A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators

In this paper, for joint torque optimization of redundant manipulators subject to physical constraints, we show that velocity-level and acceleration-level redundancy-resolution schemes both can be formulated as a quadratic programming (QP) problem subject to equality and inequality/bound constraints...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Ročník 34; číslo 5; s. 2126 - 2132
Hlavní autoři: Yunong Zhang, Ge, S.S., Tong Heng Lee
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2004
Témata:
ISSN:1083-4419
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, for joint torque optimization of redundant manipulators subject to physical constraints, we show that velocity-level and acceleration-level redundancy-resolution schemes both can be formulated as a quadratic programming (QP) problem subject to equality and inequality/bound constraints. To solve this QP problem online, a primal-dual dynamical system solver is further presented based on linear variational inequalities. Compared to previous researches, the presented QP-solver has simple piecewise-linear dynamics, does not entail real-time matrix inversion, and could also provide joint-acceleration information for manipulator torque control in the velocity-level redundancy-resolution schemes. The proposed QP-based dynamical system approach is simulated based on the PUMA560 robot arm with efficiency and effectiveness demonstrated.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Correspondence-2
ObjectType-Undefined-1
ISSN:1083-4419
DOI:10.1109/TSMCB.2004.830347