Special issue for 31st FOCS. 2, 5.
Cheng S.-W., Dey T. K., Edelsbrunner H., Facello M. A., Teng S.-H.: Sliver exudation. JACM: Journal of the ACM 47 (2000). 3.
Erickson J.: Dense point sets have sparse delaunay triangulations or "... but not too nasty". Discrete & Computational Geometry 33 (2005), 83-115. 8.
Cheng S.-W., Dey T. K.: Quality meshing with weighted Delaunay refinement. SICOMP: SIAM Journal on Computing 33 (2004). 3.
Chazal F., Cohen-Steiner D., Mérigot Q.: Geometric inference for probability measures. Foundations of Computational Mathematics 11 (2011), 733-751. 4.
Mullen P., Memari P., De Goes F., Desbrun M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph 30, 4 (2011). 2.
Boissonnat J.-D., Wormser C., Yvinec M.: Anisotropic Delaunay Mesh Generation. Rapport de recherche RR-7712, INRIA, Aug. 2011. URL: http://hal.inria.fr/inria-00615486/en/. 8.
Ruppert J.: A Delaunay refinement algorithmfor quality 2-dimensional mesh generation. J. Algorithms 18, 3 (1995), 548-585. 2.
Shewchuk J. R.: Unstructured Mesh Generation. CRC Press, 2011, ch. 10, pp. 259-298. 1.
Dey T. K., Levine J. A.: Delaunay meshing of piecewise smooth complexes without expensive predicates. Algorithms 2, 4 (2009), 1327-1349. 8.
Alliez P., Cohen-Steiner D., Yvinec M., Desbrun M.: Variational tetrahedral meshing. ACM Transactions on Graphics 24, 3 (2005), 617-625. 2.
2004; 33
2000; 29
Aug. 2011
2009; 42
2000; 47
2001
2011
2010
2009
2011; 30
2008
1997
2007
2011; 11
2006
1995
2004
1995; 18
2009; 2
2005; 33
2005; 24
2003; 296
June 1994; 48
e_1_2_8_27_2
Boissonnat J.‐D. (e_1_2_8_5_2) 2011
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
Cheng S.‐W. (e_1_2_8_7_2) 2004; 33
e_1_2_8_8_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
Shewchuk J. R. (e_1_2_8_25_2) 2011
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – reference: Chazal F., Cohen-Steiner D., Mérigot Q.: Geometric inference for probability measures. Foundations of Computational Mathematics 11 (2011), 733-751. 4.
– reference: Ruppert J.: A Delaunay refinement algorithmfor quality 2-dimensional mesh generation. J. Algorithms 18, 3 (1995), 548-585. 2.
– reference: Erickson J.: Dense point sets have sparse delaunay triangulations or "... but not too nasty". Discrete & Computational Geometry 33 (2005), 83-115. 8.
– reference: Mitchell S. A., Vavasis S. A.: Quality mesh generation in higher dimensions. SIAM J. Comput. 29, 4 (2000), 1334-1370 (electronic). 3.
– reference: Cheng S.-W., Dey T. K., Edelsbrunner H., Facello M. A., Teng S.-H.: Sliver exudation. JACM: Journal of the ACM 47 (2000). 3.
– reference: ÜNgör A.: Off-centers: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations. Comput. Geom. 42, 2 (2009), 109-118. 2.
– reference: Shewchuk J. R.: Unstructured Mesh Generation. CRC Press, 2011, ch. 10, pp. 259-298. 1.
– reference: Cheng S.-W., Dey T. K.: Quality meshing with weighted Delaunay refinement. SICOMP: SIAM Journal on Computing 33 (2004). 3.
– reference: Mullen P., Memari P., De Goes F., Desbrun M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph 30, 4 (2011). 2.
– reference: Dey T. K., Levine J. A.: Delaunay meshing of piecewise smooth complexes without expensive predicates. Algorithms 2, 4 (2009), 1327-1349. 8.
– reference: Bern M. W., Eppstein D., Gilbert J. R.: Provably good mesh generation. J. Computer & Systems Sciences 48, 3 (June 1994), 384-409. Special issue for 31st FOCS. 2, 5.
– reference: Li X.-Y.: Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296, 1 (2003), 145-165. 3.
– reference: Boissonnat J.-D., Wormser C., Yvinec M.: Anisotropic Delaunay Mesh Generation. Rapport de recherche RR-7712, INRIA, Aug. 2011. URL: http://hal.inria.fr/inria-00615486/en/. 8.
– reference: Alliez P., Cohen-Steiner D., Yvinec M., Desbrun M.: Variational tetrahedral meshing. ACM Transactions on Graphics 24, 3 (2005), 617-625. 2.
– start-page: 277
  year: 2010
  end-page: 286
– start-page: 321
  year: 2011
  end-page: 330
– year: 2009
– start-page: 259
  year: 2011
  end-page: 298
– start-page: 683
  year: 1995
  end-page: 692
– start-page: 305
  year: 1995
  end-page: 312
– start-page: 96
  year: 2001
  end-page: 105
– volume: 18
  start-page: 548
  issue: 3
  year: 1995
  end-page: 585
  article-title: A Delaunay refinement algorithmfor quality 2‐dimensional mesh generation
  publication-title: J. Algorithms
– start-page: 2
  year: 1997
– start-page: 335
  year: 2007
  end-page: 346
– volume: 48
  start-page: 384
  issue: 3
  year: June 1994
  end-page: 409
  article-title: Provably good mesh generation
  publication-title: J. Computer & Systems Sciences
– volume: 47
  year: 2000
  article-title: Sliver exudation
  publication-title: JACM: Journal of the ACM
– volume: 296
  start-page: 145
  issue: 1
  year: 2003
  end-page: 165
  article-title: Generating well‐shaped ‐dimensional Delaunay meshes
  publication-title: Theor. Comput. Sci.
– volume: 11
  start-page: 733
  year: 2011
  end-page: 751
  article-title: Geometric inference for probability measures
  publication-title: Foundations of Computational Mathematics
– volume: 24
  start-page: 617
  issue: 3
  year: 2005
  end-page: 625
  article-title: Variational tetrahedral meshing
  publication-title: ACM Transactions on Graphics
– volume: 2
  start-page: 1327
  issue: 4
  year: 2009
  end-page: 1349
  article-title: Delaunay meshing of piecewise smooth complexes without expensive predicates
  publication-title: Algorithms
– volume: 33
  year: 2004
  article-title: Quality meshing with weighted Delaunay refinement
  publication-title: SICOMP: SIAM Journal on Computing
– year: 2006
– volume: 42
  start-page: 109
  issue: 2
  year: 2009
  end-page: 118
  article-title: Off‐centers: A new type of Steiner points for computing size‐optimal quality‐guaranteed Delaunay triangulations
  publication-title: Comput. Geom.
– year: Aug. 2011
– start-page: 175
  year: 2008
  end-page: 178
– start-page: 4
  year: 2011
– volume: 29
  start-page: 1334
  issue: 4
  year: 2000
  end-page: 1370
  article-title: Quality mesh generation in higher dimensions
  publication-title: SIAM J. Comput.
– volume: 33
  start-page: 83
  year: 2005
  end-page: 115
  article-title: Dense point sets have sparse delaunay triangulations or “… but not too nasty”
  publication-title: Discrete & Computational Geometry
– volume: 30
  issue: 4
  year: 2011
  article-title: HOT: Hodge‐optimized triangulations
  publication-title: ACM Trans. Graph
– start-page: 95
  year: 2004
  end-page: 98
– ident: e_1_2_8_10_2
  doi: 10.3390/a2041327
– ident: e_1_2_8_21_2
  doi: 10.1137/S0097539796314124
– ident: e_1_2_8_9_2
  doi: 10.1145/1137856.1137876
– ident: e_1_2_8_24_2
– ident: e_1_2_8_17_2
  doi: 10.1145/218013.218078
– ident: e_1_2_8_19_2
  doi: 10.1145/1998196.1998252
– ident: e_1_2_8_8_2
  doi: 10.1145/355483.355487
– volume-title: Anisotropic Delaunay Mesh Generation
  year: 2011
  ident: e_1_2_8_5_2
– ident: e_1_2_8_20_2
  doi: 10.1145/225058.225286
– ident: e_1_2_8_4_2
  doi: 10.1016/S0022-0000(05)80059-5
– ident: e_1_2_8_13_2
  doi: 10.1145/1810959.1811006
– ident: e_1_2_8_14_2
  doi: 10.1137/1.9781611973068.113
– ident: e_1_2_8_15_2
  doi: 10.1016/S0304-3975(02)00437-1
– ident: e_1_2_8_18_2
– ident: e_1_2_8_26_2
– ident: e_1_2_8_6_2
  doi: 10.1007/s10208-011-9098-0
– start-page: 259
  volume-title: Unstructured Mesh Generation
  year: 2011
  ident: e_1_2_8_25_2
– volume: 33
  year: 2004
  ident: e_1_2_8_7_2
  article-title: Quality meshing with weighted Delaunay refinement
  publication-title: SICOMP: SIAM Journal on Computing
– ident: e_1_2_8_27_2
  doi: 10.1016/j.comgeo.2008.06.002
– ident: e_1_2_8_12_2
  doi: 10.1007/s00454-004-1089-3
– ident: e_1_2_8_2_2
  doi: 10.1145/1073204.1073238
– ident: e_1_2_8_22_2
– ident: e_1_2_8_3_2
  doi: 10.1007/978-3-540-75103-8_19
– ident: e_1_2_8_16_2
  doi: 10.1145/2010324.1964998
– ident: e_1_2_8_23_2
  doi: 10.1006/jagm.1995.1021
– ident: e_1_2_8_11_2
  doi: 10.1145/378583.378636
SSID ssj0004765
Score 2.0846248
Snippet The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay refinement mesh in terms of the integral of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1627
SubjectTerms Computer graphics
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-Geometrical problems and computations
Initiatives
Integrals
Lower bounds
Matching
Mathematical analysis
Mathematical functions
Mathematical models
Optimization
Sizing
Studies
Title New Bounds on the Size of Optimal Meshes
URI https://api.istex.fr/ark:/67375/WNG-DFD2RKFS-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2012.03168.x
https://www.proquest.com/docview/1031258842
https://www.proquest.com/docview/1082216018
Volume 31
WOSCitedRecordID wos000307307500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4Y8KAH30YUTU2M8VJD3-1RwWKiogFRb5t2O41ELYaCIf56Z0pBiB6I8dZ0O812Hrsz25lvAI4wDCoGRoYqvRi5hZmmBralqTHJm_TDCwNDZs0mnEbDfXry7vL8J66FGeFDTA7c2DKy9ZoNPAjTn0bu2hbXm_CRHvdgOiV_sqiTGlsFKNaafvv6u0rSsa0x0jdjyMzm9fz6rpnNqsh8H854otP-bLYh-av_-SlrsJK7pcrZSI_WYQGTDVieAivchBNaD5Vz7sKUKt1EIcdRaXU-UenGyi2tO29EfoPpM6Zb0PYv7quXat5nQZUmBVwqSte1I80LjNCNXdONzdjyNBO9ih5xHRw6uomoo12RnqlHGNAGV5EaxeTk-9B8jW0oJN0Ed0ChwTBiiL7YkyaJPwwZAD5ybNOOIwpVS-CMGSpkDkLOvTBexUww4gjmhWBeiIwXYlgCbUL5PgLimIPmOJPZhCDovXAim2OJx0Zd1Pya3rzyW-KhBOWxUEVuw6ngBhg61_HSrA8nw2R9_EslSLA74GfIwdIoqHVLYGcinntyolr3-Wr3r4R7sMS3R9mIZSj0ewPch0X50e-kvYNc-78Ax9f9sA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB7ECurBt1ifEUS8RJpk8zqqNVWsVXzflmQzwaKm0rQi_npn0rRa9FDEW2B3wmZ2Zndms_N9ADsYhRULY0tXfoJMYWbooWMbekLzTfbhR6GlcrIJt9HwHh78y4IOiGthevgQgwM39ox8vWYH5wPpn17uOTYXnPCZHpMw7VNAWRJkVWTupepVcFv_KpN0HbsP9c0gMsMXe35919BuVWLFvw-Fot8D2nxHCmb_9VvmYKYITLWDniXNwximCzD9Da5wEfZoRdQOmYcp01qpRqGjdt38QK2VaBe08ryQ-Dlmj5gtwW1wfHN0ohdMC7oSlHLpqDzPiQ0_tCIv8YSXiMT2DYF-xYy5Eg5dUyCa6FSUL8wYQ9riKsqgrJyiHxqvtQzjaSvFFdCoMYoZpC_xlSADiCKGgI9dRzhJTMlqGdy-RqUqYMiZDeNZDqUjrmRdSNaFzHUh38tgDCRfe1AcI8js5pM2EAjbT3yVzbXlfaMmq0HVvDoLruVdGdb7syoLL84kU2CYXMlLo94eNJP_8U-VMMVWl_tQiGVQWuuVwcnneOTByaNawE-rfxXcgsmTm_O6rJ82ztZgirv07iauw3in3cUNmFBvnWbW3ixc4RMa5wGv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kFdGDb7E-I4h4iTTJ5nVUa1TUKr5vS7KZxaKm0qiIv96ZNK0WPYh4C-xO2Mzs7M5sdr4PYB2TuO5g6pgq1MgUZpYZe65larI3zY8wiR1VkE34zWZwexuelXRAXAvTxYfoH7ixZxTrNTs4PqX6u5cHnssFJ3ymxyRMWxRQVgVzylSg2jiPro4_yyR9z-1BfTOIzODFnh_fNbBbVVnxbwOh6NeAttiRool__ZZJGC8DU2O7O5OmYAizaRj7Alc4A5u0Iho7zMOUG-3MoNDRuGi9o9HWximtPI8kfoL5HeazcBXtXe4emCXTgqkEpVwmqiDwUiuMnSTQgQi00G5oCQzrdsqVcOjbAtFGr65CYacY0xZXVxZl5RT90HidOahk7QznwaDGJGWQPh0qQRMgSRgCPvU94emUktUa-D2NSlXCkDMbxoMcSEd8ybqQrAtZ6EK-1cDqSz51oTh-IbNRGK0vEHfu-Sqb78qb5r5sRA37_Ci6kNc1WOpZVZZenEumwLC5kpdGvdZvJv_jnypxhu0X7kMhlkVpbVADr7Dxrwcnd_cjflr4q-AqjJw1Inl82DxahFHu0b2auASV584LLsOwen1u5Z2V0hM-AJ7gASo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Bounds+on+the+Size+of+Optimal+Meshes&rft.jtitle=Computer+graphics+forum&rft.au=Sheehy%2C+Donald+R&rft.date=2012-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=31&rft.issue=5&rft.spage=1627&rft_id=info:doi/10.1111%2Fj.1467-8659.2012.03168.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2729764771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon