A linear-time algorithm for Gaussian and non-Gaussian trait evolution models

We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylog...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Systematic biology Ročník 63; číslo 3; s. 397
Hlavní autori: Ho, Lam si Tung, Ané, Cécile
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.05.2014
Predmet:
ISSN:1076-836X, 1076-836X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.
AbstractList We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.
We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.
Author Ho, Lam si Tung
Ané, Cécile
Author_xml – sequence: 1
  givenname: Lam si Tung
  surname: Ho
  fullname: Ho, Lam si Tung
  organization: Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA
– sequence: 2
  givenname: Cécile
  surname: Ané
  fullname: Ané, Cécile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24500037$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAYhIOsuB969Co5eqnmzXePy6KrUPCi4K0kbaqRNFmbVth_74KreJpheJiBWaJZTNEhdAnkBkjJbvM-W58OMhEiTtACiJKFZvJ19s_P0TLnD0IApIAzNKdcEEKYWqBqjYOPzgzF6HuHTXhLgx_fe9ylAW_NlLM3EZvY4sNu8ReMg_Ejdl8pTKNPEfepdSGfo9POhOwujrpCL_d3z5uHonraPm7WVdFwDWPhuo5K3kqttO1YRzUFooV0tpFgqWbcKgGMSt1ao5wsAVhTcmWBt1AKbukKXf_07ob0Obk81r3PjQvBRJemXIMAqSgTpTygV0d0sr1r693gezPs698H6DcdqV_M
CitedBy_id crossref_primary_10_1093_molbev_msab078
crossref_primary_10_1111_btp_13303
crossref_primary_10_1111_nph_16012
crossref_primary_10_1111_ddi_12721
crossref_primary_10_1242_jeb_201525
crossref_primary_10_1111_1365_2745_70146
crossref_primary_10_1016_j_ympev_2018_04_030
crossref_primary_10_1093_molbev_msab079
crossref_primary_10_1007_s00285_016_1029_x
crossref_primary_10_7554_eLife_66926
crossref_primary_10_1038_s41559_017_0185
crossref_primary_10_1111_ele_13199
crossref_primary_10_1016_j_landurbplan_2023_104801
crossref_primary_10_1111_evo_12582
crossref_primary_10_1186_s13059_014_0539_3
crossref_primary_10_1242_jeb_245699
crossref_primary_10_1038_s41467_025_61835_6
crossref_primary_10_1242_jeb_242186
crossref_primary_10_1098_rsos_250116
crossref_primary_10_1038_ncomms13313
crossref_primary_10_1111_evo_13559
crossref_primary_10_1093_molbev_msab083
crossref_primary_10_1242_jeb_243292
crossref_primary_10_7717_peerj_1668
crossref_primary_10_1007_s00285_023_01922_8
crossref_primary_10_1111_1365_2656_13791
crossref_primary_10_1111_ele_14294
crossref_primary_10_1007_s00114_023_01871_8
crossref_primary_10_1038_s41467_021_27479_y
crossref_primary_10_1038_s41598_023_28104_2
crossref_primary_10_1007_s11252_022_01242_7
crossref_primary_10_1111_nph_15270
crossref_primary_10_1111_1365_2745_13575
crossref_primary_10_1093_icb_icaa074
crossref_primary_10_1111_jbi_14547
crossref_primary_10_1186_s42523_022_00220_w
crossref_primary_10_1111_2041_210X_12354
crossref_primary_10_1016_j_biocon_2022_109590
crossref_primary_10_1038_s41586_025_08777_7
crossref_primary_10_1111_fwb_13729
crossref_primary_10_1038_s41467_022_30535_w
crossref_primary_10_1093_botlinnean_boaa058
crossref_primary_10_1002_ece3_2471
crossref_primary_10_1371_journal_pcbi_1007948
crossref_primary_10_1098_rsos_160681
crossref_primary_10_7717_peerj_15575
crossref_primary_10_1038_s41467_024_49506_4
crossref_primary_10_1093_biolinnean_blz117
crossref_primary_10_1086_736566
crossref_primary_10_1093_evolut_qpaf088
crossref_primary_10_1016_j_biocon_2025_111499
crossref_primary_10_1016_j_biocon_2025_111375
crossref_primary_10_1111_evo_14541
crossref_primary_10_1073_pnas_1705769114
crossref_primary_10_1093_biolinnean_bly020
crossref_primary_10_1111_evo_14425
crossref_primary_10_1093_evolut_qpaf080
crossref_primary_10_1007_s00114_018_1543_3
crossref_primary_10_1098_rsos_171780
crossref_primary_10_1111_ibi_12770
crossref_primary_10_1093_cz_zoac106
crossref_primary_10_3389_fmicb_2022_773114
crossref_primary_10_1093_aob_mcab028
crossref_primary_10_1242_jeb_246342
crossref_primary_10_1111_nph_14285
crossref_primary_10_1007_s11104_018_3858_4
crossref_primary_10_1111_gcb_15623
crossref_primary_10_1111_jeb_14189
crossref_primary_10_1126_science_abm7993
crossref_primary_10_3389_fpls_2021_632464
crossref_primary_10_3389_fmars_2018_00450
crossref_primary_10_1676_22_00048
crossref_primary_10_1002_ece3_4426
crossref_primary_10_1093_biolinnean_bly015
crossref_primary_10_1126_science_abm7759
crossref_primary_10_1073_pnas_2314135120
crossref_primary_10_1111_jbi_70016
crossref_primary_10_1111_1440_1703_12502
crossref_primary_10_1093_isd_ixac031
crossref_primary_10_1086_702856
crossref_primary_10_1093_molbev_msad059
crossref_primary_10_1038_s41564_025_01997_7
crossref_primary_10_3389_fevo_2020_00249
crossref_primary_10_1016_j_cell_2024_05_007
crossref_primary_10_1002_jmor_21037
crossref_primary_10_1016_j_yhbeh_2023_105437
crossref_primary_10_1002_ece3_5645
crossref_primary_10_1093_sysbio_syaa101
crossref_primary_10_1111_1365_2656_13862
crossref_primary_10_1111_1365_2656_13501
crossref_primary_10_1126_science_adp4671
crossref_primary_10_1016_j_ppees_2021_125650
crossref_primary_10_1111_1755_0998_12919
crossref_primary_10_1111_brv_12646
crossref_primary_10_1038_s41467_019_11307_5
crossref_primary_10_1038_s41467_022_34609_7
crossref_primary_10_1086_682409
crossref_primary_10_1111_geb_13900
crossref_primary_10_3390_toxins11120711
crossref_primary_10_1038_s41564_018_0156_0
crossref_primary_10_1007_s10682_016_9865_0
crossref_primary_10_1016_j_cub_2022_07_066
crossref_primary_10_1186_s12862_021_01880_z
crossref_primary_10_1002_ece3_3117
crossref_primary_10_1016_j_isci_2025_112809
crossref_primary_10_1093_molbev_msac082
crossref_primary_10_1002_ece3_11509
crossref_primary_10_1038_s41467_022_34828_y
crossref_primary_10_1111_1365_2435_14145
crossref_primary_10_1093_aob_mcae107
crossref_primary_10_1093_aobpla_plz061
crossref_primary_10_1111_ele_14224
crossref_primary_10_1111_evo_14629
crossref_primary_10_1111_cobi_14351
crossref_primary_10_1038_s41396_019_0552_3
crossref_primary_10_1111_nph_19544
crossref_primary_10_1111_nph_19786
crossref_primary_10_1111_tbed_12903
crossref_primary_10_1038_s41467_023_41225_6
crossref_primary_10_1002_ece3_3120
crossref_primary_10_1016_j_cub_2023_09_043
crossref_primary_10_1038_s41576_024_00803_0
crossref_primary_10_1111_mec_13910
crossref_primary_10_1111_ele_13375
crossref_primary_10_1109_SR_2025_3603142
crossref_primary_10_1111_evo_13893
crossref_primary_10_1017_pab_2022_28
crossref_primary_10_1111_1365_2435_14153
crossref_primary_10_1111_2041_210X_13136
crossref_primary_10_1007_s00572_021_01047_0
crossref_primary_10_1111_ibi_12732
crossref_primary_10_1111_2041_210X_12285
crossref_primary_10_1038_s41467_022_31227_1
crossref_primary_10_1093_aob_mcad141
crossref_primary_10_1111_evo_14639
crossref_primary_10_1111_nph_18325
crossref_primary_10_1371_journal_pone_0244299
crossref_primary_10_1038_s41467_023_41290_x
crossref_primary_10_3897_neobiota_33_10471
crossref_primary_10_1007_s00359_023_01661_7
crossref_primary_10_1038_s44185_023_00016_4
crossref_primary_10_7717_peerj_17784
crossref_primary_10_1111_jbi_13870
crossref_primary_10_1086_711470
crossref_primary_10_1038_s41559_024_02329_4
crossref_primary_10_1111_evo_14510
crossref_primary_10_1111_evo_14638
crossref_primary_10_3389_fevo_2022_1032378
crossref_primary_10_1111_evo_14637
crossref_primary_10_1111_evo_14636
crossref_primary_10_1094_PDIS_06_20_1375_RE
crossref_primary_10_1086_687575
crossref_primary_10_1111_ele_13476
crossref_primary_10_1111_ddi_13655
crossref_primary_10_1016_j_ttbdis_2020_101419
crossref_primary_10_1111_geb_12504
crossref_primary_10_1093_aob_mcad158
crossref_primary_10_1111_nph_17069
crossref_primary_10_3389_fpls_2022_881879
crossref_primary_10_1080_00222933_2024_2388327
crossref_primary_10_1002_ece3_8159
crossref_primary_10_1093_biolinnean_blae061
crossref_primary_10_1093_sysbio_syaf034
crossref_primary_10_1093_sysbio_syv019
crossref_primary_10_1038_s41467_020_16257_x
crossref_primary_10_1111_ele_13595
crossref_primary_10_1111_ele_13233
crossref_primary_10_1111_geb_13718
crossref_primary_10_1111_jeb_14117
crossref_primary_10_1086_737357
crossref_primary_10_1098_rspb_2021_1080
crossref_primary_10_1111_jeb_14234
crossref_primary_10_1111_1365_2435_14572
crossref_primary_10_1101_gr_279837_124
crossref_primary_10_1038_s41559_022_01761_8
crossref_primary_10_1239_jap_1450802756
crossref_primary_10_1111_nph_13700
crossref_primary_10_1111_evo_12988
crossref_primary_10_1111_evo_13834
crossref_primary_10_1038_s41559_022_01915_8
crossref_primary_10_1007_s00265_023_03292_z
crossref_primary_10_1038_s41467_019_10767_z
crossref_primary_10_1038_s42003_022_04144_8
crossref_primary_10_1111_ddi_13788
crossref_primary_10_1002_ece3_8047
crossref_primary_10_1038_s41477_019_0549_y
crossref_primary_10_1002_pan3_10521
crossref_primary_10_1093_jeb_voaf080
crossref_primary_10_1111_nph_20464
crossref_primary_10_1111_1365_2656_13397
crossref_primary_10_1093_gbe_evaf068
crossref_primary_10_1073_pnas_2111256119
crossref_primary_10_1111_1365_2435_14462
crossref_primary_10_1016_j_actao_2017_10_007
crossref_primary_10_1093_molbev_msaf152
crossref_primary_10_1111_ecog_05160
crossref_primary_10_1111_2041_210X_12990
crossref_primary_10_1126_science_aaz9445
crossref_primary_10_1038_s41586_019_1058_x
crossref_primary_10_1111_conl_12977
crossref_primary_10_1111_ddi_13432
crossref_primary_10_1098_rsos_180893
crossref_primary_10_1038_s41467_023_39121_0
crossref_primary_10_1111_nph_19584
crossref_primary_10_1111_mec_15616
crossref_primary_10_1093_aob_mcae027
crossref_primary_10_1111_jeb_13240
crossref_primary_10_1111_jeb_13364
crossref_primary_10_1128_spectrum_01010_23
crossref_primary_10_1073_pnas_1710172114
crossref_primary_10_1002_ece3_3723
crossref_primary_10_1016_j_sajb_2017_11_017
crossref_primary_10_1038_s41467_025_57547_6
crossref_primary_10_1111_pala_70000
crossref_primary_10_1007_s11104_021_05031_7
crossref_primary_10_1016_j_pld_2025_06_003
crossref_primary_10_1093_molbev_msae097
crossref_primary_10_1111_evo_12768
crossref_primary_10_1111_nph_13921
crossref_primary_10_1111_jssr_12813
crossref_primary_10_1093_aob_mcac079
crossref_primary_10_1111_jbi_13709
crossref_primary_10_1038_s41467_023_36676_w
crossref_primary_10_1093_aob_mcae139
crossref_primary_10_1111_nph_19214
crossref_primary_10_1093_jmammal_gyae084
crossref_primary_10_1002_ar_23900
crossref_primary_10_1093_sysbio_syw015
crossref_primary_10_1073_pnas_2122580119
crossref_primary_10_1111_1365_2435_70133
crossref_primary_10_1093_evolut_qpaf011
crossref_primary_10_3389_fevo_2019_00089
crossref_primary_10_1002_ecy_4122
crossref_primary_10_1038_s41586_024_07323_1
crossref_primary_10_1038_s42003_023_05359_z
crossref_primary_10_1111_jeb_14102
crossref_primary_10_1111_1365_2435_70135
crossref_primary_10_1093_biolinnean_blaf019
crossref_primary_10_1111_2041_210X_12534
crossref_primary_10_1093_molbev_msae081
crossref_primary_10_1007_s00497_023_00480_9
crossref_primary_10_1016_j_cmet_2015_07_005
crossref_primary_10_1111_een_13411
crossref_primary_10_1111_evo_13915
crossref_primary_10_1002_lno_12478
crossref_primary_10_1093_zoolinnean_zlx006
crossref_primary_10_1111_ecog_02946
crossref_primary_10_1111_jeb_14153
crossref_primary_10_1111_jeb_14150
crossref_primary_10_1016_j_foreco_2017_02_012
crossref_primary_10_1111_pala_70020
crossref_primary_10_1093_molbev_msz127
crossref_primary_10_1111_jbi_13700
crossref_primary_10_1016_j_actao_2024_103980
crossref_primary_10_7554_eLife_88236
crossref_primary_10_1111_oik_07912
crossref_primary_10_1093_biolinnean_bly164
crossref_primary_10_1093_genetics_iyad024
crossref_primary_10_1111_2041_210X_12420
crossref_primary_10_1111_1749_4877_13034
crossref_primary_10_1111_ecog_06060
crossref_primary_10_1016_j_measurement_2024_114391
crossref_primary_10_1111_geb_13746
crossref_primary_10_1111_oik_10073
crossref_primary_10_1111_geb_13622
crossref_primary_10_1093_zoolinnean_zlaf013
crossref_primary_10_1111_jeb_13198
crossref_primary_10_1111_1365_2656_13354
crossref_primary_10_1086_686055
crossref_primary_10_1186_s40168_019_0698_2
crossref_primary_10_1242_jeb_239798
crossref_primary_10_1093_aob_mcae160
crossref_primary_10_1098_rsos_250543
crossref_primary_10_1111_nph_15919
crossref_primary_10_3390_d10030063
crossref_primary_10_1002_ajb2_16094
crossref_primary_10_1002_ajb2_16093
crossref_primary_10_1093_aob_mcad199
crossref_primary_10_1093_aob_mcaf014
crossref_primary_10_1093_evolut_qpaf072
crossref_primary_10_1093_molbev_msaf192
crossref_primary_10_1111_ele_13773
crossref_primary_10_1126_science_abn3943
crossref_primary_10_1016_j_tpb_2019_11_005
crossref_primary_10_7554_eLife_95857_3
crossref_primary_10_1038_s41467_022_30037_9
crossref_primary_10_1111_mec_16907
crossref_primary_10_1017_S0021900200113117
crossref_primary_10_1017_S0031182024000283
crossref_primary_10_1038_s41477_022_01216_9
crossref_primary_10_1111_nph_18050
crossref_primary_10_3389_fpubh_2018_00235
crossref_primary_10_1111_brv_12828
crossref_primary_10_3389_fpls_2020_01154
crossref_primary_10_1126_sciadv_ads8488
crossref_primary_10_1073_pnas_2101691118
crossref_primary_10_1073_pnas_1910631117
crossref_primary_10_1159_000538090
crossref_primary_10_1093_aob_mcaf046
crossref_primary_10_1073_pnas_2101458118
crossref_primary_10_1093_biolinnean_blz152
crossref_primary_10_1111_1365_2435_14675
crossref_primary_10_1038_s41586_023_06625_0
crossref_primary_10_1111_evo_13948
crossref_primary_10_1093_aob_mcaf027
crossref_primary_10_1002_pan3_10741
crossref_primary_10_1093_jeb_voaf025
crossref_primary_10_1093_biolinnean_blae096
crossref_primary_10_1111_jeb_13170
crossref_primary_10_1080_01621459_2020_1799812
crossref_primary_10_1111_ele_13662
crossref_primary_10_1016_j_ppees_2017_08_003
crossref_primary_10_1038_s41467_020_15894_6
crossref_primary_10_3390_sym15071445
crossref_primary_10_1093_evolut_qpaf057
crossref_primary_10_1093_evolut_qpaf058
crossref_primary_10_1017_pab_2018_49
crossref_primary_10_1111_evo_13702
crossref_primary_10_1111_ele_12542
crossref_primary_10_1111_ele_13753
crossref_primary_10_1111_evo_12901
crossref_primary_10_1186_s12862_018_1229_7
crossref_primary_10_3390_math13010170
crossref_primary_10_1093_sysbio_syad012
crossref_primary_10_1111_1365_2745_12814
crossref_primary_10_1371_journal_pone_0231526
crossref_primary_10_1371_journal_pone_0275469
crossref_primary_10_1371_journal_pgen_1008493
crossref_primary_10_1111_jzo_70021
crossref_primary_10_1038_s41467_023_42745_x
crossref_primary_10_1038_s41586_023_06990_w
crossref_primary_10_1111_ecog_06423
crossref_primary_10_1111_geb_70115
crossref_primary_10_1002_ece3_71449
crossref_primary_10_1002_ece3_10290
crossref_primary_10_1016_j_ppees_2017_06_004
crossref_primary_10_1073_pnas_2204336119
crossref_primary_10_1016_j_jebo_2024_02_034
crossref_primary_10_1038_s41564_019_0523_5
crossref_primary_10_1371_journal_pgen_1011533
crossref_primary_10_1007_s11829_025_10159_9
crossref_primary_10_1093_evolut_qpad002
crossref_primary_10_1093_aob_mcz012
crossref_primary_10_3732_ajb_1500394
crossref_primary_10_1093_ornithology_ukac008
crossref_primary_10_1111_geb_12336
crossref_primary_10_1111_gcb_17107
crossref_primary_10_1093_evlett_qraf028
crossref_primary_10_1016_j_avrs_2025_100283
crossref_primary_10_1111_mec_16555
crossref_primary_10_1002_ajb2_16211
crossref_primary_10_1093_evolut_qpae100
crossref_primary_10_1016_j_ppees_2018_08_004
crossref_primary_10_1111_mec_14492
crossref_primary_10_1111_geb_13663
crossref_primary_10_1093_sysbio_syae009
crossref_primary_10_1086_685894
crossref_primary_10_1080_01584197_2022_2104735
crossref_primary_10_7717_peerj_14800
crossref_primary_10_1007_s10530_025_03653_x
crossref_primary_10_1093_beheco_arac050
crossref_primary_10_1093_evolut_qpac015
crossref_primary_10_1111_nph_19061
crossref_primary_10_1086_707207
crossref_primary_10_1111_mec_15575
crossref_primary_10_1086_682022
crossref_primary_10_1038_s41559_024_02487_5
crossref_primary_10_1002_ajb2_16127
crossref_primary_10_1002_ece3_71305
crossref_primary_10_1111_ecog_05476
crossref_primary_10_1111_ecog_04140
crossref_primary_10_1111_icad_12861
crossref_primary_10_1080_10618600_2020_1754226
crossref_primary_10_1111_jeb_13406
crossref_primary_10_1186_s12864_024_11039_x
crossref_primary_10_3390_ani10081443
crossref_primary_10_1111_1365_2435_14407
crossref_primary_10_1007_s11104_020_04422_6
crossref_primary_10_1093_nar_gkz1197
crossref_primary_10_1371_journal_pone_0219759
crossref_primary_10_3389_fmicb_2022_871148
crossref_primary_10_1002_ecy_3555
crossref_primary_10_1038_s41559_023_02172_z
crossref_primary_10_1016_j_ympev_2023_107839
crossref_primary_10_1111_geb_70108
crossref_primary_10_1111_ecog_03040
crossref_primary_10_3389_fpls_2024_1403273
crossref_primary_10_1002_ajb2_16230
crossref_primary_10_1111_geb_70109
crossref_primary_10_1093_aob_mcy194
crossref_primary_10_1002_ece3_2929
crossref_primary_10_1111_geb_13760
crossref_primary_10_1016_j_cub_2021_01_009
crossref_primary_10_1002_ecs2_2542
crossref_primary_10_1111_ele_13950
crossref_primary_10_5852_cr_palevol2025v24a17
crossref_primary_10_1111_bij_12810
crossref_primary_10_1111_1365_2656_13181
crossref_primary_10_1177_1176934320901721
crossref_primary_10_1038_s41396_020_00775_z
crossref_primary_10_1093_sysbio_syae023
crossref_primary_10_3390_toxins10120518
crossref_primary_10_1093_sysbio_syad053
crossref_primary_10_1111_jeb_13583
crossref_primary_10_1111_mec_16762
crossref_primary_10_1038_s41467_025_62441_2
crossref_primary_10_7554_eLife_88236_3
crossref_primary_10_1371_journal_pcbi_1006242
crossref_primary_10_1093_evolut_qpae132
crossref_primary_10_7554_eLife_95857
crossref_primary_10_1111_jeb_13343
crossref_primary_10_1093_evolut_qpae135
crossref_primary_10_1177_1059712315611733
crossref_primary_10_1111_nph_15769
crossref_primary_10_1111_1365_2435_13600
crossref_primary_10_1111_nph_16617
crossref_primary_10_1186_s12862_023_02188_w
crossref_primary_10_1093_sysbio_syv066
crossref_primary_10_1111_ele_12753
crossref_primary_10_1098_rsbl_2025_0374
crossref_primary_10_1111_cobi_13852
crossref_primary_10_1093_sysbio_syae011
crossref_primary_10_3390_biology14070757
crossref_primary_10_1002_ajb2_1544
crossref_primary_10_1093_sysbio_syac079
crossref_primary_10_1002_ece3_2820
crossref_primary_10_1093_molbev_msx235
crossref_primary_10_1007_s00442_022_05221_9
crossref_primary_10_1093_biolinnean_blac096
crossref_primary_10_1111_nph_16729
crossref_primary_10_1007_s13127_016_0291_5
crossref_primary_10_1093_biolinnean_blac095
crossref_primary_10_1111_ibi_13350
crossref_primary_10_1126_science_adf7122
crossref_primary_10_1073_pnas_1424030112
crossref_primary_10_1093_evolut_qpae146
crossref_primary_10_1111_2041_210X_13920
crossref_primary_10_1111_oik_08714
crossref_primary_10_1111_ibi_13118
crossref_primary_10_1111_nph_18902
crossref_primary_10_1002_ecs2_3733
crossref_primary_10_1111_geb_13341
crossref_primary_10_1111_jvs_12959
crossref_primary_10_1111_nph_15999
crossref_primary_10_1111_jbi_14062
crossref_primary_10_1111_1462_2920_16601
crossref_primary_10_1038_s41467_023_42352_w
crossref_primary_10_1038_ismej_2015_96
crossref_primary_10_1002_ece3_9587
crossref_primary_10_1111_ecog_00709
crossref_primary_10_1016_j_biocon_2014_10_023
crossref_primary_10_1371_journal_pone_0222718
crossref_primary_10_1016_j_isci_2025_112253
crossref_primary_10_1016_j_jembe_2021_151544
crossref_primary_10_1093_beheco_araf006
crossref_primary_10_1002_ajb2_1578
crossref_primary_10_1002_zoo_21427
crossref_primary_10_1111_1365_2656_14135
crossref_primary_10_1002_ajp_22953
crossref_primary_10_2135_cropsci2017_02_0078
crossref_primary_10_1038_s41467_018_06199_w
crossref_primary_10_1016_j_cub_2025_07_004
crossref_primary_10_1111_jzs_12329
crossref_primary_10_1093_botlinnean_box005
crossref_primary_10_1002_ece3_2837
crossref_primary_10_1126_science_add8606
crossref_primary_10_1093_evolut_qpac057
crossref_primary_10_1111_ele_13938
crossref_primary_10_1002_ece3_7290
crossref_primary_10_1038_s41559_022_01749_4
crossref_primary_10_1086_689819
crossref_primary_10_1093_beheco_arad051
crossref_primary_10_1126_science_abn5856
crossref_primary_10_1640_0002_8444_107_3_136
crossref_primary_10_1093_beheco_arad053
crossref_primary_10_1111_geb_12358
crossref_primary_10_1111_1365_2656_14141
crossref_primary_10_1093_sysbio_syw051
crossref_primary_10_1080_03610918_2022_2037639
crossref_primary_10_1002_ajb2_1326
crossref_primary_10_1111_1365_2745_12866
crossref_primary_10_1093_biolinnean_blab099
crossref_primary_10_1093_sysbio_syx028
crossref_primary_10_1111_eth_13109
crossref_primary_10_1177_11779322241257991
crossref_primary_10_1111_jeb_13690
crossref_primary_10_1111_mec_16854
crossref_primary_10_1016_j_plgene_2022_100384
crossref_primary_10_1038_s41467_019_11943_x
crossref_primary_10_1080_09670262_2018_1466200
crossref_primary_10_1111_2041_210X_12612
crossref_primary_10_1007_s10530_015_1003_3
crossref_primary_10_1073_pnas_2021390118
crossref_primary_10_1111_ele_12738
crossref_primary_10_1098_rspb_2025_0910
crossref_primary_10_1111_nph_14889
crossref_primary_10_1016_j_ympev_2024_108236
crossref_primary_10_1038_s41598_021_04077_y
crossref_primary_10_7554_eLife_83426
crossref_primary_10_1093_sysbio_syaa029
crossref_primary_10_1111_geb_70070
crossref_primary_10_1093_sysbio_syz055
crossref_primary_10_1002_ece3_70504
crossref_primary_10_1371_journal_pgen_1010607
crossref_primary_10_1111_ele_70021
crossref_primary_10_1007_s00265_023_03418_3
crossref_primary_10_1007_s11104_024_06543_8
crossref_primary_10_1128_spectrum_03409_22
crossref_primary_10_1111_jeb_12857
crossref_primary_10_1111_oik_08522
crossref_primary_10_1111_geb_13396
crossref_primary_10_7717_peerj_4313
crossref_primary_10_1111_2041_210X_14251
crossref_primary_10_1186_s12864_022_08353_7
crossref_primary_10_1073_pnas_2505624122
crossref_primary_10_1371_journal_pbio_2001855
crossref_primary_10_1007_s10531_018_01688_2
crossref_primary_10_1073_pnas_2309475121
crossref_primary_10_1093_jmammal_gyy107
crossref_primary_10_1111_ecog_06817
crossref_primary_10_1073_pnas_2220389120
crossref_primary_10_1093_sysbio_syaa010
crossref_primary_10_1038_s41598_025_95566_x
crossref_primary_10_1111_ecog_04877
crossref_primary_10_1002_ar_25548
crossref_primary_10_1038_s42003_021_02870_z
crossref_primary_10_1038_s41586_019_1302_4
crossref_primary_10_1111_jeb_12984
crossref_primary_10_1073_pnas_2415979122
crossref_primary_10_1111_joa_13608
crossref_primary_10_1111_evo_14017
crossref_primary_10_1038_s41598_024_69215_8
crossref_primary_10_1016_j_molp_2018_06_002
crossref_primary_10_1111_geb_13142
crossref_primary_10_1038_s41467_023_39954_9
crossref_primary_10_1371_journal_pone_0187228
crossref_primary_10_1093_icb_icu057
crossref_primary_10_1093_sysbio_syaa049
crossref_primary_10_1146_annurev_statistics_033021_112532
crossref_primary_10_1111_eth_13410
crossref_primary_10_1038_s41396_018_0245_3
crossref_primary_10_1002_ece3_6313
crossref_primary_10_1098_rsos_181182
crossref_primary_10_1111_jzo_13042
crossref_primary_10_1038_s41558_018_0312_9
crossref_primary_10_1111_1365_2745_13888
crossref_primary_10_1002_ecy_1649
crossref_primary_10_1002_ajp_70072
crossref_primary_10_1016_j_tpb_2019_01_001
crossref_primary_10_1016_j_ppees_2016_03_002
crossref_primary_10_1016_j_ympev_2020_106878
crossref_primary_10_1111_evo_14024
crossref_primary_10_1111_evo_14144
crossref_primary_10_1111_evo_14143
crossref_primary_10_1371_journal_pone_0226203
crossref_primary_10_3732_ajb_1600287
crossref_primary_10_24072_pcjournal_259
crossref_primary_10_1111_2041_210X_14385
crossref_primary_10_1111_nph_17605
crossref_primary_10_1093_ornithology_ukae067
crossref_primary_10_1016_j_ppees_2019_125464
crossref_primary_10_1073_pnas_1804633115
crossref_primary_10_1093_molbev_msab121
crossref_primary_10_1111_joa_13742
crossref_primary_10_1111_geb_13009
crossref_primary_10_1093_ornithology_ukae064
crossref_primary_10_1007_s10914_019_09464_x
crossref_primary_10_3389_fevo_2023_1234244
crossref_primary_10_3390_d13110553
crossref_primary_10_1086_688097
crossref_primary_10_1002_ece3_6322
crossref_primary_10_1086_701630
crossref_primary_10_1186_s12862_025_02374_y
crossref_primary_10_1098_rsos_221513
crossref_primary_10_1111_evo_14030
crossref_primary_10_1111_evo_14393
crossref_primary_10_1111_ecog_06950
crossref_primary_10_1098_rsos_231541
crossref_primary_10_1111_1365_2656_13816
crossref_primary_10_1098_rsos_230451
crossref_primary_10_3897_neobiota_91_115675
crossref_primary_10_1002_evl3_199
crossref_primary_10_1038_s41587_023_01857_x
crossref_primary_10_1186_s12859_018_2413_x
crossref_primary_10_1017_pab_2024_5
crossref_primary_10_1111_geb_13486
crossref_primary_10_1111_pce_14380
crossref_primary_10_1111_faf_12800
crossref_primary_10_1016_j_baae_2024_11_004
crossref_primary_10_1111_nph_18993
crossref_primary_10_1002_ece3_9840
crossref_primary_10_1016_j_jplph_2022_153670
crossref_primary_10_1111_nph_14397
crossref_primary_10_1111_nph_15243
crossref_primary_10_1038_s41559_020_01321_y
crossref_primary_10_1093_sysbio_syx075
crossref_primary_10_1093_sysbio_syaa061
crossref_primary_10_1111_brv_70001
crossref_primary_10_1093_sysbio_syz012
crossref_primary_10_1093_aob_mcaa129
crossref_primary_10_1093_sysbio_syy045
crossref_primary_10_1093_sysbio_syy046
crossref_primary_10_1038_s41598_021_00964_6
crossref_primary_10_1111_jvs_12660
crossref_primary_10_1038_s41467_020_14356_3
crossref_primary_10_1016_j_cub_2022_05_057
crossref_primary_10_1111_jvs_12301
crossref_primary_10_1038_s41467_019_13405_w
crossref_primary_10_1111_ele_14092
crossref_primary_10_1111_jeb_12536
crossref_primary_10_1093_emph_eov015
crossref_primary_10_1016_j_jhevol_2015_11_007
crossref_primary_10_1038_s41396_019_0411_2
crossref_primary_10_1098_rsos_211862
crossref_primary_10_1111_nph_17304
crossref_primary_10_1111_nph_16338
crossref_primary_10_1111_geb_13198
crossref_primary_10_1016_j_actao_2021_103749
crossref_primary_10_1038_nmicrobiol_2016_160
crossref_primary_10_1002_ece3_4284
crossref_primary_10_1093_molbev_msab145
crossref_primary_10_1371_journal_pbio_3002814
crossref_primary_10_1073_pnas_2016810118
crossref_primary_10_1038_s41477_025_02022_9
crossref_primary_10_1093_iob_obad017
crossref_primary_10_1002_ece3_8648
crossref_primary_10_1002_ajb2_1266
crossref_primary_10_1016_j_cub_2025_02_068
crossref_primary_10_1111_ecog_02010
crossref_primary_10_1186_s12898_019_0220_5
crossref_primary_10_1038_s41467_021_23402_7
crossref_primary_10_1080_01584197_2021_1979893
crossref_primary_10_1111_evo_14457
crossref_primary_10_3390_stats6010028
crossref_primary_10_1016_j_ecolmodel_2019_108760
crossref_primary_10_1073_pnas_2313371121
crossref_primary_10_1086_704090
crossref_primary_10_1086_688917
crossref_primary_10_1186_s12859_021_04216_2
crossref_primary_10_1093_cz_zoac015
crossref_primary_10_1093_molbev_msac269
crossref_primary_10_3390_jof9010002
crossref_primary_10_1111_nph_14498
crossref_primary_10_1371_journal_pbio_3002847
crossref_primary_10_1093_biolinnean_blaa037
crossref_primary_10_1093_jmammal_gyaa093
crossref_primary_10_1111_jbi_14328
crossref_primary_10_1111_nph_70273
crossref_primary_10_1038_s41559_018_0570_y
crossref_primary_10_1111_jbi_14577
crossref_primary_10_1371_journal_pone_0199129
crossref_primary_10_1016_j_asd_2020_101002
crossref_primary_10_1093_nar_gkaf042
crossref_primary_10_1111_cobi_70095
crossref_primary_10_1093_sysbio_syy060
crossref_primary_10_1111_evo_14220
crossref_primary_10_1126_science_abn3263
crossref_primary_10_1111_nph_19947
crossref_primary_10_1111_nph_19702
crossref_primary_10_1016_j_jtbi_2015_01_019
crossref_primary_10_1111_geb_70012
crossref_primary_10_1086_730145
crossref_primary_10_1093_molbev_msad104
crossref_primary_10_1098_rsos_242114
crossref_primary_10_1016_j_cub_2021_02_008
crossref_primary_10_1007_s10530_024_03270_0
crossref_primary_10_3389_fpsyg_2023_1143283
crossref_primary_10_7717_peerj_4718
crossref_primary_10_1002_ar_25609
crossref_primary_10_1111_pala_12638
crossref_primary_10_1007_s10329_022_01015_y
crossref_primary_10_1093_icb_icac118
crossref_primary_10_1038_s41467_020_16982_3
crossref_primary_10_1002_ajb2_16318
crossref_primary_10_1038_s41467_023_42767_5
crossref_primary_10_1111_ecog_05669
crossref_primary_10_1111_1365_2745_12588
crossref_primary_10_1093_biolinnean_blab140
crossref_primary_10_1017_pab_2024_35
crossref_primary_10_1111_oik_06158
crossref_primary_10_1002_ajb2_1052
crossref_primary_10_1111_ecog_02393
crossref_primary_10_1016_j_anbehav_2022_02_001
crossref_primary_10_1111_evo_14357
crossref_primary_10_1111_jbi_13351
crossref_primary_10_1111_2041_210X_14076
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/sysbio/syu005
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1076-836X
ExternalDocumentID 24500037
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-~X
.-4
.2P
.I3
0R~
123
18M
1TH
29Q
2FS
36B
4.4
48X
53G
5VS
5WD
70D
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
AAHBH
AAHKG
AAIMJ
AAISJ
AAJKP
AAJQQ
AAKGQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABMNT
ABNGD
ABNKS
ABPIB
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABSMQ
ABSQW
ABTLG
ABUWG
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ABZEO
ACCCW
ACFRR
ACGEJ
ACGFO
ACGFS
ACGOD
ACHIC
ACIPB
ACNCT
ACPQN
ACPRK
ACSTJ
ACUFI
ACUHS
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADXHL
ADXPE
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEUYN
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFKRA
AFKVX
AFOFC
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUYK
AHGBF
AHMBA
AHXOZ
AHXPO
AIAGR
AIJHB
AILXY
AJBYB
AJDVS
AJEEA
AJNCP
AJWEG
AKHUL
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQEC
BAYMD
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHONS
BHPHI
BKSAR
BPHCQ
BQDIO
BSWAC
BVXVI
C45
CAG
CBGCD
CCPQU
CDBKE
CGR
COF
CS3
CUY
CUYZI
CVF
CXTWN
CZ4
D1J
DAKXR
DEVKO
DFGAJ
DILTD
DU5
DWQXO
D~K
EAD
EAP
EAS
EBC
EBD
EBS
ECM
EE~
EHN
EIF
EJD
ELUNK
EMB
EMK
EMOBN
EPL
EPT
EST
ESX
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GJXCC
GNUQQ
GTFYD
GUQSH
H13
H5~
HAR
HCIFZ
HF~
HGD
HMCUK
HQ2
HTVGU
HVGLF
HW0
HZ~
I-F
IOX
IPSME
J21
JAAYA
JBMMH
JBS
JEB
JEFFH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
LK8
M-Z
M1P
M2O
M2P
M2Q
M7P
MBTAY
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NPM
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PADUT
PAFKI
PB-
PCBAR
PEELM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q1.
Q5Y
QBD
Q~Q
RD5
ROX
ROZ
RUSNO
RW1
RWL
RXO
RXW
S0X
SA0
SV3
TAE
TCN
TEORI
TLC
TN5
TUS
UBC
UKHRP
WH7
WHG
X7H
XOL
XSW
YAYTL
YKOAZ
YXANX
YXE
ZCG
ZY4
~02
~91
7X8
ABUFD
ID FETCH-LOGICAL-c481t-eff264d6878bf3f28210856ebc61b2834b7513268dba7e69113c947b14d1954b2
IEDL.DBID 7X8
ISICitedReferencesCount 795
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334752600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-836X
IngestDate Sun Nov 09 11:24:38 EST 2025
Mon Jul 21 06:03:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-eff264d6878bf3f28210856ebc61b2834b7513268dba7e69113c947b14d1954b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/sysbio/article-pdf/63/3/397/17831239/syu005.pdf
PMID 24500037
PQID 1516723596
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1516723596
pubmed_primary_24500037
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Systematic biology
PublicationTitleAlternate Syst Biol
PublicationYear 2014
SSID ssj0011651
Score 2.6296175
Snippet We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 397
SubjectTerms Algorithms
Biological Evolution
Classification - methods
Computer Simulation
Software - standards
Title A linear-time algorithm for Gaussian and non-Gaussian trait evolution models
URI https://www.ncbi.nlm.nih.gov/pubmed/24500037
https://www.proquest.com/docview/1516723596
Volume 63
WOSCitedRecordID wos000334752600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qFHzx-2N-EcHX4NqmSfokQ6Y-zLEHheLLSNJEB9rOtRv433tJO_ckCL60R6FtCJe73-Vy90PoSoNTAi9tSUZDSyi4VCIDbohUoWEqsR0mfKFwnw8GIk2TYbPhVjbHKhc20RvqrNBuj_waPBPjYRQn7GbySRxrlMuuNhQaq6gVAZRxC5OnyyxCwDz9IkQ4jIiIpU2PTQjiXSW4Ghdwm3U68e_o0nuZu-3_jm8HbTX4EndrhdhFKybfQxs14-QXSD29kF4KL-2jfhc7rCmnxBHNY_n-Ct-t3j4w4Fl8L2elq7PEMs9wXuTk54Ejl6iwmTe6iz2nTnmAnu96T7cPpCFZIJqKoCLGWsBEGRNcKBtZiMBcPQIzSrNAAfagiscQsTKRKckNA9sY6YRyFdDMNYtT4SFag7-bY4Rjal1JQxa7Ln-ccakhNkqE2zMJIKqJ2uhyMXUjUGKXmZC5KWblaDl5bXRUz_9oUnfbGIU09l1yTv7w9inaBEBD6wOJZ6hlYQmbc7Su59W4nF547YDrYPj4DSORwwo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+linear-time+algorithm+for+Gaussian+and+non-Gaussian+trait+evolution+models&rft.jtitle=Systematic+biology&rft.au=Ho%2C+Lam+si+Tung&rft.au=An%C3%A9%2C+C%C3%A9cile&rft.date=2014-05-01&rft.eissn=1076-836X&rft.volume=63&rft.issue=3&rft.spage=397&rft_id=info:doi/10.1093%2Fsysbio%2Fsyu005&rft_id=info%3Apmid%2F24500037&rft_id=info%3Apmid%2F24500037&rft.externalDocID=24500037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-836X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-836X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-836X&client=summon