A linear-time algorithm for Gaussian and non-Gaussian trait evolution models
We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylog...
Uložené v:
| Vydané v: | Systematic biology Ročník 63; číslo 3; s. 397 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.05.2014
|
| Predmet: | |
| ISSN: | 1076-836X, 1076-836X |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression. |
|---|---|
| AbstractList | We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression. We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression. |
| Author | Ho, Lam si Tung Ané, Cécile |
| Author_xml | – sequence: 1 givenname: Lam si Tung surname: Ho fullname: Ho, Lam si Tung organization: Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA – sequence: 2 givenname: Cécile surname: Ané fullname: Ané, Cécile |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24500037$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAYhIOsuB969Co5eqnmzXePy6KrUPCi4K0kbaqRNFmbVth_74KreJpheJiBWaJZTNEhdAnkBkjJbvM-W58OMhEiTtACiJKFZvJ19s_P0TLnD0IApIAzNKdcEEKYWqBqjYOPzgzF6HuHTXhLgx_fe9ylAW_NlLM3EZvY4sNu8ReMg_Ejdl8pTKNPEfepdSGfo9POhOwujrpCL_d3z5uHonraPm7WVdFwDWPhuo5K3kqttO1YRzUFooV0tpFgqWbcKgGMSt1ao5wsAVhTcmWBt1AKbukKXf_07ob0Obk81r3PjQvBRJemXIMAqSgTpTygV0d0sr1r693gezPs698H6DcdqV_M |
| CitedBy_id | crossref_primary_10_1093_molbev_msab078 crossref_primary_10_1111_btp_13303 crossref_primary_10_1111_nph_16012 crossref_primary_10_1111_ddi_12721 crossref_primary_10_1242_jeb_201525 crossref_primary_10_1111_1365_2745_70146 crossref_primary_10_1016_j_ympev_2018_04_030 crossref_primary_10_1093_molbev_msab079 crossref_primary_10_1007_s00285_016_1029_x crossref_primary_10_7554_eLife_66926 crossref_primary_10_1038_s41559_017_0185 crossref_primary_10_1111_ele_13199 crossref_primary_10_1016_j_landurbplan_2023_104801 crossref_primary_10_1111_evo_12582 crossref_primary_10_1186_s13059_014_0539_3 crossref_primary_10_1242_jeb_245699 crossref_primary_10_1038_s41467_025_61835_6 crossref_primary_10_1242_jeb_242186 crossref_primary_10_1098_rsos_250116 crossref_primary_10_1038_ncomms13313 crossref_primary_10_1111_evo_13559 crossref_primary_10_1093_molbev_msab083 crossref_primary_10_1242_jeb_243292 crossref_primary_10_7717_peerj_1668 crossref_primary_10_1007_s00285_023_01922_8 crossref_primary_10_1111_1365_2656_13791 crossref_primary_10_1111_ele_14294 crossref_primary_10_1007_s00114_023_01871_8 crossref_primary_10_1038_s41467_021_27479_y crossref_primary_10_1038_s41598_023_28104_2 crossref_primary_10_1007_s11252_022_01242_7 crossref_primary_10_1111_nph_15270 crossref_primary_10_1111_1365_2745_13575 crossref_primary_10_1093_icb_icaa074 crossref_primary_10_1111_jbi_14547 crossref_primary_10_1186_s42523_022_00220_w crossref_primary_10_1111_2041_210X_12354 crossref_primary_10_1016_j_biocon_2022_109590 crossref_primary_10_1038_s41586_025_08777_7 crossref_primary_10_1111_fwb_13729 crossref_primary_10_1038_s41467_022_30535_w crossref_primary_10_1093_botlinnean_boaa058 crossref_primary_10_1002_ece3_2471 crossref_primary_10_1371_journal_pcbi_1007948 crossref_primary_10_1098_rsos_160681 crossref_primary_10_7717_peerj_15575 crossref_primary_10_1038_s41467_024_49506_4 crossref_primary_10_1093_biolinnean_blz117 crossref_primary_10_1086_736566 crossref_primary_10_1093_evolut_qpaf088 crossref_primary_10_1016_j_biocon_2025_111499 crossref_primary_10_1016_j_biocon_2025_111375 crossref_primary_10_1111_evo_14541 crossref_primary_10_1073_pnas_1705769114 crossref_primary_10_1093_biolinnean_bly020 crossref_primary_10_1111_evo_14425 crossref_primary_10_1093_evolut_qpaf080 crossref_primary_10_1007_s00114_018_1543_3 crossref_primary_10_1098_rsos_171780 crossref_primary_10_1111_ibi_12770 crossref_primary_10_1093_cz_zoac106 crossref_primary_10_3389_fmicb_2022_773114 crossref_primary_10_1093_aob_mcab028 crossref_primary_10_1242_jeb_246342 crossref_primary_10_1111_nph_14285 crossref_primary_10_1007_s11104_018_3858_4 crossref_primary_10_1111_gcb_15623 crossref_primary_10_1111_jeb_14189 crossref_primary_10_1126_science_abm7993 crossref_primary_10_3389_fpls_2021_632464 crossref_primary_10_3389_fmars_2018_00450 crossref_primary_10_1676_22_00048 crossref_primary_10_1002_ece3_4426 crossref_primary_10_1093_biolinnean_bly015 crossref_primary_10_1126_science_abm7759 crossref_primary_10_1073_pnas_2314135120 crossref_primary_10_1111_jbi_70016 crossref_primary_10_1111_1440_1703_12502 crossref_primary_10_1093_isd_ixac031 crossref_primary_10_1086_702856 crossref_primary_10_1093_molbev_msad059 crossref_primary_10_1038_s41564_025_01997_7 crossref_primary_10_3389_fevo_2020_00249 crossref_primary_10_1016_j_cell_2024_05_007 crossref_primary_10_1002_jmor_21037 crossref_primary_10_1016_j_yhbeh_2023_105437 crossref_primary_10_1002_ece3_5645 crossref_primary_10_1093_sysbio_syaa101 crossref_primary_10_1111_1365_2656_13862 crossref_primary_10_1111_1365_2656_13501 crossref_primary_10_1126_science_adp4671 crossref_primary_10_1016_j_ppees_2021_125650 crossref_primary_10_1111_1755_0998_12919 crossref_primary_10_1111_brv_12646 crossref_primary_10_1038_s41467_019_11307_5 crossref_primary_10_1038_s41467_022_34609_7 crossref_primary_10_1086_682409 crossref_primary_10_1111_geb_13900 crossref_primary_10_3390_toxins11120711 crossref_primary_10_1038_s41564_018_0156_0 crossref_primary_10_1007_s10682_016_9865_0 crossref_primary_10_1016_j_cub_2022_07_066 crossref_primary_10_1186_s12862_021_01880_z crossref_primary_10_1002_ece3_3117 crossref_primary_10_1016_j_isci_2025_112809 crossref_primary_10_1093_molbev_msac082 crossref_primary_10_1002_ece3_11509 crossref_primary_10_1038_s41467_022_34828_y crossref_primary_10_1111_1365_2435_14145 crossref_primary_10_1093_aob_mcae107 crossref_primary_10_1093_aobpla_plz061 crossref_primary_10_1111_ele_14224 crossref_primary_10_1111_evo_14629 crossref_primary_10_1111_cobi_14351 crossref_primary_10_1038_s41396_019_0552_3 crossref_primary_10_1111_nph_19544 crossref_primary_10_1111_nph_19786 crossref_primary_10_1111_tbed_12903 crossref_primary_10_1038_s41467_023_41225_6 crossref_primary_10_1002_ece3_3120 crossref_primary_10_1016_j_cub_2023_09_043 crossref_primary_10_1038_s41576_024_00803_0 crossref_primary_10_1111_mec_13910 crossref_primary_10_1111_ele_13375 crossref_primary_10_1109_SR_2025_3603142 crossref_primary_10_1111_evo_13893 crossref_primary_10_1017_pab_2022_28 crossref_primary_10_1111_1365_2435_14153 crossref_primary_10_1111_2041_210X_13136 crossref_primary_10_1007_s00572_021_01047_0 crossref_primary_10_1111_ibi_12732 crossref_primary_10_1111_2041_210X_12285 crossref_primary_10_1038_s41467_022_31227_1 crossref_primary_10_1093_aob_mcad141 crossref_primary_10_1111_evo_14639 crossref_primary_10_1111_nph_18325 crossref_primary_10_1371_journal_pone_0244299 crossref_primary_10_1038_s41467_023_41290_x crossref_primary_10_3897_neobiota_33_10471 crossref_primary_10_1007_s00359_023_01661_7 crossref_primary_10_1038_s44185_023_00016_4 crossref_primary_10_7717_peerj_17784 crossref_primary_10_1111_jbi_13870 crossref_primary_10_1086_711470 crossref_primary_10_1038_s41559_024_02329_4 crossref_primary_10_1111_evo_14510 crossref_primary_10_1111_evo_14638 crossref_primary_10_3389_fevo_2022_1032378 crossref_primary_10_1111_evo_14637 crossref_primary_10_1111_evo_14636 crossref_primary_10_1094_PDIS_06_20_1375_RE crossref_primary_10_1086_687575 crossref_primary_10_1111_ele_13476 crossref_primary_10_1111_ddi_13655 crossref_primary_10_1016_j_ttbdis_2020_101419 crossref_primary_10_1111_geb_12504 crossref_primary_10_1093_aob_mcad158 crossref_primary_10_1111_nph_17069 crossref_primary_10_3389_fpls_2022_881879 crossref_primary_10_1080_00222933_2024_2388327 crossref_primary_10_1002_ece3_8159 crossref_primary_10_1093_biolinnean_blae061 crossref_primary_10_1093_sysbio_syaf034 crossref_primary_10_1093_sysbio_syv019 crossref_primary_10_1038_s41467_020_16257_x crossref_primary_10_1111_ele_13595 crossref_primary_10_1111_ele_13233 crossref_primary_10_1111_geb_13718 crossref_primary_10_1111_jeb_14117 crossref_primary_10_1086_737357 crossref_primary_10_1098_rspb_2021_1080 crossref_primary_10_1111_jeb_14234 crossref_primary_10_1111_1365_2435_14572 crossref_primary_10_1101_gr_279837_124 crossref_primary_10_1038_s41559_022_01761_8 crossref_primary_10_1239_jap_1450802756 crossref_primary_10_1111_nph_13700 crossref_primary_10_1111_evo_12988 crossref_primary_10_1111_evo_13834 crossref_primary_10_1038_s41559_022_01915_8 crossref_primary_10_1007_s00265_023_03292_z crossref_primary_10_1038_s41467_019_10767_z crossref_primary_10_1038_s42003_022_04144_8 crossref_primary_10_1111_ddi_13788 crossref_primary_10_1002_ece3_8047 crossref_primary_10_1038_s41477_019_0549_y crossref_primary_10_1002_pan3_10521 crossref_primary_10_1093_jeb_voaf080 crossref_primary_10_1111_nph_20464 crossref_primary_10_1111_1365_2656_13397 crossref_primary_10_1093_gbe_evaf068 crossref_primary_10_1073_pnas_2111256119 crossref_primary_10_1111_1365_2435_14462 crossref_primary_10_1016_j_actao_2017_10_007 crossref_primary_10_1093_molbev_msaf152 crossref_primary_10_1111_ecog_05160 crossref_primary_10_1111_2041_210X_12990 crossref_primary_10_1126_science_aaz9445 crossref_primary_10_1038_s41586_019_1058_x crossref_primary_10_1111_conl_12977 crossref_primary_10_1111_ddi_13432 crossref_primary_10_1098_rsos_180893 crossref_primary_10_1038_s41467_023_39121_0 crossref_primary_10_1111_nph_19584 crossref_primary_10_1111_mec_15616 crossref_primary_10_1093_aob_mcae027 crossref_primary_10_1111_jeb_13240 crossref_primary_10_1111_jeb_13364 crossref_primary_10_1128_spectrum_01010_23 crossref_primary_10_1073_pnas_1710172114 crossref_primary_10_1002_ece3_3723 crossref_primary_10_1016_j_sajb_2017_11_017 crossref_primary_10_1038_s41467_025_57547_6 crossref_primary_10_1111_pala_70000 crossref_primary_10_1007_s11104_021_05031_7 crossref_primary_10_1016_j_pld_2025_06_003 crossref_primary_10_1093_molbev_msae097 crossref_primary_10_1111_evo_12768 crossref_primary_10_1111_nph_13921 crossref_primary_10_1111_jssr_12813 crossref_primary_10_1093_aob_mcac079 crossref_primary_10_1111_jbi_13709 crossref_primary_10_1038_s41467_023_36676_w crossref_primary_10_1093_aob_mcae139 crossref_primary_10_1111_nph_19214 crossref_primary_10_1093_jmammal_gyae084 crossref_primary_10_1002_ar_23900 crossref_primary_10_1093_sysbio_syw015 crossref_primary_10_1073_pnas_2122580119 crossref_primary_10_1111_1365_2435_70133 crossref_primary_10_1093_evolut_qpaf011 crossref_primary_10_3389_fevo_2019_00089 crossref_primary_10_1002_ecy_4122 crossref_primary_10_1038_s41586_024_07323_1 crossref_primary_10_1038_s42003_023_05359_z crossref_primary_10_1111_jeb_14102 crossref_primary_10_1111_1365_2435_70135 crossref_primary_10_1093_biolinnean_blaf019 crossref_primary_10_1111_2041_210X_12534 crossref_primary_10_1093_molbev_msae081 crossref_primary_10_1007_s00497_023_00480_9 crossref_primary_10_1016_j_cmet_2015_07_005 crossref_primary_10_1111_een_13411 crossref_primary_10_1111_evo_13915 crossref_primary_10_1002_lno_12478 crossref_primary_10_1093_zoolinnean_zlx006 crossref_primary_10_1111_ecog_02946 crossref_primary_10_1111_jeb_14153 crossref_primary_10_1111_jeb_14150 crossref_primary_10_1016_j_foreco_2017_02_012 crossref_primary_10_1111_pala_70020 crossref_primary_10_1093_molbev_msz127 crossref_primary_10_1111_jbi_13700 crossref_primary_10_1016_j_actao_2024_103980 crossref_primary_10_7554_eLife_88236 crossref_primary_10_1111_oik_07912 crossref_primary_10_1093_biolinnean_bly164 crossref_primary_10_1093_genetics_iyad024 crossref_primary_10_1111_2041_210X_12420 crossref_primary_10_1111_1749_4877_13034 crossref_primary_10_1111_ecog_06060 crossref_primary_10_1016_j_measurement_2024_114391 crossref_primary_10_1111_geb_13746 crossref_primary_10_1111_oik_10073 crossref_primary_10_1111_geb_13622 crossref_primary_10_1093_zoolinnean_zlaf013 crossref_primary_10_1111_jeb_13198 crossref_primary_10_1111_1365_2656_13354 crossref_primary_10_1086_686055 crossref_primary_10_1186_s40168_019_0698_2 crossref_primary_10_1242_jeb_239798 crossref_primary_10_1093_aob_mcae160 crossref_primary_10_1098_rsos_250543 crossref_primary_10_1111_nph_15919 crossref_primary_10_3390_d10030063 crossref_primary_10_1002_ajb2_16094 crossref_primary_10_1002_ajb2_16093 crossref_primary_10_1093_aob_mcad199 crossref_primary_10_1093_aob_mcaf014 crossref_primary_10_1093_evolut_qpaf072 crossref_primary_10_1093_molbev_msaf192 crossref_primary_10_1111_ele_13773 crossref_primary_10_1126_science_abn3943 crossref_primary_10_1016_j_tpb_2019_11_005 crossref_primary_10_7554_eLife_95857_3 crossref_primary_10_1038_s41467_022_30037_9 crossref_primary_10_1111_mec_16907 crossref_primary_10_1017_S0021900200113117 crossref_primary_10_1017_S0031182024000283 crossref_primary_10_1038_s41477_022_01216_9 crossref_primary_10_1111_nph_18050 crossref_primary_10_3389_fpubh_2018_00235 crossref_primary_10_1111_brv_12828 crossref_primary_10_3389_fpls_2020_01154 crossref_primary_10_1126_sciadv_ads8488 crossref_primary_10_1073_pnas_2101691118 crossref_primary_10_1073_pnas_1910631117 crossref_primary_10_1159_000538090 crossref_primary_10_1093_aob_mcaf046 crossref_primary_10_1073_pnas_2101458118 crossref_primary_10_1093_biolinnean_blz152 crossref_primary_10_1111_1365_2435_14675 crossref_primary_10_1038_s41586_023_06625_0 crossref_primary_10_1111_evo_13948 crossref_primary_10_1093_aob_mcaf027 crossref_primary_10_1002_pan3_10741 crossref_primary_10_1093_jeb_voaf025 crossref_primary_10_1093_biolinnean_blae096 crossref_primary_10_1111_jeb_13170 crossref_primary_10_1080_01621459_2020_1799812 crossref_primary_10_1111_ele_13662 crossref_primary_10_1016_j_ppees_2017_08_003 crossref_primary_10_1038_s41467_020_15894_6 crossref_primary_10_3390_sym15071445 crossref_primary_10_1093_evolut_qpaf057 crossref_primary_10_1093_evolut_qpaf058 crossref_primary_10_1017_pab_2018_49 crossref_primary_10_1111_evo_13702 crossref_primary_10_1111_ele_12542 crossref_primary_10_1111_ele_13753 crossref_primary_10_1111_evo_12901 crossref_primary_10_1186_s12862_018_1229_7 crossref_primary_10_3390_math13010170 crossref_primary_10_1093_sysbio_syad012 crossref_primary_10_1111_1365_2745_12814 crossref_primary_10_1371_journal_pone_0231526 crossref_primary_10_1371_journal_pone_0275469 crossref_primary_10_1371_journal_pgen_1008493 crossref_primary_10_1111_jzo_70021 crossref_primary_10_1038_s41467_023_42745_x crossref_primary_10_1038_s41586_023_06990_w crossref_primary_10_1111_ecog_06423 crossref_primary_10_1111_geb_70115 crossref_primary_10_1002_ece3_71449 crossref_primary_10_1002_ece3_10290 crossref_primary_10_1016_j_ppees_2017_06_004 crossref_primary_10_1073_pnas_2204336119 crossref_primary_10_1016_j_jebo_2024_02_034 crossref_primary_10_1038_s41564_019_0523_5 crossref_primary_10_1371_journal_pgen_1011533 crossref_primary_10_1007_s11829_025_10159_9 crossref_primary_10_1093_evolut_qpad002 crossref_primary_10_1093_aob_mcz012 crossref_primary_10_3732_ajb_1500394 crossref_primary_10_1093_ornithology_ukac008 crossref_primary_10_1111_geb_12336 crossref_primary_10_1111_gcb_17107 crossref_primary_10_1093_evlett_qraf028 crossref_primary_10_1016_j_avrs_2025_100283 crossref_primary_10_1111_mec_16555 crossref_primary_10_1002_ajb2_16211 crossref_primary_10_1093_evolut_qpae100 crossref_primary_10_1016_j_ppees_2018_08_004 crossref_primary_10_1111_mec_14492 crossref_primary_10_1111_geb_13663 crossref_primary_10_1093_sysbio_syae009 crossref_primary_10_1086_685894 crossref_primary_10_1080_01584197_2022_2104735 crossref_primary_10_7717_peerj_14800 crossref_primary_10_1007_s10530_025_03653_x crossref_primary_10_1093_beheco_arac050 crossref_primary_10_1093_evolut_qpac015 crossref_primary_10_1111_nph_19061 crossref_primary_10_1086_707207 crossref_primary_10_1111_mec_15575 crossref_primary_10_1086_682022 crossref_primary_10_1038_s41559_024_02487_5 crossref_primary_10_1002_ajb2_16127 crossref_primary_10_1002_ece3_71305 crossref_primary_10_1111_ecog_05476 crossref_primary_10_1111_ecog_04140 crossref_primary_10_1111_icad_12861 crossref_primary_10_1080_10618600_2020_1754226 crossref_primary_10_1111_jeb_13406 crossref_primary_10_1186_s12864_024_11039_x crossref_primary_10_3390_ani10081443 crossref_primary_10_1111_1365_2435_14407 crossref_primary_10_1007_s11104_020_04422_6 crossref_primary_10_1093_nar_gkz1197 crossref_primary_10_1371_journal_pone_0219759 crossref_primary_10_3389_fmicb_2022_871148 crossref_primary_10_1002_ecy_3555 crossref_primary_10_1038_s41559_023_02172_z crossref_primary_10_1016_j_ympev_2023_107839 crossref_primary_10_1111_geb_70108 crossref_primary_10_1111_ecog_03040 crossref_primary_10_3389_fpls_2024_1403273 crossref_primary_10_1002_ajb2_16230 crossref_primary_10_1111_geb_70109 crossref_primary_10_1093_aob_mcy194 crossref_primary_10_1002_ece3_2929 crossref_primary_10_1111_geb_13760 crossref_primary_10_1016_j_cub_2021_01_009 crossref_primary_10_1002_ecs2_2542 crossref_primary_10_1111_ele_13950 crossref_primary_10_5852_cr_palevol2025v24a17 crossref_primary_10_1111_bij_12810 crossref_primary_10_1111_1365_2656_13181 crossref_primary_10_1177_1176934320901721 crossref_primary_10_1038_s41396_020_00775_z crossref_primary_10_1093_sysbio_syae023 crossref_primary_10_3390_toxins10120518 crossref_primary_10_1093_sysbio_syad053 crossref_primary_10_1111_jeb_13583 crossref_primary_10_1111_mec_16762 crossref_primary_10_1038_s41467_025_62441_2 crossref_primary_10_7554_eLife_88236_3 crossref_primary_10_1371_journal_pcbi_1006242 crossref_primary_10_1093_evolut_qpae132 crossref_primary_10_7554_eLife_95857 crossref_primary_10_1111_jeb_13343 crossref_primary_10_1093_evolut_qpae135 crossref_primary_10_1177_1059712315611733 crossref_primary_10_1111_nph_15769 crossref_primary_10_1111_1365_2435_13600 crossref_primary_10_1111_nph_16617 crossref_primary_10_1186_s12862_023_02188_w crossref_primary_10_1093_sysbio_syv066 crossref_primary_10_1111_ele_12753 crossref_primary_10_1098_rsbl_2025_0374 crossref_primary_10_1111_cobi_13852 crossref_primary_10_1093_sysbio_syae011 crossref_primary_10_3390_biology14070757 crossref_primary_10_1002_ajb2_1544 crossref_primary_10_1093_sysbio_syac079 crossref_primary_10_1002_ece3_2820 crossref_primary_10_1093_molbev_msx235 crossref_primary_10_1007_s00442_022_05221_9 crossref_primary_10_1093_biolinnean_blac096 crossref_primary_10_1111_nph_16729 crossref_primary_10_1007_s13127_016_0291_5 crossref_primary_10_1093_biolinnean_blac095 crossref_primary_10_1111_ibi_13350 crossref_primary_10_1126_science_adf7122 crossref_primary_10_1073_pnas_1424030112 crossref_primary_10_1093_evolut_qpae146 crossref_primary_10_1111_2041_210X_13920 crossref_primary_10_1111_oik_08714 crossref_primary_10_1111_ibi_13118 crossref_primary_10_1111_nph_18902 crossref_primary_10_1002_ecs2_3733 crossref_primary_10_1111_geb_13341 crossref_primary_10_1111_jvs_12959 crossref_primary_10_1111_nph_15999 crossref_primary_10_1111_jbi_14062 crossref_primary_10_1111_1462_2920_16601 crossref_primary_10_1038_s41467_023_42352_w crossref_primary_10_1038_ismej_2015_96 crossref_primary_10_1002_ece3_9587 crossref_primary_10_1111_ecog_00709 crossref_primary_10_1016_j_biocon_2014_10_023 crossref_primary_10_1371_journal_pone_0222718 crossref_primary_10_1016_j_isci_2025_112253 crossref_primary_10_1016_j_jembe_2021_151544 crossref_primary_10_1093_beheco_araf006 crossref_primary_10_1002_ajb2_1578 crossref_primary_10_1002_zoo_21427 crossref_primary_10_1111_1365_2656_14135 crossref_primary_10_1002_ajp_22953 crossref_primary_10_2135_cropsci2017_02_0078 crossref_primary_10_1038_s41467_018_06199_w crossref_primary_10_1016_j_cub_2025_07_004 crossref_primary_10_1111_jzs_12329 crossref_primary_10_1093_botlinnean_box005 crossref_primary_10_1002_ece3_2837 crossref_primary_10_1126_science_add8606 crossref_primary_10_1093_evolut_qpac057 crossref_primary_10_1111_ele_13938 crossref_primary_10_1002_ece3_7290 crossref_primary_10_1038_s41559_022_01749_4 crossref_primary_10_1086_689819 crossref_primary_10_1093_beheco_arad051 crossref_primary_10_1126_science_abn5856 crossref_primary_10_1640_0002_8444_107_3_136 crossref_primary_10_1093_beheco_arad053 crossref_primary_10_1111_geb_12358 crossref_primary_10_1111_1365_2656_14141 crossref_primary_10_1093_sysbio_syw051 crossref_primary_10_1080_03610918_2022_2037639 crossref_primary_10_1002_ajb2_1326 crossref_primary_10_1111_1365_2745_12866 crossref_primary_10_1093_biolinnean_blab099 crossref_primary_10_1093_sysbio_syx028 crossref_primary_10_1111_eth_13109 crossref_primary_10_1177_11779322241257991 crossref_primary_10_1111_jeb_13690 crossref_primary_10_1111_mec_16854 crossref_primary_10_1016_j_plgene_2022_100384 crossref_primary_10_1038_s41467_019_11943_x crossref_primary_10_1080_09670262_2018_1466200 crossref_primary_10_1111_2041_210X_12612 crossref_primary_10_1007_s10530_015_1003_3 crossref_primary_10_1073_pnas_2021390118 crossref_primary_10_1111_ele_12738 crossref_primary_10_1098_rspb_2025_0910 crossref_primary_10_1111_nph_14889 crossref_primary_10_1016_j_ympev_2024_108236 crossref_primary_10_1038_s41598_021_04077_y crossref_primary_10_7554_eLife_83426 crossref_primary_10_1093_sysbio_syaa029 crossref_primary_10_1111_geb_70070 crossref_primary_10_1093_sysbio_syz055 crossref_primary_10_1002_ece3_70504 crossref_primary_10_1371_journal_pgen_1010607 crossref_primary_10_1111_ele_70021 crossref_primary_10_1007_s00265_023_03418_3 crossref_primary_10_1007_s11104_024_06543_8 crossref_primary_10_1128_spectrum_03409_22 crossref_primary_10_1111_jeb_12857 crossref_primary_10_1111_oik_08522 crossref_primary_10_1111_geb_13396 crossref_primary_10_7717_peerj_4313 crossref_primary_10_1111_2041_210X_14251 crossref_primary_10_1186_s12864_022_08353_7 crossref_primary_10_1073_pnas_2505624122 crossref_primary_10_1371_journal_pbio_2001855 crossref_primary_10_1007_s10531_018_01688_2 crossref_primary_10_1073_pnas_2309475121 crossref_primary_10_1093_jmammal_gyy107 crossref_primary_10_1111_ecog_06817 crossref_primary_10_1073_pnas_2220389120 crossref_primary_10_1093_sysbio_syaa010 crossref_primary_10_1038_s41598_025_95566_x crossref_primary_10_1111_ecog_04877 crossref_primary_10_1002_ar_25548 crossref_primary_10_1038_s42003_021_02870_z crossref_primary_10_1038_s41586_019_1302_4 crossref_primary_10_1111_jeb_12984 crossref_primary_10_1073_pnas_2415979122 crossref_primary_10_1111_joa_13608 crossref_primary_10_1111_evo_14017 crossref_primary_10_1038_s41598_024_69215_8 crossref_primary_10_1016_j_molp_2018_06_002 crossref_primary_10_1111_geb_13142 crossref_primary_10_1038_s41467_023_39954_9 crossref_primary_10_1371_journal_pone_0187228 crossref_primary_10_1093_icb_icu057 crossref_primary_10_1093_sysbio_syaa049 crossref_primary_10_1146_annurev_statistics_033021_112532 crossref_primary_10_1111_eth_13410 crossref_primary_10_1038_s41396_018_0245_3 crossref_primary_10_1002_ece3_6313 crossref_primary_10_1098_rsos_181182 crossref_primary_10_1111_jzo_13042 crossref_primary_10_1038_s41558_018_0312_9 crossref_primary_10_1111_1365_2745_13888 crossref_primary_10_1002_ecy_1649 crossref_primary_10_1002_ajp_70072 crossref_primary_10_1016_j_tpb_2019_01_001 crossref_primary_10_1016_j_ppees_2016_03_002 crossref_primary_10_1016_j_ympev_2020_106878 crossref_primary_10_1111_evo_14024 crossref_primary_10_1111_evo_14144 crossref_primary_10_1111_evo_14143 crossref_primary_10_1371_journal_pone_0226203 crossref_primary_10_3732_ajb_1600287 crossref_primary_10_24072_pcjournal_259 crossref_primary_10_1111_2041_210X_14385 crossref_primary_10_1111_nph_17605 crossref_primary_10_1093_ornithology_ukae067 crossref_primary_10_1016_j_ppees_2019_125464 crossref_primary_10_1073_pnas_1804633115 crossref_primary_10_1093_molbev_msab121 crossref_primary_10_1111_joa_13742 crossref_primary_10_1111_geb_13009 crossref_primary_10_1093_ornithology_ukae064 crossref_primary_10_1007_s10914_019_09464_x crossref_primary_10_3389_fevo_2023_1234244 crossref_primary_10_3390_d13110553 crossref_primary_10_1086_688097 crossref_primary_10_1002_ece3_6322 crossref_primary_10_1086_701630 crossref_primary_10_1186_s12862_025_02374_y crossref_primary_10_1098_rsos_221513 crossref_primary_10_1111_evo_14030 crossref_primary_10_1111_evo_14393 crossref_primary_10_1111_ecog_06950 crossref_primary_10_1098_rsos_231541 crossref_primary_10_1111_1365_2656_13816 crossref_primary_10_1098_rsos_230451 crossref_primary_10_3897_neobiota_91_115675 crossref_primary_10_1002_evl3_199 crossref_primary_10_1038_s41587_023_01857_x crossref_primary_10_1186_s12859_018_2413_x crossref_primary_10_1017_pab_2024_5 crossref_primary_10_1111_geb_13486 crossref_primary_10_1111_pce_14380 crossref_primary_10_1111_faf_12800 crossref_primary_10_1016_j_baae_2024_11_004 crossref_primary_10_1111_nph_18993 crossref_primary_10_1002_ece3_9840 crossref_primary_10_1016_j_jplph_2022_153670 crossref_primary_10_1111_nph_14397 crossref_primary_10_1111_nph_15243 crossref_primary_10_1038_s41559_020_01321_y crossref_primary_10_1093_sysbio_syx075 crossref_primary_10_1093_sysbio_syaa061 crossref_primary_10_1111_brv_70001 crossref_primary_10_1093_sysbio_syz012 crossref_primary_10_1093_aob_mcaa129 crossref_primary_10_1093_sysbio_syy045 crossref_primary_10_1093_sysbio_syy046 crossref_primary_10_1038_s41598_021_00964_6 crossref_primary_10_1111_jvs_12660 crossref_primary_10_1038_s41467_020_14356_3 crossref_primary_10_1016_j_cub_2022_05_057 crossref_primary_10_1111_jvs_12301 crossref_primary_10_1038_s41467_019_13405_w crossref_primary_10_1111_ele_14092 crossref_primary_10_1111_jeb_12536 crossref_primary_10_1093_emph_eov015 crossref_primary_10_1016_j_jhevol_2015_11_007 crossref_primary_10_1038_s41396_019_0411_2 crossref_primary_10_1098_rsos_211862 crossref_primary_10_1111_nph_17304 crossref_primary_10_1111_nph_16338 crossref_primary_10_1111_geb_13198 crossref_primary_10_1016_j_actao_2021_103749 crossref_primary_10_1038_nmicrobiol_2016_160 crossref_primary_10_1002_ece3_4284 crossref_primary_10_1093_molbev_msab145 crossref_primary_10_1371_journal_pbio_3002814 crossref_primary_10_1073_pnas_2016810118 crossref_primary_10_1038_s41477_025_02022_9 crossref_primary_10_1093_iob_obad017 crossref_primary_10_1002_ece3_8648 crossref_primary_10_1002_ajb2_1266 crossref_primary_10_1016_j_cub_2025_02_068 crossref_primary_10_1111_ecog_02010 crossref_primary_10_1186_s12898_019_0220_5 crossref_primary_10_1038_s41467_021_23402_7 crossref_primary_10_1080_01584197_2021_1979893 crossref_primary_10_1111_evo_14457 crossref_primary_10_3390_stats6010028 crossref_primary_10_1016_j_ecolmodel_2019_108760 crossref_primary_10_1073_pnas_2313371121 crossref_primary_10_1086_704090 crossref_primary_10_1086_688917 crossref_primary_10_1186_s12859_021_04216_2 crossref_primary_10_1093_cz_zoac015 crossref_primary_10_1093_molbev_msac269 crossref_primary_10_3390_jof9010002 crossref_primary_10_1111_nph_14498 crossref_primary_10_1371_journal_pbio_3002847 crossref_primary_10_1093_biolinnean_blaa037 crossref_primary_10_1093_jmammal_gyaa093 crossref_primary_10_1111_jbi_14328 crossref_primary_10_1111_nph_70273 crossref_primary_10_1038_s41559_018_0570_y crossref_primary_10_1111_jbi_14577 crossref_primary_10_1371_journal_pone_0199129 crossref_primary_10_1016_j_asd_2020_101002 crossref_primary_10_1093_nar_gkaf042 crossref_primary_10_1111_cobi_70095 crossref_primary_10_1093_sysbio_syy060 crossref_primary_10_1111_evo_14220 crossref_primary_10_1126_science_abn3263 crossref_primary_10_1111_nph_19947 crossref_primary_10_1111_nph_19702 crossref_primary_10_1016_j_jtbi_2015_01_019 crossref_primary_10_1111_geb_70012 crossref_primary_10_1086_730145 crossref_primary_10_1093_molbev_msad104 crossref_primary_10_1098_rsos_242114 crossref_primary_10_1016_j_cub_2021_02_008 crossref_primary_10_1007_s10530_024_03270_0 crossref_primary_10_3389_fpsyg_2023_1143283 crossref_primary_10_7717_peerj_4718 crossref_primary_10_1002_ar_25609 crossref_primary_10_1111_pala_12638 crossref_primary_10_1007_s10329_022_01015_y crossref_primary_10_1093_icb_icac118 crossref_primary_10_1038_s41467_020_16982_3 crossref_primary_10_1002_ajb2_16318 crossref_primary_10_1038_s41467_023_42767_5 crossref_primary_10_1111_ecog_05669 crossref_primary_10_1111_1365_2745_12588 crossref_primary_10_1093_biolinnean_blab140 crossref_primary_10_1017_pab_2024_35 crossref_primary_10_1111_oik_06158 crossref_primary_10_1002_ajb2_1052 crossref_primary_10_1111_ecog_02393 crossref_primary_10_1016_j_anbehav_2022_02_001 crossref_primary_10_1111_evo_14357 crossref_primary_10_1111_jbi_13351 crossref_primary_10_1111_2041_210X_14076 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/sysbio/syu005 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Zoology Biology Ecology |
| EISSN | 1076-836X |
| ExternalDocumentID | 24500037 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -~X .-4 .2P .I3 0R~ 123 18M 1TH 29Q 2FS 36B 4.4 48X 53G 5VS 5WD 70D 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 AAHBH AAHKG AAIMJ AAISJ AAJKP AAJQQ AAKGQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABMNT ABNGD ABNKS ABPIB ABPLY ABPPZ ABPQP ABPTD ABQLI ABSMQ ABSQW ABTLG ABUWG ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ABZEO ACCCW ACFRR ACGEJ ACGFO ACGFS ACGOD ACHIC ACIPB ACNCT ACPQN ACPRK ACSTJ ACUFI ACUHS ACUKT ACUTJ ACVCV ACZBC ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADXHL ADXPE ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEUYN AEWNT AFAZZ AFFZL AFGWE AFIYH AFKRA AFKVX AFOFC AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUYK AHGBF AHMBA AHXOZ AHXPO AIAGR AIJHB AILXY AJBYB AJDVS AJEEA AJNCP AJWEG AKHUL AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN AZQEC BAYMD BBNVY BCRHZ BENPR BES BEYMZ BHONS BHPHI BKSAR BPHCQ BQDIO BSWAC BVXVI C45 CAG CBGCD CCPQU CDBKE CGR COF CS3 CUY CUYZI CVF CXTWN CZ4 D1J DAKXR DEVKO DFGAJ DILTD DU5 DWQXO D~K EAD EAP EAS EBC EBD EBS ECM EE~ EHN EIF EJD ELUNK EMB EMK EMOBN EPL EPT EST ESX F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK FYUFA GAUVT GJXCC GNUQQ GTFYD GUQSH H13 H5~ HAR HCIFZ HF~ HGD HMCUK HQ2 HTVGU HVGLF HW0 HZ~ I-F IOX IPSME J21 JAAYA JBMMH JBS JEB JEFFH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KSI KSN LK8 M-Z M1P M2O M2P M2Q M7P MBTAY MVM N9A NEJ NGC NLBLG NOMLY NPM NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF O~Y P2P PADUT PAFKI PB- PCBAR PEELM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q1. Q5Y QBD Q~Q RD5 ROX ROZ RUSNO RW1 RWL RXO RXW S0X SA0 SV3 TAE TCN TEORI TLC TN5 TUS UBC UKHRP WH7 WHG X7H XOL XSW YAYTL YKOAZ YXANX YXE ZCG ZY4 ~02 ~91 7X8 ABUFD |
| ID | FETCH-LOGICAL-c481t-eff264d6878bf3f28210856ebc61b2834b7513268dba7e69113c947b14d1954b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 795 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334752600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-836X |
| IngestDate | Sun Nov 09 11:24:38 EST 2025 Mon Jul 21 06:03:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-eff264d6878bf3f28210856ebc61b2834b7513268dba7e69113c947b14d1954b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/sysbio/article-pdf/63/3/397/17831239/syu005.pdf |
| PMID | 24500037 |
| PQID | 1516723596 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1516723596 pubmed_primary_24500037 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Systematic biology |
| PublicationTitleAlternate | Syst Biol |
| PublicationYear | 2014 |
| SSID | ssj0011651 |
| Score | 2.6296175 |
| Snippet | We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 397 |
| SubjectTerms | Algorithms Biological Evolution Classification - methods Computer Simulation Software - standards |
| Title | A linear-time algorithm for Gaussian and non-Gaussian trait evolution models |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24500037 https://www.proquest.com/docview/1516723596 |
| Volume | 63 |
| WOSCitedRecordID | wos000334752600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qFHzx-2N-EcHX4NqmSfokQ6Y-zLEHheLLSNJEB9rOtRv433tJO_ckCL60R6FtCJe73-Vy90PoSoNTAi9tSUZDSyi4VCIDbohUoWEqsR0mfKFwnw8GIk2TYbPhVjbHKhc20RvqrNBuj_waPBPjYRQn7GbySRxrlMuuNhQaq6gVAZRxC5OnyyxCwDz9IkQ4jIiIpU2PTQjiXSW4Ghdwm3U68e_o0nuZu-3_jm8HbTX4EndrhdhFKybfQxs14-QXSD29kF4KL-2jfhc7rCmnxBHNY_n-Ct-t3j4w4Fl8L2elq7PEMs9wXuTk54Ejl6iwmTe6iz2nTnmAnu96T7cPpCFZIJqKoCLGWsBEGRNcKBtZiMBcPQIzSrNAAfagiscQsTKRKckNA9sY6YRyFdDMNYtT4SFag7-bY4Rjal1JQxa7Ln-ccakhNkqE2zMJIKqJ2uhyMXUjUGKXmZC5KWblaDl5bXRUz_9oUnfbGIU09l1yTv7w9inaBEBD6wOJZ6hlYQmbc7Su59W4nF547YDrYPj4DSORwwo |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+linear-time+algorithm+for+Gaussian+and+non-Gaussian+trait+evolution+models&rft.jtitle=Systematic+biology&rft.au=Ho%2C+Lam+si+Tung&rft.au=An%C3%A9%2C+C%C3%A9cile&rft.date=2014-05-01&rft.eissn=1076-836X&rft.volume=63&rft.issue=3&rft.spage=397&rft_id=info:doi/10.1093%2Fsysbio%2Fsyu005&rft_id=info%3Apmid%2F24500037&rft_id=info%3Apmid%2F24500037&rft.externalDocID=24500037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-836X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-836X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-836X&client=summon |