Machine learning regression algorithms to predict emissions from steam boilers

Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Heliyon Ročník 10; číslo 5; s. e26892
Hlavní autoři: Ross-Veitía, Bárbara D., Palma-Ramírez, Dayana, Arias-Gilart, Ramón, Conde-García, Rebeca E., Espinel-Hernández, Alejandro, Nuñez-Alvarez, José R., Hernández-Herrera, Hernan, Llosas-Albuerne, Yolanda E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 15.03.2024
Elsevier
Témata:
ISSN:2405-8440, 2405-8440
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates and reduce the pollution load they contribute to the environment. This work aims to predict the emissions of CO, CO2, NOx, and the temperature of the exhaust gases of industrial boilers from real data. Different ML algorithms for regression analysis are discussed. The following are input variables: ambient temperature, working pressure, steam production, and the type of fuel used in around 20 industrial boilers. Each boiler's emission data was collected using a TESTO 350 Combustion Gas Analyzer. The modeling, with a machine learning approach using the Gradient Boosting Regression algorithm, showed better performance in the predictions made on the test data, outperforming all other models studied. It was achieved with predicted values showing a mean absolute error of 0.51 and a coefficient of determination of 99.80%. Different regression models (DNN, MLR, RFR, GBR) were compared to select the most optimal. Compared to models based on Linear Regression, the DNN model has better prediction performance. The proposed model provides a new method to predict CO2, CO, NOx emissions, and exhaust gas outlet temperature.
AbstractList Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates and reduce the pollution load they contribute to the environment. This work aims to predict the emissions of CO, CO2, NOx, and the temperature of the exhaust gases of industrial boilers from real data. Different ML algorithms for regression analysis are discussed. The following are input variables: ambient temperature, working pressure, steam production, and the type of fuel used in around 20 industrial boilers. Each boiler's emission data was collected using a TESTO 350 Combustion Gas Analyzer. The modeling, with a machine learning approach using the Gradient Boosting Regression algorithm, showed better performance in the predictions made on the test data, outperforming all other models studied. It was achieved with predicted values showing a mean absolute error of 0.51 and a coefficient of determination of 99.80%. Different regression models (DNN, MLR, RFR, GBR) were compared to select the most optimal. Compared to models based on Linear Regression, the DNN model has better prediction performance. The proposed model provides a new method to predict CO2, CO, NOx emissions, and exhaust gas outlet temperature.
Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates and reduce the pollution load they contribute to the environment. This work aims to predict the emissions of CO, CO2, NOx, and the temperature of the exhaust gases of industrial boilers from real data. Different ML algorithms for regression analysis are discussed. The following are input variables: ambient temperature, working pressure, steam production, and the type of fuel used in around 20 industrial boilers. Each boiler's emission data was collected using a TESTO 350 Combustion Gas Analyzer. The modeling, with a machine learning approach using the Gradient Boosting Regression algorithm, showed better performance in the predictions made on the test data, outperforming all other models studied. It was achieved with predicted values showing a mean absolute error of 0.51 and a coefficient of determination of 99.80%. Different regression models (DNN, MLR, RFR, GBR) were compared to select the most optimal. Compared to models based on Linear Regression, the DNN model has better prediction performance. The proposed model provides a new method to predict CO2, CO, NOx emissions, and exhaust gas outlet temperature.Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates and reduce the pollution load they contribute to the environment. This work aims to predict the emissions of CO, CO2, NOx, and the temperature of the exhaust gases of industrial boilers from real data. Different ML algorithms for regression analysis are discussed. The following are input variables: ambient temperature, working pressure, steam production, and the type of fuel used in around 20 industrial boilers. Each boiler's emission data was collected using a TESTO 350 Combustion Gas Analyzer. The modeling, with a machine learning approach using the Gradient Boosting Regression algorithm, showed better performance in the predictions made on the test data, outperforming all other models studied. It was achieved with predicted values showing a mean absolute error of 0.51 and a coefficient of determination of 99.80%. Different regression models (DNN, MLR, RFR, GBR) were compared to select the most optimal. Compared to models based on Linear Regression, the DNN model has better prediction performance. The proposed model provides a new method to predict CO2, CO, NOx emissions, and exhaust gas outlet temperature.
Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates and reduce the pollution load they contribute to the environment. This work aims to predict the emissions of CO, CO , NOx, and the temperature of the exhaust gases of industrial boilers from real data. Different ML algorithms for regression analysis are discussed. The following are input variables: ambient temperature, working pressure, steam production, and the type of fuel used in around 20 industrial boilers. Each boiler's emission data was collected using a TESTO 350 Combustion Gas Analyzer. The modeling, with a machine learning approach using the Gradient Boosting Regression algorithm, showed better performance in the predictions made on the test data, outperforming all other models studied. It was achieved with predicted values showing a mean absolute error of 0.51 and a coefficient of determination of 99.80%. Different regression models (DNN, MLR, RFR, GBR) were compared to select the most optimal. Compared to models based on Linear Regression, the DNN model has better prediction performance. The proposed model provides a new method to predict CO , CO, NOx emissions, and exhaust gas outlet temperature.
Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the combustion process of the boilers using machine learning (ML) techniques are vital to increase the efficiency with which this equipment operates and reduce the pollution load they contribute to the environment. This work aims to predict the emissions of CO, CO₂, NOx, and the temperature of the exhaust gases of industrial boilers from real data. Different ML algorithms for regression analysis are discussed. The following are input variables: ambient temperature, working pressure, steam production, and the type of fuel used in around 20 industrial boilers. Each boiler's emission data was collected using a TESTO 350 Combustion Gas Analyzer. The modeling, with a machine learning approach using the Gradient Boosting Regression algorithm, showed better performance in the predictions made on the test data, outperforming all other models studied. It was achieved with predicted values showing a mean absolute error of 0.51 and a coefficient of determination of 99.80%. Different regression models (DNN, MLR, RFR, GBR) were compared to select the most optimal. Compared to models based on Linear Regression, the DNN model has better prediction performance. The proposed model provides a new method to predict CO₂, CO, NOx emissions, and exhaust gas outlet temperature.
ArticleNumber e26892
Author Conde-García, Rebeca E.
Nuñez-Alvarez, José R.
Arias-Gilart, Ramón
Palma-Ramírez, Dayana
Hernández-Herrera, Hernan
Ross-Veitía, Bárbara D.
Espinel-Hernández, Alejandro
Llosas-Albuerne, Yolanda E.
Author_xml – sequence: 1
  givenname: Bárbara D.
  surname: Ross-Veitía
  fullname: Ross-Veitía, Bárbara D.
  email: baby91@uo.edu.cu
  organization: National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, Ave. de Las Américas s/n, 90100, Santiago de Cuba, Cuba
– sequence: 2
  givenname: Dayana
  orcidid: 0000-0002-5665-3153
  surname: Palma-Ramírez
  fullname: Palma-Ramírez, Dayana
  email: dayana.palma@uo.edu.cu
  organization: National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, Ave. de Las Américas s/n, 90100, Santiago de Cuba, Cuba
– sequence: 3
  givenname: Ramón
  orcidid: 0000-0003-2050-9712
  surname: Arias-Gilart
  fullname: Arias-Gilart, Ramón
  email: ramonariasgilart@gmail.com
  organization: National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, Ave. de Las Américas s/n, 90100, Santiago de Cuba, Cuba
– sequence: 4
  givenname: Rebeca E.
  surname: Conde-García
  fullname: Conde-García, Rebeca E.
  email: rebeca@uo.edu.cu
  organization: National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, Ave. de Las Américas s/n, 90100, Santiago de Cuba, Cuba
– sequence: 5
  givenname: Alejandro
  orcidid: 0000-0003-4192-363X
  surname: Espinel-Hernández
  fullname: Espinel-Hernández, Alejandro
  email: espinel@uo.edu.cu
  organization: National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, Ave. de Las Américas s/n, 90100, Santiago de Cuba, Cuba
– sequence: 6
  givenname: José R.
  orcidid: 0000-0002-6607-7305
  surname: Nuñez-Alvarez
  fullname: Nuñez-Alvarez, José R.
  email: jnunez22@cuc.edu.co
  organization: Energy Department, Universidad de la Costa, (CUC), Calle 58 # 55-66, Barranquilla, 080002, Colombia
– sequence: 7
  givenname: Hernan
  surname: Hernández-Herrera
  fullname: Hernández-Herrera, Hernan
  email: hernan.hernadez@unisimon.edu.co
  organization: Faculty of Engineering, Universidad Simón Bolívar, Carrera 59 #59-132, Barranquilla, 080002, Colombia
– sequence: 8
  givenname: Yolanda E.
  surname: Llosas-Albuerne
  fullname: Llosas-Albuerne, Yolanda E.
  email: yolanda.llosas@utm.edu.ec
  organization: Electrical Engineering Department, Universidad Técnica de Manabí (UTM), Portoviejo, Manabí, 130105, Ecuador
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38434324$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEUtFARLaU_AbRHLgn-2rUtDghVfFQqcOnd8tpvE0deO9hOpf573CRFLQcqH2z5zZs3ejOv0UlMERB6S_CSYDJ82CzXEPxdikuKKV8CHaSiL9AZ5bhfSM7xyaP3KbooZYMxJr0clGCv0CmTnHFG-Rn6-cPYtY_QBTA5-rjqMqwylOJT7ExYpezrei5dTd02g_O2djD7fbl0U05zVyqYuRuTD5DLG_RyMqHAxfE-Rzdfv9xcfl9c__p2dfn5emG5pHTBxUgwNuAGyRim2A2cTKZXzo1WskmJkUviKExOTYOVBog0lCk6CbACK3aOrg60LpmN3mY_m3ynk_F6_5HySptcvQ2gjRWMUznKtg_urJBtnABulBJDz8XUuD4duLa7cQZnIdZswhPSp5Xo13qVbjXBCnMq-sbw_siQ0-8dlKrbhiyEYCKkXdGM9Ey2sxf-fyhVTLBmzUAa9N1jXX8FPXjXAB8PAJtTKRkmbX01tTnTZPrQ9On7sOiNPoZF34dFH8LSuvt_uh8GPNd3XBc0e289ZF2sh2hbNjLY2gzwzzD8AQSU3MQ
CitedBy_id crossref_primary_10_1016_j_heliyon_2025_e42092
crossref_primary_10_1016_j_heliyon_2024_e36662
crossref_primary_10_1016_j_jenvman_2025_125049
crossref_primary_10_1016_j_cej_2025_164229
crossref_primary_10_1016_j_sciaf_2024_e02375
crossref_primary_10_1016_j_apenergy_2025_125819
Cites_doi 10.1109/ACCESS.2021.3091399
10.3390/s21217241
10.1007/s11069-020-04015-7
10.1016/j.fuel.2003.12.003
10.1016/j.aej.2023.01.048
10.1016/j.apenergy.2020.114566
10.1016/j.apenergy.2018.09.182
10.1016/j.aej.2022.10.053
10.3390/s22020458
10.3390/math7070629
10.1016/j.csite.2023.103440
10.1016/j.fuel.2023.128348
10.1016/j.energy.2013.08.027
10.15282/jmes.14.1.2020.07.0492
10.1016/j.scitotenv.2023.166108
10.1016/j.ijtm.2004.09.001
10.1016/j.procs.2016.05.512
10.1021/acs.nanolett.8b05196
10.3390/en14165196
10.1016/j.isatra.2022.06.009
10.1007/s00521-019-04644-5
10.3390/en14051267
10.1016/j.aej.2022.12.038
10.1016/j.apcatb.2023.123241
10.1016/j.energy.2015.03.095
10.1016/j.dche.2023.100115
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors. Published by Elsevier Ltd.
2024 The Authors. Published by Elsevier Ltd. 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors. Published by Elsevier Ltd.
– notice: 2024 The Authors. Published by Elsevier Ltd. 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2024.e26892
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_ac73428b82404dc780207e4a9976547f
PMC10904275
38434324
10_1016_j_heliyon_2024_e26892
S2405844024029232
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
AACTN
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4822-47b100aed6833020d641fa59ddbc83f97b481d2efd9f6c8ae18a2392f7ec7093
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Fri Oct 03 12:36:20 EDT 2025
Tue Sep 30 17:10:02 EDT 2025
Fri Aug 22 20:25:21 EDT 2025
Fri Jul 11 07:13:42 EDT 2025
Thu Apr 03 07:02:14 EDT 2025
Tue Nov 18 21:40:01 EST 2025
Wed Nov 05 20:45:02 EST 2025
Wed Dec 10 14:22:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Combustion
Linear regression
Artificial intelligence
Python
Language English
License This is an open access article under the CC BY license.
2024 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4822-47b100aed6833020d641fa59ddbc83f97b481d2efd9f6c8ae18a2392f7ec7093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4192-363X
0000-0002-5665-3153
0000-0003-2050-9712
0000-0002-6607-7305
OpenAccessLink https://doaj.org/article/ac73428b82404dc780207e4a9976547f
PMID 38434324
PQID 2937334361
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ac73428b82404dc780207e4a9976547f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10904275
proquest_miscellaneous_3153838309
proquest_miscellaneous_2937334361
pubmed_primary_38434324
crossref_citationtrail_10_1016_j_heliyon_2024_e26892
crossref_primary_10_1016_j_heliyon_2024_e26892
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e26892
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wan (bib9) 2019; 19
Bonaccorso (bib26) 2017
Huang (bib27) 2020; 32
Maddah (bib19) 2019; 7
Baukal (bib6) 2003
Li (bib11) 2023; 50
Ji, Wang, Xie (bib21) 2023; 67
El Mrabet (bib33) 2022; 22
Maciejończyk (bib17) 2020
Salama (bib24) 2023; 68
Zheng (bib1) 2020; 9
Ashraf, Dua (bib10) 2023; 8
Li (bib30) 2018; 232
Elleuch, Maalej, Kherallah (bib22) 2016; 80
Milanés-Hermosilla, Trujillo Codorniú, López-Baracaldo, Sagaró-Zamora, Delisle-Rodriguez, Villarejo-Mayor, Núñez-Álvarez (bib29) 2021; 21
Mojica-Cabeza (bib2) 2022; 86
Kaer (bib5) 2004; 83
Gilart (bib18) 2020; 14
Naveen Venkatesh (bib13) 2023
Halgamuge, Daminda, Nirmalathas (bib25) 2020; 103
Adewole, Abidakun, Asere (bib8) 2013; 61
Xia (bib23) 2023; 132
Wienese (bib3) 2001
Larki (bib34) 2023; 903
Lott (bib15) 2024; 340
Milanés Hermosilla (bib28) 2021; 9
Singh, Rizwan, Alaraj, Alsaidan (bib32) 2021; 14
Jesu Godwin (bib14) 2023; 421
Yan (bib16) 2021; 14
Alshmrani (bib20) 2023; 64
Taler (bib4) 2015; 92
Gokhale, Khare (bib7) 2004; 2
Duan (bib12) 2023; 346
Cai, Xu, Zhu, Hu, Li (bib31) 2020; 262
Ji (10.1016/j.heliyon.2024.e26892_bib21) 2023; 67
Halgamuge (10.1016/j.heliyon.2024.e26892_bib25) 2020; 103
El Mrabet (10.1016/j.heliyon.2024.e26892_bib33) 2022; 22
Adewole (10.1016/j.heliyon.2024.e26892_bib8) 2013; 61
Gilart (10.1016/j.heliyon.2024.e26892_bib18) 2020; 14
Mojica-Cabeza (10.1016/j.heliyon.2024.e26892_bib2) 2022; 86
Milanés-Hermosilla (10.1016/j.heliyon.2024.e26892_bib29) 2021; 21
Xia (10.1016/j.heliyon.2024.e26892_bib23) 2023; 132
Lott (10.1016/j.heliyon.2024.e26892_bib15) 2024; 340
Salama (10.1016/j.heliyon.2024.e26892_bib24) 2023; 68
Cai (10.1016/j.heliyon.2024.e26892_bib31) 2020; 262
Singh (10.1016/j.heliyon.2024.e26892_bib32) 2021; 14
Wienese (10.1016/j.heliyon.2024.e26892_bib3) 2001
Yan (10.1016/j.heliyon.2024.e26892_bib16) 2021; 14
Elleuch (10.1016/j.heliyon.2024.e26892_bib22) 2016; 80
Baukal (10.1016/j.heliyon.2024.e26892_bib6) 2003
Huang (10.1016/j.heliyon.2024.e26892_bib27) 2020; 32
Wan (10.1016/j.heliyon.2024.e26892_bib9) 2019; 19
Naveen Venkatesh (10.1016/j.heliyon.2024.e26892_bib13) 2023
Li (10.1016/j.heliyon.2024.e26892_bib11) 2023; 50
Milanés Hermosilla (10.1016/j.heliyon.2024.e26892_bib28) 2021; 9
Ashraf (10.1016/j.heliyon.2024.e26892_bib10) 2023; 8
Alshmrani (10.1016/j.heliyon.2024.e26892_bib20) 2023; 64
Li (10.1016/j.heliyon.2024.e26892_bib30) 2018; 232
Jesu Godwin (10.1016/j.heliyon.2024.e26892_bib14) 2023; 421
Maddah (10.1016/j.heliyon.2024.e26892_bib19) 2019; 7
Taler (10.1016/j.heliyon.2024.e26892_bib4) 2015; 92
Bonaccorso (10.1016/j.heliyon.2024.e26892_bib26) 2017
Duan (10.1016/j.heliyon.2024.e26892_bib12) 2023; 346
Maciejończyk (10.1016/j.heliyon.2024.e26892_bib17) 2020
Kaer (10.1016/j.heliyon.2024.e26892_bib5) 2004; 83
Larki (10.1016/j.heliyon.2024.e26892_bib34) 2023; 903
Zheng (10.1016/j.heliyon.2024.e26892_bib1) 2020; 9
Gokhale (10.1016/j.heliyon.2024.e26892_bib7) 2004; 2
References_xml – volume: 340
  year: 2024
  ident: bib15
  article-title: A review on exhaust gas after-treatment of lean-burn natural gas engines – from fundamentals to application
  publication-title: Appl. Catal. B Environ.
– volume: 61
  start-page: 606
  year: 2013
  end-page: 611
  ident: bib8
  article-title: Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner
  publication-title: Energy
– volume: 8
  year: 2023
  ident: bib10
  article-title: Machine learning based modelling and optimization of post-combustion carbon capture process using MEA supporting carbon neutrality
  publication-title: Digital Chemical Engineering
– volume: 92
  start-page: 160
  year: 2015
  end-page: 170
  ident: bib4
  article-title: Optimization of the boiler start-up taking into account thermal stresses
  publication-title: Energy
– volume: 2
  start-page: 59
  year: 2004
  end-page: 74
  ident: bib7
  article-title: A review of deterministic, stochastic and hybrid vehicular exhaust emission models
  publication-title: Int. J. Transport Manag.
– volume: 232
  start-page: 197
  year: 2018
  end-page: 210
  ident: bib30
  article-title: Random forest regression for online capacity estimation of lithium-ion batteries
  publication-title: Appl. Energy
– year: 2023
  ident: bib13
  article-title: Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel
  publication-title: Int. J. Hydrogen Energy
– volume: 83
  start-page: 1183
  year: 2004
  end-page: 1190
  ident: bib5
  article-title: Numerical modelling of a straw-fired grate boiler
  publication-title: Fuel
– year: 2017
  ident: bib26
  article-title: Machine Learning Algorithms
– volume: 68
  start-page: 461
  year: 2023
  end-page: 468
  ident: bib24
  article-title: Deep learning-based spam image filtering
  publication-title: Alex. Eng. J.
– volume: 14
  start-page: 1267
  year: 2021
  ident: bib16
  article-title: An experimental study on the characteristics of NOx distributions at the SNCR inlets of a large-scale CFB boiler
  publication-title: Energies
– volume: 19
  start-page: 3387
  year: 2019
  end-page: 3395
  ident: bib9
  article-title: Materials discovery and properties prediction in thermal transport via materials informatics: a mini review
  publication-title: Nano Lett.
– volume: 14
  start-page: 6285
  year: 2020
  end-page: 6294
  ident: bib18
  article-title: Performance and exhaust gases of a diesel engine using different magnetic treatments of the fuel
  publication-title: J. Mech. Eng. Sci.
– volume: 22
  start-page: 458
  year: 2022
  ident: bib33
  article-title: Random forest regressor-based approach for detecting fault location and duration in power systems
  publication-title: Sensors
– volume: 9
  start-page: 98275
  year: 2021
  end-page: 98286
  ident: bib28
  article-title: Shallow convolutional network excel for classifying motor imagery EEG in BCI applications
  publication-title: IEEE Access
– year: 2001
  ident: bib3
  article-title: Boilers, boiler fuel and boiler efficiency
  publication-title: Proc S Afr Sug Technol Ass
– year: 2003
  ident: bib6
  publication-title: Industrial Burners Handbook
– volume: 346
  year: 2023
  ident: bib12
  article-title: Prediction of combustion promotion effect of high/low-frequency AC electric fields based on machine learning method
  publication-title: Fuel
– volume: 421
  year: 2023
  ident: bib14
  article-title: Prediction of combustion, performance, and emission parameters of ethanol powered spark ignition engine using ensemble Least Squares boosting machine learning algorithms
  publication-title: J. Clean. Prod.
– volume: 132
  start-page: 353
  year: 2023
  end-page: 363
  ident: bib23
  article-title: Using feed-forward perceptron Artificial Neural Network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling
  publication-title: ISA (Instrum. Soc. Am.) Trans.
– volume: 64
  start-page: 923
  year: 2023
  end-page: 935
  ident: bib20
  article-title: A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images
  publication-title: Alex. Eng. J.
– volume: 80
  start-page: 1712
  year: 2016
  end-page: 1723
  ident: bib22
  article-title: A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition
  publication-title: Proc. Comput. Sci.
– volume: 262
  year: 2020
  ident: bib31
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl. Energy
– volume: 32
  start-page: 5461
  year: 2020
  end-page: 5469
  ident: bib27
  article-title: Application and comparison of several machine learning algorithms and their integration models in regression problems
  publication-title: Neural Comput. Appl.
– volume: 86
  start-page: 69
  year: 2022
  end-page: 93
  ident: bib2
  article-title: A review of the different boiler efficiency calculation and modeling methodologies
  publication-title: Informador Técnico
– volume: 50
  year: 2023
  ident: bib11
  article-title: Research on coal combustion catalysts for cement kiln via comprehensive evaluation method based on combustion characteristics
  publication-title: Case Stud. Therm. Eng.
– volume: 14
  start-page: 5196
  year: 2021
  ident: bib32
  article-title: A machine learning-based gradient boosting regression approach for wind power production forecasting: a step towards smart grid environments
  publication-title: Energies
– volume: 9
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib1
  article-title: Progress in the application of machine learning in combustion studies
  publication-title: ES Energy & Environment
– volume: 21
  start-page: 7241
  year: 2021
  ident: bib29
  article-title: Monte Carlo dropout for uncertainty estimation and motor imagery classification
  publication-title: Sensors
– volume: 903
  year: 2023
  ident: bib34
  article-title: Mitigation approaches and techniques for combustion power plants flue gas emissions: a comprehensive review
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 171
  year: 2023
  end-page: 181
  ident: bib21
  article-title: Balance optimization method of energy shipping based on Hopfield neural network
  publication-title: Alex. Eng. J.
– volume: 103
  start-page: 845
  year: 2020
  end-page: 860
  ident: bib25
  article-title: Best optimizer selection for predicting bushfire occurrences using deep learning
  publication-title: Nat. Hazards
– start-page: 239
  year: 2020
  end-page: 246
  ident: bib17
  article-title: Analysis of the flue gas produced during the coal and biomass co-combustion in a solid fuel boiler
  publication-title: Renewable Energy Sources: Engineering
– volume: 7
  start-page: 629
  year: 2019
  ident: bib19
  article-title: Modeling and efficiency optimization of steam boilers by employing neural networks and response-surface method (RSM)
  publication-title: Mathematics
– volume: 9
  start-page: 98275
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26892_bib28
  article-title: Shallow convolutional network excel for classifying motor imagery EEG in BCI applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091399
– volume: 21
  start-page: 7241
  issue: 21
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26892_bib29
  article-title: Monte Carlo dropout for uncertainty estimation and motor imagery classification
  publication-title: Sensors
  doi: 10.3390/s21217241
– volume: 86
  start-page: 69
  issue: 1
  year: 2022
  ident: 10.1016/j.heliyon.2024.e26892_bib2
  article-title: A review of the different boiler efficiency calculation and modeling methodologies
  publication-title: Informador Técnico
– volume: 103
  start-page: 845
  issue: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26892_bib25
  article-title: Best optimizer selection for predicting bushfire occurrences using deep learning
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04015-7
– volume: 83
  start-page: 1183
  issue: 9
  year: 2004
  ident: 10.1016/j.heliyon.2024.e26892_bib5
  article-title: Numerical modelling of a straw-fired grate boiler
  publication-title: Fuel
  doi: 10.1016/j.fuel.2003.12.003
– year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib13
  article-title: Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel
  publication-title: Int. J. Hydrogen Energy
– year: 2001
  ident: 10.1016/j.heliyon.2024.e26892_bib3
  article-title: Boilers, boiler fuel and boiler efficiency
– volume: 68
  start-page: 461
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib24
  article-title: Deep learning-based spam image filtering
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.01.048
– volume: 262
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26892_bib31
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114566
– volume: 232
  start-page: 197
  year: 2018
  ident: 10.1016/j.heliyon.2024.e26892_bib30
  article-title: Random forest regression for online capacity estimation of lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.182
– volume: 64
  start-page: 923
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib20
  article-title: A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.10.053
– volume: 421
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib14
  article-title: Prediction of combustion, performance, and emission parameters of ethanol powered spark ignition engine using ensemble Least Squares boosting machine learning algorithms
  publication-title: J. Clean. Prod.
– start-page: 239
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26892_bib17
  article-title: Analysis of the flue gas produced during the coal and biomass co-combustion in a solid fuel boiler
– volume: 22
  start-page: 458
  issue: 2
  year: 2022
  ident: 10.1016/j.heliyon.2024.e26892_bib33
  article-title: Random forest regressor-based approach for detecting fault location and duration in power systems
  publication-title: Sensors
  doi: 10.3390/s22020458
– volume: 7
  start-page: 629
  issue: 7
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26892_bib19
  article-title: Modeling and efficiency optimization of steam boilers by employing neural networks and response-surface method (RSM)
  publication-title: Mathematics
  doi: 10.3390/math7070629
– volume: 50
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib11
  article-title: Research on coal combustion catalysts for cement kiln via comprehensive evaluation method based on combustion characteristics
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103440
– volume: 346
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib12
  article-title: Prediction of combustion promotion effect of high/low-frequency AC electric fields based on machine learning method
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.128348
– volume: 61
  start-page: 606
  year: 2013
  ident: 10.1016/j.heliyon.2024.e26892_bib8
  article-title: Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.027
– volume: 14
  start-page: 6285
  issue: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26892_bib18
  article-title: Performance and exhaust gases of a diesel engine using different magnetic treatments of the fuel
  publication-title: J. Mech. Eng. Sci.
  doi: 10.15282/jmes.14.1.2020.07.0492
– volume: 903
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib34
  article-title: Mitigation approaches and techniques for combustion power plants flue gas emissions: a comprehensive review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.166108
– volume: 2
  start-page: 59
  issue: 2
  year: 2004
  ident: 10.1016/j.heliyon.2024.e26892_bib7
  article-title: A review of deterministic, stochastic and hybrid vehicular exhaust emission models
  publication-title: Int. J. Transport Manag.
  doi: 10.1016/j.ijtm.2004.09.001
– volume: 80
  start-page: 1712
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26892_bib22
  article-title: A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2016.05.512
– volume: 19
  start-page: 3387
  issue: 6
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26892_bib9
  article-title: Materials discovery and properties prediction in thermal transport via materials informatics: a mini review
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05196
– volume: 14
  start-page: 5196
  issue: 16
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26892_bib32
  article-title: A machine learning-based gradient boosting regression approach for wind power production forecasting: a step towards smart grid environments
  publication-title: Energies
  doi: 10.3390/en14165196
– volume: 132
  start-page: 353
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib23
  article-title: Using feed-forward perceptron Artificial Neural Network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling
  publication-title: ISA (Instrum. Soc. Am.) Trans.
  doi: 10.1016/j.isatra.2022.06.009
– year: 2003
  ident: 10.1016/j.heliyon.2024.e26892_bib6
– year: 2017
  ident: 10.1016/j.heliyon.2024.e26892_bib26
– volume: 32
  start-page: 5461
  issue: 10
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26892_bib27
  article-title: Application and comparison of several machine learning algorithms and their integration models in regression problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04644-5
– volume: 14
  start-page: 1267
  issue: 5
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26892_bib16
  article-title: An experimental study on the characteristics of NOx distributions at the SNCR inlets of a large-scale CFB boiler
  publication-title: Energies
  doi: 10.3390/en14051267
– volume: 67
  start-page: 171
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib21
  article-title: Balance optimization method of energy shipping based on Hopfield neural network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.12.038
– volume: 9
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26892_bib1
  article-title: Progress in the application of machine learning in combustion studies
  publication-title: ES Energy & Environment
– volume: 340
  year: 2024
  ident: 10.1016/j.heliyon.2024.e26892_bib15
  article-title: A review on exhaust gas after-treatment of lean-burn natural gas engines – from fundamentals to application
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2023.123241
– volume: 92
  start-page: 160
  issue: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26892_bib4
  article-title: Optimization of the boiler start-up taking into account thermal stresses
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.095
– volume: 8
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26892_bib10
  article-title: Machine learning based modelling and optimization of post-combustion carbon capture process using MEA supporting carbon neutrality
  publication-title: Digital Chemical Engineering
  doi: 10.1016/j.dche.2023.100115
SSID ssj0001586973
Score 2.326516
Snippet Currently, the modeling of complex chemical-physical processes is drastically influencing industrial development. Therefore, the analysis and study of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26892
SubjectTerms algorithms
ambient temperature
Artificial intelligence
carbon dioxide
Combustion
fuels
industrialization
Linear regression
pollution load
prediction
Python
regression analysis
steam
Title Machine learning regression algorithms to predict emissions from steam boilers
URI https://dx.doi.org/10.1016/j.heliyon.2024.e26892
https://www.ncbi.nlm.nih.gov/pubmed/38434324
https://www.proquest.com/docview/2937334361
https://www.proquest.com/docview/3153838309
https://pubmed.ncbi.nlm.nih.gov/PMC10904275
https://doaj.org/article/ac73428b82404dc780207e4a9976547f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZghRAXxJvyWBmJa7pJ7MT2EdCuONCKwwr1ZvkxabPqJqski8SF3844SUsDQr2gSDnEdmLPTDyf5fE3hLwHn5ssNjxiXOECJQeITKZM5DMbGwbKup6n4NsXsVzK1Up9PUj1FWLCBnrgQXBnxgmGENlKdD3cOyER3wjgRqEfzbgowuwbC3WwmBrOB8tcCfb7yM7Z1XwD2_JHHThPUz6HNJcqnTijnrN_4pP-xpx_hk4e-KKLR-ThCCLph6Hzj8kdqJ6Q-4txm_wpWS76EEmgY06INW1gPQS8VtRs13VTdpvrlnY1vWlCq46GtG-huKXhwAkNur-mtsY5o2mfkcuL88tPn6MxcULkODr8iAubxLFBPUjGUF4-50mBKvDeOskKJSxHmJpC4VWRO2kgkSZFoFQIcCJW7Dk5qeoKXhIqbCHzRCpuRM5j8KZXHlgOqXQC_IzwnQC1G0nFQ26Lrd5Fj13pUe46yF0Pcp-R-b7ZzcCqcazBx6CdfeVAit0_QFPRo6noY6YyI3KnWz3iiwE34KvKY99_t7MFjfoImyqmgvq21QiXBGOc5cm_67DgVvCK1Yy8GOxnPxIm-7O9HDs3sazJUKclVbnpecBDTC1PRfbqfwjnNXkQxhvC65LsDTnpmlt4S-65713ZNqfkrljJ0_4fw_vi5_kvZgYt3g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+regression+algorithms+to+predict+emissions+from+steam+boilers&rft.jtitle=Heliyon&rft.au=Ross-Veit%C3%ADa%2C+B%C3%A1rbara+D.&rft.au=Palma-Ram%C3%ADrez%2C+Dayana&rft.au=Arias-Gilart%2C+Ram%C3%B3n&rft.au=Conde-Garc%C3%ADa%2C+Rebeca+E.&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=5&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e26892&rft.externalDocID=S2405844024029232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon