Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community

The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. Howeve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Metabolites Ročník 9; číslo 4; s. 76
Hlavní autoři: Pinu, Farhana R., Beale, David J., Paten, Amy M., Kouremenos, Konstantinos, Swarup, Sanjay, Schirra, Horst J., Wishart, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 18.04.2019
MDPI
Témata:
ISSN:2218-1989, 2218-1989
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. However, due to their inherent data differences, integrating multiple omics platforms remains an ongoing challenge for many researchers. As metabolites represent the downstream products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools and approaches routinely used in this field could assist with the integration of these complex multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods, software tools and databases) along with a variety of recommendations and a list of continuing challenges as identified during a peer session on multi-omics integration that was held at the recent ‘Australian and New Zealand Metabolomics Conference’ (ANZMET 2018) in Auckland, New Zealand (Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers and other members of the community wishing to perform multi-omics studies. We also believe that these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems biology to be realized.
AbstractList The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. However, due to their inherent data differences, integrating multiple omics platforms remains an ongoing challenge for many researchers. As metabolites represent the downstream products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools and approaches routinely used in this field could assist with the integration of these complex multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods, software tools and databases) along with a variety of recommendations and a list of continuing challenges as identified during a peer session on multi-omics integration that was held at the recent 'Australian and New Zealand Metabolomics Conference' (ANZMET 2018) in Auckland, New Zealand (Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers and other members of the community wishing to perform multi-omics studies. We also believe that these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems biology to be realized.
The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. However, due to their inherent data differences, integrating multiple omics platforms remains an ongoing challenge for many researchers. As metabolites represent the downstream products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools and approaches routinely used in this field could assist with the integration of these complex multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods, software tools and databases) along with a variety of recommendations and a list of continuing challenges as identified during a peer session on multi-omics integration that was held at the recent 'Australian and New Zealand Metabolomics Conference' (ANZMET 2018) in Auckland, New Zealand (Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers and other members of the community wishing to perform multi-omics studies. We also believe that these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems biology to be realized.The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life science. Omics techniques provide a more holistic molecular perspective of studied biological systems compared to traditional approaches. However, due to their inherent data differences, integrating multiple omics platforms remains an ongoing challenge for many researchers. As metabolites represent the downstream products of multiple interactions between genes, transcripts, and proteins, metabolomics, the tools and approaches routinely used in this field could assist with the integration of these complex multi-omics data sets. The question is, how? Here we provide some answers (in terms of methods, software tools and databases) along with a variety of recommendations and a list of continuing challenges as identified during a peer session on multi-omics integration that was held at the recent 'Australian and New Zealand Metabolomics Conference' (ANZMET 2018) in Auckland, New Zealand (Sept. 2018). We envisage that this document will serve as a guide to metabolomics researchers and other members of the community wishing to perform multi-omics studies. We also believe that these ideas may allow the full promise of integrated multi-omics research and, ultimately, of systems biology to be realized.
Author Beale, David J.
Paten, Amy M.
Swarup, Sanjay
Schirra, Horst J.
Wishart, David
Pinu, Farhana R.
Kouremenos, Konstantinos
AuthorAffiliation 7 Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; h.schirra@uq.edu.au
1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
8 Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; dwishart@ualberta.ca
5 Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
9 Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
4 Trajan Scientific and Medical, Ringwood, VIC 3134, Australia; kkouremenos@trajanscimed.com
6 Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore; sanjay@nus.edu.sg
2 Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Dutton Park, QLD 4102, Australia; david.beale@csiro.au
3 Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Research and Innovation Park, A
AuthorAffiliation_xml – name: 6 Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore; sanjay@nus.edu.sg
– name: 9 Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
– name: 2 Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Dutton Park, QLD 4102, Australia; david.beale@csiro.au
– name: 3 Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Research and Innovation Park, Acton, ACT 2601, Australia; amy.paten@csiro.au
– name: 8 Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; dwishart@ualberta.ca
– name: 7 Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; h.schirra@uq.edu.au
– name: 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
– name: 5 Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
– name: 4 Trajan Scientific and Medical, Ringwood, VIC 3134, Australia; kkouremenos@trajanscimed.com
Author_xml – sequence: 1
  givenname: Farhana R.
  orcidid: 0000-0002-0180-9341
  surname: Pinu
  fullname: Pinu, Farhana R.
– sequence: 2
  givenname: David J.
  orcidid: 0000-0002-9948-9197
  surname: Beale
  fullname: Beale, David J.
– sequence: 3
  givenname: Amy M.
  orcidid: 0000-0003-0420-2155
  surname: Paten
  fullname: Paten, Amy M.
– sequence: 4
  givenname: Konstantinos
  surname: Kouremenos
  fullname: Kouremenos, Konstantinos
– sequence: 5
  givenname: Sanjay
  surname: Swarup
  fullname: Swarup, Sanjay
– sequence: 6
  givenname: Horst J.
  orcidid: 0000-0002-7541-246X
  surname: Schirra
  fullname: Schirra, Horst J.
– sequence: 7
  givenname: David
  orcidid: 0000-0002-3207-2434
  surname: Wishart
  fullname: Wishart, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31003499$$D View this record in MEDLINE/PubMed
BookMark eNptkktr3DAUhUVJaNI0y26LoZtu3OhpWV0U2qGPgYRAX1tVlq9nNNjSRJJb5t_XM5OETIg2ukjnfjro3BfoyAcPCL0i-B1jCl8MkE0TFOYYy-oZOqWU1CVRtTp6UJ-g85RWeFoVFhKT5-iEEYwZV-oU_fmxSRmGVHxyoQ-LTWF8W1yNfXbl9eBsKuY-wyKa7IJ_X_x28G8dnM-p6GIYiryE4mrnoQ879XdIYKJdFrMwDKN3efMSHXemT3B-u5-hX18-_5x9Ky-vv85nHy9Ly2uSy5Y2RlBBARsuCLRcGSWBtbLlneoaRgS2DE9FJ62pRIVtbS0TAKSzDICyMzTfc9tgVnod3WDiRgfj9O4gxIU2MTvbg64aUEZKQhkozhpimJAc18QSKgmzYmJ92LPWYzNAa8HnaPoD6OGNd0u9CH91JSjjYmvm7S0ghpsRUtaDSxb63ngIY9JTNkRxKdn2rTePpKswRj99laaC1zWhFd8CXz90dG_lLshJwPYCG0NKETptXd6lNhl0vSZYbydGH0zM1FU-6roDP63_D7F6xCE
CitedBy_id crossref_primary_10_1007_s11356_024_32121_7
crossref_primary_10_1007_s13205_021_03032_y
crossref_primary_10_3390_metabo13080947
crossref_primary_10_1016_j_microc_2022_107525
crossref_primary_10_3389_fimmu_2020_587895
crossref_primary_10_1016_j_aquaculture_2022_738845
crossref_primary_10_1016_j_tem_2023_06_006
crossref_primary_10_2217_fon_2020_0119
crossref_primary_10_3390_ijms26146864
crossref_primary_10_1186_s12864_022_08828_7
crossref_primary_10_1146_annurev_food_052720_010751
crossref_primary_10_3390_jcm13113147
crossref_primary_10_1007_s11306_022_01878_8
crossref_primary_10_1007_s13755_024_00300_y
crossref_primary_10_1016_j_bbadis_2024_167339
crossref_primary_10_1183_13993003_01370_2024
crossref_primary_10_1016_j_scitotenv_2021_146526
crossref_primary_10_1016_j_advnut_2023_09_002
crossref_primary_10_1080_13813455_2023_2299920
crossref_primary_10_34108_eujhs_1585598
crossref_primary_10_1016_j_gene_2024_148295
crossref_primary_10_1016_j_rvsc_2019_12_012
crossref_primary_10_1093_bioadv_vbae090
crossref_primary_10_1016_j_envpol_2023_122108
crossref_primary_10_4239_wjd_v15_i8_1692
crossref_primary_10_3390_metabo10080314
crossref_primary_10_1016_j_jchromb_2021_122531
crossref_primary_10_3233_JPD_191711
crossref_primary_10_3390_genes10110865
crossref_primary_10_3389_fimmu_2021_746151
crossref_primary_10_3389_fmicb_2019_03084
crossref_primary_10_1002_qub2_70002
crossref_primary_10_1089_omi_2020_0131
crossref_primary_10_1016_j_eswa_2023_119641
crossref_primary_10_1016_j_artmed_2024_102902
crossref_primary_10_3390_app112311108
crossref_primary_10_1080_19490976_2021_1882927
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_1016_j_foodchem_2024_138852
crossref_primary_10_1016_j_aca_2020_11_020
crossref_primary_10_1016_j_plantsci_2020_110471
crossref_primary_10_1039_d0mt00085j
crossref_primary_10_1049_ipr2_12619
crossref_primary_10_3390_cimb47090723
crossref_primary_10_3390_ijms23095213
crossref_primary_10_1007_s11306_021_01830_2
crossref_primary_10_3390_v14102194
crossref_primary_10_1002_tpg2_20098
crossref_primary_10_3390_microorganisms11071800
crossref_primary_10_3390_ani12020214
crossref_primary_10_1111_all_15074
crossref_primary_10_1007_s11274_023_03603_6
crossref_primary_10_1016_j_aquaculture_2025_742172
crossref_primary_10_1080_14789450_2021_1893695
crossref_primary_10_3390_nu13030763
crossref_primary_10_1016_j_sciaf_2025_e02883
crossref_primary_10_3389_fbioe_2021_632059
crossref_primary_10_1080_14789450_2022_2070476
crossref_primary_10_1016_j_drudis_2020_01_011
crossref_primary_10_1177_1040638720948505
crossref_primary_10_1016_j_biotechadv_2020_107578
crossref_primary_10_3390_cancers14030596
crossref_primary_10_3390_ijms21186843
crossref_primary_10_1093_nargab_lqab015
crossref_primary_10_3389_fphar_2020_554783
crossref_primary_10_1007_s11306_021_01841_z
crossref_primary_10_1016_j_trac_2022_116589
crossref_primary_10_1038_s41396_023_01532_8
crossref_primary_10_1016_j_arr_2021_101346
crossref_primary_10_1016_j_labinv_2023_100282
crossref_primary_10_3389_fcimb_2022_1061596
crossref_primary_10_3390_pr13010125
crossref_primary_10_1016_j_tifs_2025_105089
crossref_primary_10_3390_plants11070970
crossref_primary_10_1016_j_wasman_2025_01_011
crossref_primary_10_3390_jof7110987
crossref_primary_10_1007_s42485_023_00121_9
crossref_primary_10_1016_j_scitotenv_2024_173837
crossref_primary_10_3389_fpubh_2022_973000
crossref_primary_10_3390_cimb46060345
crossref_primary_10_3389_fpls_2020_00944
crossref_primary_10_1016_j_tim_2021_12_004
crossref_primary_10_1016_j_bej_2025_109777
crossref_primary_10_1038_s41390_025_03953_x
crossref_primary_10_1038_s41437_021_00404_1
crossref_primary_10_3389_fmicb_2023_1086021
crossref_primary_10_3390_app12083987
crossref_primary_10_3389_fpls_2025_1597030
crossref_primary_10_3390_metabo13060769
crossref_primary_10_3389_fmars_2021_627724
crossref_primary_10_3390_biom10121606
crossref_primary_10_3390_biology11020238
crossref_primary_10_3390_metabo13010067
crossref_primary_10_3390_ijms241210159
crossref_primary_10_1016_j_jpha_2023_05_015
crossref_primary_10_1186_s13195_023_01162_4
crossref_primary_10_3390_pr8060643
crossref_primary_10_1016_j_copbio_2022_102693
crossref_primary_10_31083_j_fbl2701014
crossref_primary_10_1161_CIRCRESAHA_121_319969
crossref_primary_10_3389_fcvm_2021_587768
crossref_primary_10_1111_febs_15130
crossref_primary_10_1002_bmc_6019
crossref_primary_10_3389_fgene_2020_578345
crossref_primary_10_3390_biomedicines13092171
crossref_primary_10_1186_s40364_025_00798_8
crossref_primary_10_1093_femsre_fuac020
crossref_primary_10_3389_fmolb_2021_632955
crossref_primary_10_1002_aro2_93
crossref_primary_10_1186_s12859_022_04964_9
crossref_primary_10_3389_fpls_2022_1062982
crossref_primary_10_1002_mnfr_202100680
crossref_primary_10_1016_j_aquaculture_2021_737438
crossref_primary_10_1016_j_phrs_2022_106076
crossref_primary_10_1161_HCG_0000000000000062
crossref_primary_10_1016_j_bios_2021_113605
crossref_primary_10_1016_j_jhazmat_2025_138826
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_1007_s12672_022_00551_9
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_1007_s42770_023_01001_6
crossref_primary_10_1007_s11306_021_01862_8
crossref_primary_10_1016_j_trac_2024_117852
crossref_primary_10_1093_bioadv_vbae175
crossref_primary_10_3389_fbioe_2021_613307
crossref_primary_10_1016_j_mtbio_2025_101675
crossref_primary_10_3390_metabo9060117
crossref_primary_10_5604_01_3001_0054_8093
crossref_primary_10_1016_j_impact_2024_100530
crossref_primary_10_1186_s13213_025_01793_y
crossref_primary_10_1186_s12967_023_04275_4
crossref_primary_10_1016_j_aca_2020_10_038
crossref_primary_10_1016_j_envpol_2021_116936
crossref_primary_10_1007_s11306_024_02180_5
crossref_primary_10_3390_medicina59030612
crossref_primary_10_1038_s41596_023_00950_4
crossref_primary_10_1080_10643389_2020_1785264
crossref_primary_10_3390_ijms23169280
crossref_primary_10_1097_MOP_0000000000000875
crossref_primary_10_3389_fpls_2021_768589
crossref_primary_10_1007_s12551_021_00859_w
crossref_primary_10_1007_s10405_025_00628_6
crossref_primary_10_1038_s41598_025_06438_3
crossref_primary_10_3389_fmicb_2021_681982
crossref_primary_10_3389_fpls_2021_717958
crossref_primary_10_3390_metabo12010014
crossref_primary_10_3390_molecules24193615
crossref_primary_10_1007_s11695_021_05566_9
crossref_primary_10_1016_j_jot_2024_12_007
crossref_primary_10_1080_10408398_2023_2199425
crossref_primary_10_1080_10408398_2020_1761287
crossref_primary_10_3389_fimmu_2020_01635
crossref_primary_10_1007_s10452_023_10058_2
crossref_primary_10_1016_j_ibmb_2024_104247
crossref_primary_10_1002_pca_3151
crossref_primary_10_3390_metabo15060384
crossref_primary_10_1002_jssc_202300588
crossref_primary_10_1111_1751_7915_14222
crossref_primary_10_1002_jev2_70120
crossref_primary_10_1111_tpj_14649
crossref_primary_10_1080_03602532_2022_2125987
crossref_primary_10_1177_10998004241256031
crossref_primary_10_1007_s00216_022_04489_3
crossref_primary_10_1016_j_compbiomed_2023_107425
crossref_primary_10_3390_s19225027
crossref_primary_10_1093_bib_bbac435
crossref_primary_10_3389_fimmu_2023_1181697
crossref_primary_10_1093_femsec_fiae058
crossref_primary_10_1155_2021_7677392
crossref_primary_10_1016_j_teac_2022_e00161
crossref_primary_10_1016_j_csbj_2020_09_033
crossref_primary_10_3390_nu13072155
crossref_primary_10_1007_s40279_021_01582_y
crossref_primary_10_1016_j_metabol_2020_154292
crossref_primary_10_3168_jds_2024_26210
crossref_primary_10_1007_s00467_022_05497_2
crossref_primary_10_1093_bib_bbab343
crossref_primary_10_3390_jpm10040229
crossref_primary_10_3389_fpls_2021_563953
crossref_primary_10_1002_ejp_1677
crossref_primary_10_4103_jisp_jisp_267_21
crossref_primary_10_1016_j_tplants_2024_01_002
crossref_primary_10_1111_raq_12612
crossref_primary_10_3390_ijms25010365
crossref_primary_10_3390_metabo11070423
crossref_primary_10_20538_1682_0363_2024_2_162_182
crossref_primary_10_1016_j_pmpp_2021_101679
crossref_primary_10_1128_aac_01081_23
crossref_primary_10_1016_j_scitotenv_2022_157255
crossref_primary_10_1097_SLA_0000000000003974
crossref_primary_10_1186_s42523_020_00056_2
crossref_primary_10_1089_nsm_2020_0004
crossref_primary_10_3390_ijms26135961
crossref_primary_10_1007_s00335_025_10129_9
crossref_primary_10_1007_s11926_021_00989_w
crossref_primary_10_1007_s00441_021_03470_3
crossref_primary_10_1016_S1872_2040_20_60075_5
crossref_primary_10_1016_j_semperi_2021_151456
crossref_primary_10_3390_microorganisms7100419
crossref_primary_10_3390_biology11030346
crossref_primary_10_3390_plants11182437
crossref_primary_10_1016_j_cmet_2023_02_001
crossref_primary_10_3390_toxics10070380
crossref_primary_10_3390_biomedicines12102389
crossref_primary_10_1016_j_nbt_2023_01_002
crossref_primary_10_1016_j_yjmcc_2022_12_001
crossref_primary_10_3390_molecules26247565
crossref_primary_10_3390_app10134629
crossref_primary_10_1089_omi_2022_0097
crossref_primary_10_1016_j_cofs_2021_03_001
crossref_primary_10_1080_09553002_2025_2519561
crossref_primary_10_1080_17446651_2022_2110865
crossref_primary_10_3390_cancers13184544
crossref_primary_10_1007_s10142_025_01645_7
crossref_primary_10_1016_j_bbcan_2025_189425
crossref_primary_10_3390_agriculture14081307
crossref_primary_10_1016_j_talanta_2024_127442
crossref_primary_10_3389_fmars_2023_1149495
crossref_primary_10_1002_ggn2_10026
crossref_primary_10_1016_j_ijbiomac_2025_143932
crossref_primary_10_1007_s43450_023_00365_y
crossref_primary_10_3389_fmars_2022_799191
crossref_primary_10_1016_j_biotechadv_2024_108480
crossref_primary_10_1016_j_ccm_2020_10_001
crossref_primary_10_3389_fmed_2021_747333
crossref_primary_10_1038_s41467_021_23849_8
crossref_primary_10_3389_fpls_2021_794373
crossref_primary_10_3390_biomedicines10051076
crossref_primary_10_3390_metabo15070476
crossref_primary_10_1177_10998004211003980
crossref_primary_10_1016_j_jhazmat_2020_122727
crossref_primary_10_1080_14789450_2021_1922278
crossref_primary_10_11648_j_sf_20250603_14
crossref_primary_10_1038_s41467_024_50308_x
crossref_primary_10_3389_fcell_2021_675099
crossref_primary_10_2174_1381612829666230316110932
crossref_primary_10_3390_cells8101220
crossref_primary_10_1038_s41398_025_03497_y
crossref_primary_10_1289_EHP9098
crossref_primary_10_1542_neo_26_2_011
crossref_primary_10_1016_j_aquaculture_2024_741292
crossref_primary_10_3390_biom11010040
crossref_primary_10_1038_s41598_024_64574_8
crossref_primary_10_1093_bib_bbz132
crossref_primary_10_1186_s12967_025_06428_z
crossref_primary_10_1186_s12864_023_09833_0
crossref_primary_10_1016_j_chemolab_2023_105002
crossref_primary_10_3390_plants8120607
crossref_primary_10_1002_jobm_202300614
crossref_primary_10_1093_bib_bbae025
crossref_primary_10_1016_j_scitotenv_2021_151175
crossref_primary_10_1093_pnasnexus_pgad262
crossref_primary_10_1016_j_ijfoodmicro_2022_109781
crossref_primary_10_1055_s_0045_1809322
crossref_primary_10_1111_jnc_15719
crossref_primary_10_1038_s41598_025_09787_1
crossref_primary_10_1016_j_microc_2025_115259
crossref_primary_10_1093_etojnl_vgaf040
crossref_primary_10_3390_genes12071098
crossref_primary_10_1016_j_envpol_2024_124675
crossref_primary_10_1016_j_isci_2025_113382
crossref_primary_10_1186_s12575_022_00179_7
crossref_primary_10_1186_s40168_021_01014_z
crossref_primary_10_3390_ijms20236015
crossref_primary_10_1007_s12088_025_01456_1
crossref_primary_10_1016_j_drudis_2020_10_024
crossref_primary_10_1007_s10238_025_01577_3
crossref_primary_10_1016_j_molmet_2021_101396
crossref_primary_10_1111_1541_4337_13103
crossref_primary_10_3390_nu12092753
crossref_primary_10_3390_v12040393
crossref_primary_10_1016_j_jprot_2021_104447
crossref_primary_10_1007_s11274_023_03651_y
crossref_primary_10_1007_s11306_019_1608_0
crossref_primary_10_3389_fpls_2023_1192235
crossref_primary_10_1080_10253890_2025_2495918
crossref_primary_10_3390_agronomy13082099
crossref_primary_10_3390_cells12071051
crossref_primary_10_1016_j_rhisph_2022_100613
crossref_primary_10_1080_2162402X_2020_1741267
crossref_primary_10_1016_j_jpha_2025_101274
crossref_primary_10_3390_metabo9100199
crossref_primary_10_1016_j_pneurobio_2023_102480
crossref_primary_10_3390_ijms21239198
crossref_primary_10_1016_j_fsi_2024_109978
crossref_primary_10_1093_burnst_tkaf019
crossref_primary_10_17116_otorino20248904160
crossref_primary_10_1016_j_jenvman_2024_123969
crossref_primary_10_1007_s40200_024_01539_8
crossref_primary_10_3390_metabo10020052
crossref_primary_10_1093_nar_gkad1041
crossref_primary_10_3390_metabo10020051
crossref_primary_10_1002_adhm_201901862
crossref_primary_10_3390_metabo11100701
crossref_primary_10_3390_metabo9060108
crossref_primary_10_1159_000531823
crossref_primary_10_1016_j_chemosphere_2021_131793
crossref_primary_10_1016_j_cpet_2020_06_013
crossref_primary_10_1016_j_trac_2023_117067
crossref_primary_10_1002_dev_22360
crossref_primary_10_1007_s12291_020_00905_6
crossref_primary_10_1016_j_fufo_2025_100576
crossref_primary_10_1002_qub2_45
crossref_primary_10_1016_j_arr_2023_102180
crossref_primary_10_1016_j_ijbiomac_2025_147386
crossref_primary_10_3390_metabo11030184
crossref_primary_10_1016_j_cj_2024_10_007
crossref_primary_10_1016_j_jprot_2020_103888
crossref_primary_10_1128_cmr_00060_22
crossref_primary_10_3390_metabo10060224
crossref_primary_10_7124_bc_000A4D
crossref_primary_10_1038_s41526_021_00135_x
crossref_primary_10_1371_journal_pone_0309921
crossref_primary_10_1111_obr_13825
crossref_primary_10_1002_prca_201900084
crossref_primary_10_1016_j_biochi_2024_01_002
crossref_primary_10_3389_fonc_2022_896633
crossref_primary_10_3390_ijms22136932
crossref_primary_10_1007_s11356_024_34665_0
crossref_primary_10_1016_j_compbiomed_2021_105069
crossref_primary_10_1093_nar_gkab1200
crossref_primary_10_1080_15592294_2022_2079293
crossref_primary_10_3389_fgene_2020_610798
crossref_primary_10_3389_fmicb_2021_685935
crossref_primary_10_3389_fonc_2021_712505
crossref_primary_10_1016_j_foodres_2021_110392
crossref_primary_10_3389_fmars_2021_668771
crossref_primary_10_1016_j_scitotenv_2021_145363
crossref_primary_10_3390_antibiotics10010084
crossref_primary_10_1016_j_jacc_2021_02_056
crossref_primary_10_1186_s12916_021_02027_z
crossref_primary_10_1186_s12864_022_08690_7
crossref_primary_10_1183_16000617_0377_2020
crossref_primary_10_1080_10242422_2020_1813727
crossref_primary_10_1016_j_clp_2021_11_011
crossref_primary_10_3390_cells11244121
crossref_primary_10_1016_j_biopha_2021_111809
crossref_primary_10_1111_mec_16342
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_3390_biomedicines10092297
crossref_primary_10_1007_s10533_021_00793_9
crossref_primary_10_1007_s10519_022_10126_7
crossref_primary_10_1016_j_copbio_2020_02_013
crossref_primary_10_1016_j_foodres_2022_112190
crossref_primary_10_1111_pbi_13372
crossref_primary_10_1183_23120541_00113_2022
crossref_primary_10_3390_toxics13090714
crossref_primary_10_1007_s12032_025_02945_5
crossref_primary_10_1186_s12871_023_02317_4
crossref_primary_10_1186_s12884_021_04116_6
crossref_primary_10_1016_j_bbe_2021_10_005
crossref_primary_10_1111_jpy_13504
crossref_primary_10_1371_journal_pone_0238452
crossref_primary_10_1016_j_scitotenv_2021_151264
crossref_primary_10_1007_s11306_019_1588_0
crossref_primary_10_1002_acn3_51296
crossref_primary_10_3389_fmars_2023_1170451
crossref_primary_10_3390_life13061360
crossref_primary_10_1093_femsre_fuaf028
crossref_primary_10_3390_cancers15010140
crossref_primary_10_3390_metabo10050202
crossref_primary_10_1007_s00299_024_03153_7
crossref_primary_10_1016_j_virusres_2021_198610
crossref_primary_10_1093_bioadv_vbac067
crossref_primary_10_1007_s42994_023_00134_4
crossref_primary_10_3389_fpls_2021_774994
crossref_primary_10_1039_D3MO00266G
Cites_doi 10.1186/1752-0509-3-82
10.1104/pp.16.01942
10.1016/j.copbio.2017.10.009
10.1016/j.watres.2015.10.029
10.1093/nar/gkw1058
10.1007/s11306-015-0823-6
10.1016/j.copbio.2017.11.013
10.3389/fphys.2010.00009
10.1093/bioinformatics/bty679
10.1093/bioinformatics/btq583
10.1371/journal.pcbi.1004321
10.1038/nrmicro2737
10.1093/nar/gky992
10.1371/journal.pone.0071060
10.1002/1097-0290(2000)71:4<286::AID-BIT1018>3.0.CO;2-R
10.1038/nature14238
10.1002/cem.775
10.1021/pr9006365
10.1016/j.copbio.2017.07.008
10.1093/jxb/erv271
10.1038/nrg1272
10.1007/s11306-014-0734-y
10.1515/jib-2011-160
10.1080/14789450.2018.1476143
10.1038/35036627
10.2144/000114414
10.1093/nar/gkm961
10.1002/0471250953.bi1413s53
10.1002/0470857897.ch8
10.1371/journal.pone.0049138
10.1002/prot.23159
10.1371/journal.pone.0006386
10.1038/nbt.3870
10.1377/hlthaff.2017.1427
10.1016/j.copbio.2018.01.009
10.1093/nar/gkp552
10.1104/pp.105.060525
10.1371/journal.pone.0071462
10.3389/fbioe.2015.00038
10.1016/j.jbiotec.2009.08.010
10.2174/1871524915666160510124150
10.1186/1471-2105-7-176
10.1186/1471-2164-14-893
10.1038/nbt1492
10.1093/nar/gkp875
10.1093/nar/gky310
10.1038/sdata.2016.18
10.1093/nar/gkx1132
10.1038/nature04768
10.1038/ncomms4114
10.1093/bioinformatics/btq594
10.1186/1471-2105-7-109
10.1016/j.physrep.2014.07.001
10.1002/gepi.21808
10.1093/bioinformatics/btg042
10.1186/s12859-018-2371-3
10.1016/j.cell.2005.04.020
10.1093/bfgp/elm027
10.1002/jimd.12008
10.1128/ecosalplus.esp-0006-2018
10.1136/bmj.k2179
10.1021/ac301269r
10.1101/374520
10.1038/nbt.2488
10.1371/journal.pone.0039960
10.1093/nar/gkt338
10.1038/srep32584
10.1128/mBio.00525-18
10.1016/j.cell.2012.02.009
10.1093/bioinformatics/15.1.72
10.1093/nar/gkv1060
10.1093/bioinformatics/btr661
10.1016/j.cell.2015.11.001
10.1038/msb.2010.18
10.1038/nrg2484
10.1016/0169-2607(92)90102-D
10.1038/nature18003
10.1016/j.biosystems.2011.04.003
10.1530/JME-18-0055
10.1093/bioinformatics/btr499
10.1038/nbt1094-994
10.1128/mSystems.00013-15
10.1186/s13059-017-1359-z
10.3389/fmolb.2019.00002
10.1093/nar/gkv1031
10.1016/j.coisb.2017.08.009
10.3389/fmicb.2013.00050
10.1111/febs.13128
10.1111/j.1365-313X.2004.02016.x
10.1021/acs.analchem.8b03205
10.1007/978-1-4939-6371-3_1
10.1186/1742-4682-2-18
10.1111/j.1365-313X.2007.03293.x
10.1016/j.cbpa.2006.06.025
10.1093/ndt/gfv364
10.1016/bs.adgen.2015.11.004
10.1016/j.scitotenv.2017.07.184
10.1016/j.ymeth.2009.03.016
10.1089/omi.2014.0062
10.1016/j.cell.2016.08.007
10.1007/978-3-319-47656-8_14
10.1007/s11306-013-0612-z
10.1016/j.scitotenv.2018.03.106
10.1007/s11306-006-0037-z
10.1016/j.pnmrs.2017.11.003
10.1021/cb500609p
10.1128/JB.00740-06
10.1093/bioinformatics/btq183
10.1021/pr060124w
10.3233/ISB-2010-0415
10.1038/nbt.4072
10.1371/journal.ppat.1004786
10.1104/pp.105.060459
10.1093/database/bax002
10.1371/journal.pcbi.1004085
10.1016/j.micres.2015.01.003
10.1038/nbt.3790
10.1186/s13059-015-0841-8
10.1016/j.cels.2016.04.004
10.1002/cem.724
10.1146/annurev.genom.9.081307.164359
10.1186/1752-0509-7-64
10.1021/acssynbio.8b00140
10.1371/journal.pone.0021318
10.1093/jnci/djq306
10.1038/nbt.1614
10.1128/mBio.00204-15
10.1093/comnet/cnu016
10.1002/bit.22592
10.1371/journal.pone.0039860
10.1016/j.cell.2018.08.065
10.1049/iet-syb:20070020
10.1038/npp.2017.221
10.1093/nar/gks1195
10.1093/nar/gkv1217
10.1146/annurev-biochem-061516-044757
10.1007/978-3-319-46326-1_10
10.1371/journal.pone.0008365
10.1016/j.coisb.2017.08.007
10.1093/nar/gkx1089
10.1128/aem.60.10.3724-3731.1994
10.1016/j.jbiotec.2004.04.038
10.1038/srep40863
10.1093/nar/gky092
10.1093/nar/gkv1145
10.3390/ijms18081652
10.1038/s41540-018-0063-2
10.1007/s11306-018-1449-2
10.15252/msb.20178126
10.1371/journal.pcbi.1003580
10.1002/cem.1388
10.1016/j.drudis.2016.11.020
10.1093/bioinformatics/btg015
10.1038/nplants.2015.99
10.1186/1752-0509-7-S6-S1
10.1101/108597
10.1093/bioinformatics/18.3.405
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7QR
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/metabo9040076
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 2218-1989
ExternalDocumentID oai_doaj_org_article_6be9a77123e943b1a3574081c12713c5
PMC6523452
31003499
10_3390_metabo9040076
Genre Journal Article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
7QR
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c481t-d2ba5252e0a451ed49a97e3d7d4f9fb3150c30fb3f7ca6560c8cc35ee1fc3ee23
IEDL.DBID M7P
ISICitedReferencesCount 437
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467305100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2218-1989
IngestDate Fri Oct 03 12:51:18 EDT 2025
Tue Nov 04 02:00:52 EST 2025
Wed Oct 01 17:14:25 EDT 2025
Fri Jul 25 12:06:52 EDT 2025
Thu Apr 03 06:59:21 EDT 2025
Sat Nov 29 07:13:43 EST 2025
Tue Nov 18 22:18:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords databases
data analysis
metabolic networks
mathematical modeling
quantitative omics
experimental design
pathway analysis
data integration
translational metabolomics
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-d2ba5252e0a451ed49a97e3d7d4f9fb3150c30fb3f7ca6560c8cc35ee1fc3ee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9948-9197
0000-0002-7541-246X
0000-0003-0420-2155
0000-0002-3207-2434
0000-0002-0180-9341
OpenAccessLink https://www.proquest.com/docview/2548812642?pq-origsite=%requestingapplication%
PMID 31003499
PQID 2548812642
PQPubID 2032362
ParticipantIDs doaj_primary_oai_doaj_org_article_6be9a77123e943b1a3574081c12713c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6523452
proquest_miscellaneous_2211947735
proquest_journals_2548812642
pubmed_primary_31003499
crossref_citationtrail_10_3390_metabo9040076
crossref_primary_10_3390_metabo9040076
PublicationCentury 2000
PublicationDate 20190418
PublicationDateYYYYMMDD 2019-04-18
PublicationDate_xml – month: 4
  year: 2019
  text: 20190418
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Metabolites
PublicationTitleAlternate Metabolites
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fondi (ref_90) 2015; 171
ref_136
ref_138
Tokimatsu (ref_122) 2005; 138
Lewis (ref_79) 2012; 10
ref_130
Nishino (ref_67) 2009; 144
ref_98
ref_135
ref_134
Breitling (ref_1) 2010; 1
Dihazi (ref_140) 2018; 15
Nayfach (ref_147) 2016; 166
Theriot (ref_86) 2014; 5
Thiele (ref_12) 2013; 31
Orth (ref_58) 2010; 28
Otero (ref_10) 2010; 105
Zampieri (ref_21) 2017; 6
Wierling (ref_54) 2007; 6
Nassar (ref_17) 2017; 22
Valdes (ref_155) 2018; 361
ref_127
Mardis (ref_13) 2008; 9
ref_129
Marcu (ref_99) 2017; 45
Xia (ref_119) 2013; 41
Bashiardes (ref_156) 2018; 51
ref_25
Hagemann (ref_5) 2018; 49
Biswapriya (ref_92) 2019; 62
Eriksson (ref_48) 2007; 52
Usadel (ref_124) 2005; 138
Lin (ref_123) 2011; 8
Wilkinson (ref_149) 2016; 3
Zeevi (ref_148) 2015; 163
Kaever (ref_126) 2015; 11
ref_28
Dopazo (ref_133) 2011; 27
Cisek (ref_4) 2016; 31
ref_26
Mori (ref_69) 2004; 37
Ara (ref_158) 2015; 3
Kirwan (ref_45) 2012; 84
Barabasi (ref_151) 2004; 5
Junker (ref_137) 2006; 7
Trygg (ref_42) 2002; 16
Wishart (ref_102) 2018; 46
Cho (ref_3) 2006; 10
Beale (ref_18) 2018; 14
ref_71
Tomita (ref_63) 1999; 15
Hastings (ref_89) 2019; 6
Rantalainen (ref_46) 2006; 5
Varma (ref_62) 1994; 12
Ogura (ref_157) 2015; 10
Wishart (ref_56) 2005; 5
Yizhak (ref_20) 2010; 26
Chen (ref_23) 2012; 148
Ma (ref_78) 2017; 7
Jozefczuk (ref_88) 2010; 6
Tabb (ref_145) 2010; 9
Kikuchi (ref_52) 2018; 104
Hucka (ref_72) 2003; 19
Benson (ref_103) 2013; 41
Hastings (ref_105) 2016; 44
Jeong (ref_150) 2000; 407
Mertins (ref_31) 2016; 534
Wheeler (ref_131) 2014; 38
Beale (ref_22) 2016; 88
Wilhelm (ref_146) 2009; 48
Varma (ref_59) 1994; 60
Brunk (ref_80) 2018; 36
ref_83
Ludwig (ref_16) 2018; 14
MacPherson (ref_101) 2017; 2017
Xu (ref_7) 2018; 53
Marygold (ref_95) 2016; 1478
Aderem (ref_139) 2005; 121
Reinke (ref_47) 2018; 90
Trygg (ref_44) 2011; 25
ref_87
ref_143
ref_85
ref_84
Krajewski (ref_159) 2015; 66
Trygg (ref_43) 2003; 17
Broadhurst (ref_33) 2006; 2
Zhang (ref_100) 2017; 173
Phillips (ref_164) 2018; 37
Price (ref_154) 2017; 35
Ishii (ref_64) 2004; 113
Kanehisa (ref_109) 2002; 247
Fabregat (ref_110) 2018; 46
Droste (ref_132) 2011; 105
Sahoo (ref_75) 2015; 282
Hultman (ref_40) 2015; 521
Beale (ref_51) 2018; 631–632
Caspi (ref_111) 2010; 38
Bai (ref_141) 2017; 35
Kornberg (ref_11) 2017; Volume 86
Lee (ref_61) 1992; 38
Voss (ref_57) 2003; 3
Bauer (ref_81) 2018; 4
Gilchrist (ref_9) 2006; 441
Noronha (ref_82) 2019; 47
Nishino (ref_66) 2010; 2010
Hou (ref_34) 2014; 10
Shapiro (ref_55) 2003; 19
Vizcaino (ref_108) 2016; 44
Herrgard (ref_6) 2008; 26
Howe (ref_96) 2016; 44
ref_162
ref_68
Joyce (ref_70) 2006; 188
Green (ref_121) 2013; 30
Kale (ref_106) 2016; 53
Diamandis (ref_161) 2010; 102
Friedmann (ref_27) 2016; Volume 93
Brunk (ref_19) 2016; 2
Kamburov (ref_120) 2011; 27
ref_115
Kimes (ref_39) 2013; 4
Yurkovich (ref_165) 2018; 51
ref_117
ref_116
ref_118
Chong (ref_53) 2018; 46
Xia (ref_114) 2010; 26
Shi (ref_36) 2012; 80
ref_32
LaFramboise (ref_14) 2009; 37
Sajed (ref_97) 2016; 44
Meyer (ref_160) 2015; 1
Beale (ref_50) 2017; 609
ref_113
Sinha (ref_144) 2015; 16
ref_112
Fahy (ref_107) 2018; 35
Trivedi (ref_163) 2017; 3
Nakayama (ref_65) 2005; 2
Coscia (ref_30) 2018; 175
Cooling (ref_73) 2008; 2
Padula (ref_29) 2016; 60
Arenas (ref_153) 2014; 2
Karnovsky (ref_128) 2012; 28
Grav (ref_8) 2018; 7
Haas (ref_93) 2017; 6
Ren (ref_35) 2015; 11
ref_104
Wanders (ref_91) 2019; 42
Shin (ref_24) 2014; 18
Thimm (ref_125) 2004; 37
Kuo (ref_142) 2002; 18
ref_41
ref_2
Schilling (ref_60) 2000; 71
Mallick (ref_38) 2017; 18
ref_49
Bult (ref_94) 2008; 36
Nagasaki (ref_74) 2010; 10
Janneth (ref_76) 2017; 17
Knecht (ref_77) 2016; 6
Wang (ref_15) 2009; 10
Cattaneo (ref_37) 2018; 43
Boccaletti (ref_152) 2014; 544
References_xml – ident: ref_135
  doi: 10.1186/1752-0509-3-82
– volume: 173
  start-page: 2041
  year: 2017
  ident: ref_100
  article-title: Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01942
– volume: 53
  start-page: 12
  year: 2018
  ident: ref_7
  article-title: Production of chemicals using dynamic control of metabolic fluxes
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.10.009
– volume: 88
  start-page: 346
  year: 2016
  ident: ref_22
  article-title: An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.029
– volume: 45
  start-page: D440
  year: 2017
  ident: ref_99
  article-title: YMDB 2.0: A significantly expanded version of the yeast metabolome database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1058
– volume: 37
  start-page: 83
  year: 2004
  ident: ref_69
  article-title: From the sequence to cell modeling: Comprehensive functional genomics in Escherichia coli
  publication-title: J. Biochem. Mol. Biol.
– volume: 11
  start-page: 1492
  year: 2015
  ident: ref_35
  article-title: Computational and statistical analysis of metabolomics data
  publication-title: Metabolomics
  doi: 10.1007/s11306-015-0823-6
– volume: 51
  start-page: 57
  year: 2018
  ident: ref_156
  article-title: Towards utilization of the human genome and microbiome for personalized nutrition
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.11.013
– volume: 5
  start-page: 139
  year: 2005
  ident: ref_56
  article-title: Dynamic cellular automata: An alternative approach to cellular simulation
  publication-title: Silico Biol.
– volume: 1
  start-page: 9
  year: 2010
  ident: ref_1
  article-title: What is systems biology?
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2010.00009
– volume: 35
  start-page: 685
  year: 2018
  ident: ref_107
  article-title: LipidFinder on LIPID MAPS: Peak filtering, MS searching and statistical analysis for lipidomics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty679
– volume: 26
  start-page: 2995
  year: 2010
  ident: ref_114
  article-title: OmicsAnalyzer: A Cytoscape plug-in suite for modeling omics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq583
– ident: ref_116
  doi: 10.1371/journal.pcbi.1004321
– volume: 3
  start-page: 294
  year: 2017
  ident: ref_163
  article-title: Metabolomics for the masses: The future of metabolomics in a personalized world
  publication-title: New Horizons Transl. Med.
– volume: 10
  start-page: 291
  year: 2012
  ident: ref_79
  article-title: Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2737
– volume: 47
  start-page: D614
  year: 2019
  ident: ref_82
  article-title: The Virtual Metabolic Human database: Integrating human and gut microbiome metabolism with nutrition and disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky992
– ident: ref_68
  doi: 10.1371/journal.pone.0071060
– volume: 71
  start-page: 286
  year: 2000
  ident: ref_60
  article-title: Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/1097-0290(2000)71:4<286::AID-BIT1018>3.0.CO;2-R
– volume: 521
  start-page: 208
  year: 2015
  ident: ref_40
  article-title: Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes
  publication-title: Nature
  doi: 10.1038/nature14238
– volume: 17
  start-page: 53
  year: 2003
  ident: ref_43
  article-title: O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter
  publication-title: J. Chemom.
  doi: 10.1002/cem.775
– volume: 9
  start-page: 761
  year: 2010
  ident: ref_145
  article-title: Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry
  publication-title: J. Proteome Res.
  doi: 10.1021/pr9006365
– volume: 49
  start-page: 94
  year: 2018
  ident: ref_5
  article-title: Systems and synthetic biology for the biotechnological application of cyanobacteria
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.07.008
– volume: 66
  start-page: 5417
  year: 2015
  ident: ref_159
  article-title: Towards recommendations for metadata and data handling in plant phenotyping
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv271
– volume: 5
  start-page: 101
  year: 2004
  ident: ref_151
  article-title: Network biology: Understanding the cell’s functional organization
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1272
– volume: 11
  start-page: 764
  year: 2015
  ident: ref_126
  article-title: MarVis-Pathway: Integrative and exploratory pathway analysis of non-targeted metabolomics data
  publication-title: Metabolomics
  doi: 10.1007/s11306-014-0734-y
– volume: 8
  start-page: 160
  year: 2011
  ident: ref_123
  article-title: MADMAX - Management and analysis database for multiple ~omics experiments
  publication-title: J. Integr. Bioinform.
  doi: 10.1515/jib-2011-160
– volume: 15
  start-page: 463
  year: 2018
  ident: ref_140
  article-title: Integrative omics - from data to biology
  publication-title: Expert Rev. Proteom.
  doi: 10.1080/14789450.2018.1476143
– volume: 407
  start-page: 651
  year: 2000
  ident: ref_150
  article-title: The large-scale organization of metabolic networks
  publication-title: Nature
  doi: 10.1038/35036627
– volume: 60
  start-page: 229
  year: 2016
  ident: ref_29
  article-title: Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval
  publication-title: BioTechniques
  doi: 10.2144/000114414
– volume: 36
  start-page: D724
  year: 2008
  ident: ref_94
  article-title: The Mouse Genome Database (MGD): Mouse biology and model systems
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm961
– volume: 53
  start-page: 14.13.1
  year: 2016
  ident: ref_106
  article-title: Metabolights: An open-access database repository for metabolomics data
  publication-title: Curr. Protoc. Bioinform.
  doi: 10.1002/0471250953.bi1413s53
– volume: 247
  start-page: 91
  year: 2002
  ident: ref_109
  article-title: The KEGG database
  publication-title: Novartis Found. Symp.
  doi: 10.1002/0470857897.ch8
– ident: ref_84
  doi: 10.1371/journal.pone.0049138
– volume: 80
  start-page: 61
  year: 2012
  ident: ref_36
  article-title: Protein stability and in vivo concentration of missense mutations in phenylalanine hydroxylase
  publication-title: Proteins
  doi: 10.1002/prot.23159
– ident: ref_87
  doi: 10.1371/journal.pone.0006386
– volume: 35
  start-page: 747
  year: 2017
  ident: ref_154
  article-title: A wellness study of 108 individuals using personal, dense, dynamic data clouds
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3870
– volume: 37
  start-page: 710
  year: 2018
  ident: ref_164
  article-title: Genetic Test Availability And Spending: Where Are We Now? Where Are We Going?
  publication-title: Health Aff. (Proj. Hope)
  doi: 10.1377/hlthaff.2017.1427
– volume: 51
  start-page: 130
  year: 2018
  ident: ref_165
  article-title: Quantitative -omic data empowers bottom-up systems biology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.01.009
– volume: 37
  start-page: 4181
  year: 2009
  ident: ref_14
  article-title: Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp552
– volume: 138
  start-page: 1289
  year: 2005
  ident: ref_122
  article-title: KaPPA-view: A web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.060525
– ident: ref_143
  doi: 10.1371/journal.pone.0071462
– volume: 3
  start-page: 38
  year: 2015
  ident: ref_158
  article-title: Metabolonote: A Wiki-Based Database for Managing Hierarchical Metadata of Metabolome Analyses
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00038
– volume: 144
  start-page: 212
  year: 2009
  ident: ref_67
  article-title: In silico modeling and metabolome analysis of long-stored erythrocytes to improve blood storage methods
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2009.08.010
– volume: 17
  start-page: 72
  year: 2017
  ident: ref_76
  article-title: Understanding the metabolic consequences of human arylsulfatase a deficiency through a computational systems biology study
  publication-title: Cent. Nerv. Syst. Agents Med. Chem.
  doi: 10.2174/1871524915666160510124150
– ident: ref_117
  doi: 10.1186/1471-2105-7-176
– ident: ref_49
  doi: 10.1186/1471-2164-14-893
– volume: 26
  start-page: 1155
  year: 2008
  ident: ref_6
  article-title: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1492
– volume: 38
  start-page: D473
  year: 2010
  ident: ref_111
  article-title: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp875
– volume: 46
  start-page: W486
  year: 2018
  ident: ref_53
  article-title: MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky310
– volume: 3
  start-page: 160018
  year: 2016
  ident: ref_149
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.18
– ident: ref_28
– volume: 46
  start-page: D649
  year: 2018
  ident: ref_110
  article-title: The Reactome Pathway Knowledgebase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1132
– volume: 441
  start-page: 173
  year: 2006
  ident: ref_9
  article-title: Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4
  publication-title: Nature
  doi: 10.1038/nature04768
– volume: 5
  start-page: 3114
  year: 2014
  ident: ref_86
  article-title: Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4114
– volume: 27
  start-page: 137
  year: 2011
  ident: ref_133
  article-title: Paintomics: A web based tool for the joint visualization of transcriptomics and metabolomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq594
– volume: 7
  start-page: 1
  year: 2006
  ident: ref_137
  article-title: VANTED: A system for advanced data analysis and visualization in the context of biological networks
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-7-109
– volume: 544
  start-page: 1
  year: 2014
  ident: ref_152
  article-title: The structure and dynamics of multilayer networks
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.07.001
– volume: 38
  start-page: 402
  year: 2014
  ident: ref_131
  article-title: Poly-omic prediction of complex traits: OmicKriging
  publication-title: Genetic Epidemiol.
  doi: 10.1002/gepi.21808
– volume: 19
  start-page: 677
  year: 2003
  ident: ref_55
  article-title: Cellerator: Extending a computer algebra system to include biochemical arrows for signal transduction simulations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg042
– ident: ref_130
  doi: 10.1186/s12859-018-2371-3
– volume: 121
  start-page: 511
  year: 2005
  ident: ref_139
  article-title: Systems biology: Its practice and challenges
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.020
– volume: 6
  start-page: 240
  year: 2007
  ident: ref_54
  article-title: Resources, standards and tools for systems biology
  publication-title: Brief. Funct. Genom.
  doi: 10.1093/bfgp/elm027
– volume: 42
  start-page: 197
  year: 2019
  ident: ref_91
  article-title: Translational Metabolism: A multidisciplinary approach towards precision diagnosis of inborn errors of metabolism in the omics era
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1002/jimd.12008
– ident: ref_98
  doi: 10.1128/ecosalplus.esp-0006-2018
– volume: 361
  start-page: k2179
  year: 2018
  ident: ref_155
  article-title: Role of the gut microbiota in nutrition and health
  publication-title: BMJ (Clin. Res. Ed.)
  doi: 10.1136/bmj.k2179
– volume: 84
  start-page: 7064
  year: 2012
  ident: ref_45
  article-title: Building multivariate systems biology models
  publication-title: Anal. Chem.
  doi: 10.1021/ac301269r
– ident: ref_25
  doi: 10.1101/374520
– volume: 31
  start-page: 419
  year: 2013
  ident: ref_12
  article-title: A community-driven global reconstruction of human metabolism
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2488
– ident: ref_113
  doi: 10.1371/journal.pone.0039960
– volume: 41
  start-page: W63
  year: 2013
  ident: ref_119
  article-title: INMEX--a web-based tool for integrative meta-analysis of expression data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt338
– volume: 6
  start-page: 32584
  year: 2016
  ident: ref_77
  article-title: Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls
  publication-title: Sci. Rep.
  doi: 10.1038/srep32584
– ident: ref_26
  doi: 10.1128/mBio.00525-18
– volume: 148
  start-page: 1293
  year: 2012
  ident: ref_23
  article-title: Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.009
– volume: 15
  start-page: 72
  year: 1999
  ident: ref_63
  article-title: E-CELL: Software environment for whole-cell simulation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/15.1.72
– volume: 44
  start-page: D495
  year: 2016
  ident: ref_97
  article-title: ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1060
– volume: 28
  start-page: 373
  year: 2012
  ident: ref_128
  article-title: Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr661
– volume: 163
  start-page: 1079
  year: 2015
  ident: ref_148
  article-title: Personalized nutrition by prediction of glycemic responses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.001
– volume: 6
  start-page: 364
  year: 2010
  ident: ref_88
  article-title: Metabolomic and transcriptomic stress response of Escherichia coli
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.18
– volume: 10
  start-page: 57
  year: 2009
  ident: ref_15
  article-title: RNA-Seq: A revolutionary tool for transcriptomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2484
– volume: 38
  start-page: 195
  year: 1992
  ident: ref_61
  article-title: A Macintosh software package for simulation of human red blood cell metabolism
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/0169-2607(92)90102-D
– volume: 534
  start-page: 55
  year: 2016
  ident: ref_31
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
  doi: 10.1038/nature18003
– volume: 105
  start-page: 154
  year: 2011
  ident: ref_132
  article-title: Visualizing multi-omics data in metabolic networks with the software Omix—A case study
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2011.04.003
– volume: 62
  start-page: R21
  year: 2019
  ident: ref_92
  article-title: Integrated omics: Tools, advances and future approaches
  publication-title: J. Mol. Endocrinol.
  doi: 10.1530/JME-18-0055
– volume: 27
  start-page: 2917
  year: 2011
  ident: ref_120
  article-title: Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr499
– volume: 12
  start-page: 994
  year: 1994
  ident: ref_62
  article-title: Metabolic flux balancing: Basic concepts, scientific and practical use
  publication-title: Bio/Technology
  doi: 10.1038/nbt1094-994
– ident: ref_83
  doi: 10.1128/mSystems.00013-15
– volume: 18
  start-page: 228
  year: 2017
  ident: ref_38
  article-title: Experimental design and quantitative analysis of microbial community multiomics
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1359-z
– volume: 6
  start-page: 364
  year: 2019
  ident: ref_89
  article-title: Multi-Omics and Genome-Scale Modeling Reveal a Metabolic Shift During C. elegans Aging
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00002
– volume: 44
  start-page: D1214
  year: 2016
  ident: ref_105
  article-title: ChEBI in 2016: Improved services and an expanding collection of metabolites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1031
– volume: 6
  start-page: 37
  year: 2017
  ident: ref_93
  article-title: Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2017.08.009
– volume: 4
  start-page: 50
  year: 2013
  ident: ref_39
  article-title: Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00050
– volume: 3
  start-page: 367
  year: 2003
  ident: ref_57
  article-title: Steady state analysis of metabolic pathways using Petri nets
  publication-title: Silico Biol.
– volume: 282
  start-page: 297
  year: 2015
  ident: ref_75
  article-title: Modeling the effects of commonly used drugs on human metabolism
  publication-title: FEBS J.
  doi: 10.1111/febs.13128
– ident: ref_136
– volume: 37
  start-page: 914
  year: 2004
  ident: ref_125
  article-title: MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes
  publication-title: Plant J. Cell Mol. Biol.
  doi: 10.1111/j.1365-313X.2004.02016.x
– volume: 90
  start-page: 13400
  year: 2018
  ident: ref_47
  article-title: OnPLS-based multi-block data integration: A multivariate approach to interrogating biological interactions in asthma
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b03205
– volume: 30
  start-page: 523
  year: 2013
  ident: ref_121
  article-title: Causal analysis approaches in Ingenuity Pathway Analysis
  publication-title: Bioinformatics
– volume: 1478
  start-page: 1
  year: 2016
  ident: ref_95
  article-title: Using FlyBase, a database of Drosophila genes and genomes
  publication-title: Methods Mol. Biol. (Clifton, N.J.)
  doi: 10.1007/978-1-4939-6371-3_1
– volume: 2
  start-page: 18
  year: 2005
  ident: ref_65
  article-title: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/1742-4682-2-18
– volume: 52
  start-page: 1181
  year: 2007
  ident: ref_48
  article-title: Data integration in plant biology: The O2PLS method for combined modeling of transcript and metabolite data
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03293.x
– volume: 10
  start-page: 294
  year: 2006
  ident: ref_3
  article-title: The application of systems biology to drug discovery
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2006.06.025
– volume: 31
  start-page: 2003
  year: 2016
  ident: ref_4
  article-title: The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfv364
– volume: Volume 93
  start-page: 147
  year: 2016
  ident: ref_27
  article-title: Chapter Three—Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases
  publication-title: Advances in Genetics
  doi: 10.1016/bs.adgen.2015.11.004
– volume: 609
  start-page: 842
  year: 2017
  ident: ref_50
  article-title: A multi-omics based ecological analysis of coastal marine sediments from Gladstone, in Australia’s Central Queensland, and Heron Island, a nearby fringing platform reef
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.184
– volume: 48
  start-page: 249
  year: 2009
  ident: ref_146
  article-title: RNA-Seq—Quantitative measurement of expression through massively parallel RNA-sequencing
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.03.016
– volume: 18
  start-page: 682
  year: 2014
  ident: ref_24
  article-title: Novel Multivariate Methods for Integration of Genomics and Proteomics Data: Applications in a Kidney Transplant Rejection Study
  publication-title: OMICS J. Integr. Biol.
  doi: 10.1089/omi.2014.0062
– volume: 166
  start-page: 1103
  year: 2016
  ident: ref_147
  article-title: Toward accurate and quantitative comparative metagenomics
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.007
– ident: ref_32
  doi: 10.1007/978-3-319-47656-8_14
– volume: 2010
  start-page: 642420
  year: 2010
  ident: ref_66
  article-title: A metabolic model of human erythrocytes: Practical application of the E-Cell Simulation Environment
  publication-title: J. Biomed. Biotechnol.
– volume: 10
  start-page: 589
  year: 2014
  ident: ref_34
  article-title: Regularized projection pursuit for data with a small sample-to-variable ratio
  publication-title: Metabolomics
  doi: 10.1007/s11306-013-0612-z
– volume: 631–632
  start-page: 1328
  year: 2018
  ident: ref_51
  article-title: Seasonal metabolic analysis of marine sediments collected from Moreton Bay in South East Queensland, Australia, using a multi-omics-based approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.106
– volume: 2
  start-page: 171
  year: 2006
  ident: ref_33
  article-title: Statistical strategies for avoiding false discoveries in metabolomics and related experiments
  publication-title: Metabolomics
  doi: 10.1007/s11306-006-0037-z
– volume: 104
  start-page: 56
  year: 2018
  ident: ref_52
  article-title: Environmental metabolomics with data science for investigating ecosystem homeostasis
  publication-title: Prog. Nuclear Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2017.11.003
– volume: 10
  start-page: 1908
  year: 2015
  ident: ref_157
  article-title: Metabolic dynamics analysis by massive data integration: Application to tsunami-affected field soils in Japan
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb500609p
– volume: 188
  start-page: 8259
  year: 2006
  ident: ref_70
  article-title: Experimental and computational assessment of conditionally essential genes in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00740-06
– volume: 26
  start-page: i255
  year: 2010
  ident: ref_20
  article-title: Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq183
– volume: 5
  start-page: 2642
  year: 2006
  ident: ref_46
  article-title: Statistically integrated metabonomic−proteomic studies on a human prostate cancer xenograft model in mice
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060124w
– volume: 10
  start-page: 5
  year: 2010
  ident: ref_74
  article-title: Cell Illustrator 4.0: A computational platform for systems biology
  publication-title: Silico Biol.
  doi: 10.3233/ISB-2010-0415
– volume: 36
  start-page: 272
  year: 2018
  ident: ref_80
  article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4072
– ident: ref_2
  doi: 10.1371/journal.ppat.1004786
– volume: 138
  start-page: 1195
  year: 2005
  ident: ref_124
  article-title: Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.060459
– volume: 2017
  start-page: bax002
  year: 2017
  ident: ref_101
  article-title: Outreach and online training services at the Saccharomyces Genome Database
  publication-title: Database
  doi: 10.1093/database/bax002
– ident: ref_134
  doi: 10.1371/journal.pcbi.1004085
– volume: 171
  start-page: 52
  year: 2015
  ident: ref_90
  article-title: Multi -omics and metabolic modelling pipelines: Challenges and tools for systems microbiology
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2015.01.003
– volume: 35
  start-page: 406
  year: 2017
  ident: ref_141
  article-title: Discovering and linking public omics data sets using the Omics Discovery Index
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3790
– volume: 16
  start-page: 276
  year: 2015
  ident: ref_144
  article-title: The microbiome quality control project: Baseline study design and future directions
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0841-8
– volume: 2
  start-page: 335
  year: 2016
  ident: ref_19
  article-title: Characterizing Strain Variation in Engineered E.coli Using a Multi-Omics-Based Workflow
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.04.004
– volume: 16
  start-page: 283
  year: 2002
  ident: ref_42
  article-title: O2-PLS for qualitative and quantitative analysis in multivariate calibration
  publication-title: J. Chemom.
  doi: 10.1002/cem.724
– volume: 9
  start-page: 387
  year: 2008
  ident: ref_13
  article-title: Next-Generation DNA Sequencing Methods
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev.genom.9.081307.164359
– ident: ref_41
  doi: 10.1186/1752-0509-7-64
– volume: 7
  start-page: 2148
  year: 2018
  ident: ref_8
  article-title: Minimizing clonal variation during mammalian cell line engineering for improved systems biology data generation
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00140
– ident: ref_115
  doi: 10.1371/journal.pone.0021318
– volume: 102
  start-page: 1462
  year: 2010
  ident: ref_161
  article-title: Cancer biomarkers: Can we turn recent failures into success?
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djq306
– volume: 28
  start-page: 245
  year: 2010
  ident: ref_58
  article-title: What is flux balance analysis?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1614
– ident: ref_85
  doi: 10.1128/mBio.00204-15
– volume: 2
  start-page: 203
  year: 2014
  ident: ref_153
  article-title: Multilayer networks
  publication-title: J. Complex Netw.
  doi: 10.1093/comnet/cnu016
– volume: 105
  start-page: 439
  year: 2010
  ident: ref_10
  article-title: Industrial Systems Biology
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22592
– ident: ref_127
  doi: 10.1371/journal.pone.0039860
– volume: 175
  start-page: 159
  year: 2018
  ident: ref_30
  article-title: Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.065
– volume: 2
  start-page: 73
  year: 2008
  ident: ref_73
  article-title: Modelling biological modularity with CellML
  publication-title: IET Syst. Biol.
  doi: 10.1049/iet-syb:20070020
– volume: 43
  start-page: 227
  year: 2018
  ident: ref_37
  article-title: Integrating ‘omics’ approaches to prioritize new pathogenetic mechanisms for mental disorders
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.221
– volume: 41
  start-page: D36
  year: 2013
  ident: ref_103
  article-title: GenBank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1195
– volume: 44
  start-page: D774
  year: 2016
  ident: ref_96
  article-title: WormBase 2016: Expanding to enable helminth genomic research
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1217
– volume: Volume 86
  start-page: 245
  year: 2017
  ident: ref_11
  article-title: Systems Biology of Metabolism
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev-biochem-061516-044757
– ident: ref_112
  doi: 10.1007/978-3-319-46326-1_10
– ident: ref_138
  doi: 10.1371/journal.pone.0008365
– volume: 6
  start-page: 28
  year: 2017
  ident: ref_21
  article-title: Metabolomics-driven understanding of genotype-phenotype relations in model organisms
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2017.08.007
– volume: 46
  start-page: D608
  year: 2018
  ident: ref_102
  article-title: HMDB 4.0: The human metabolome database for 2018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1089
– volume: 60
  start-page: 3724
  year: 1994
  ident: ref_59
  article-title: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.60.10.3724-3731.1994
– volume: 113
  start-page: 281
  year: 2004
  ident: ref_64
  article-title: Toward large-scale modeling of the microbial cell for computer simulation
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2004.04.038
– volume: 7
  start-page: 40863
  year: 2017
  ident: ref_78
  article-title: Reliable and efficient solution of genome-scale models of metabolism and macromolecular expression
  publication-title: Sci. Rep.
  doi: 10.1038/srep40863
– ident: ref_104
  doi: 10.1093/nar/gky092
– volume: 44
  start-page: D447
  year: 2016
  ident: ref_108
  article-title: 2016 update of the PRIDE database and its related tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1145
– ident: ref_162
  doi: 10.3390/ijms18081652
– volume: 4
  start-page: 27
  year: 2018
  ident: ref_81
  article-title: From metagenomic data to personalized in silico microbiotas: Predicting dietary supplements for Crohn’s disease
  publication-title: NPJ Syst. Biol. Appl.
  doi: 10.1038/s41540-018-0063-2
– volume: 14
  start-page: 152
  year: 2018
  ident: ref_18
  article-title: Review of recent developments in GC–MS approaches to metabolomics-based research
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1449-2
– volume: 14
  start-page: 23
  year: 2018
  ident: ref_16
  article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178126
– ident: ref_118
  doi: 10.1371/journal.pcbi.1003580
– volume: 25
  start-page: 441
  year: 2011
  ident: ref_44
  article-title: OnPLS—A novel multiblock method for the modelling of predictive and orthogonal variation
  publication-title: J. Chemom.
  doi: 10.1002/cem.1388
– volume: 22
  start-page: 463
  year: 2017
  ident: ref_17
  article-title: UPLC–MS for metabolomics: A giant step forward in support of pharmaceutical research
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.11.020
– volume: 19
  start-page: 524
  year: 2003
  ident: ref_72
  article-title: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg015
– volume: 1
  start-page: 15099
  year: 2015
  ident: ref_160
  article-title: Encouraging metadata curation in the Diversity Seek initiative
  publication-title: Nature Plants
  doi: 10.1038/nplants.2015.99
– ident: ref_71
  doi: 10.1186/1752-0509-7-S6-S1
– ident: ref_129
  doi: 10.1101/108597
– volume: 18
  start-page: 405
  year: 2002
  ident: ref_142
  article-title: Analysis of matched mRNA measurements from two different microarray technologies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.405
SSID ssj0000605701
Score 2.6070664
Snippet The use of multiple omics techniques (i.e., genomics, transcriptomics, proteomics, and metabolomics) is becoming increasingly popular in all facets of life...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 76
SubjectTerms Biology
data analysis
data integration
Datasets
Design
experimental design
Experiments
Genomics
Integration
mathematical modeling
metabolic networks
Metabolomics
pathway analysis
Proteomics
quantitative omics
Sample size
translational metabolomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VFYdeEKUF0gcyUtUTUTd-rO3eCqICibYcAPUWbGciInWzVTdttf-esZNd7SIQF25RPIpsz4w9Xzz-BuCIV5biAE-rn1dVLq2pyaUk5t4a54wJXmKqWvJZX16a62v7ZaXUV8wJ6-mB-4k7GXu0TmtaYNFK4QsnlJa0j4WCE74Kib10pO0KmOrXYIpDRkVPqikI159MsKNZtdFmI7_IyiaUuPr_FGD-nie5svGcP4OnQ8TIzvqebsMGts9h56wltDyZs2OWcjjTz_Ed-DEQkLO-xOScubZi6Y5tfjVpwox9GtghSBun7HuDj7fTpu1mLN4yYRQLsos0gJtpkl6k5bHhGkk334Vv5x--vv-YDzUU8iBN0eUV905xxXHkpCqwktZZjaLSlaxt7QXFg0GM6KHWwUUinmBCEAqxqINA5OIFbLbTFl8Bk8GMrfNjbRXBiqr20ddDHUi3Bjm6DN4uJrUMA8F4rHNxUxLQiDoo13SQwfFS_LZn1vib4LuooaVQJMROL8hMysFMyn-ZSQYHC_2Wg5fOSgLHhgIcgmAZvFk2k3_FQxPX4vSeZCIFntRa0Cde9uaw7Ek8HBEEGTPQa4ay1tX1lrb5mTi8x4oLqfje_xjbPmxRGJfOuApzAJvd3T0ewpPw0DWzu9fJMX4BCDkU9g
  priority: 102
  providerName: Directory of Open Access Journals
Title Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community
URI https://www.ncbi.nlm.nih.gov/pubmed/31003499
https://www.proquest.com/docview/2548812642
https://www.proquest.com/docview/2211947735
https://pubmed.ncbi.nlm.nih.gov/PMC6523452
https://doaj.org/article/6be9a77123e943b1a3574081c12713c5
Volume 9
WOSCitedRecordID wos000467305100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2218-1989
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605701
  issn: 2218-1989
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-NgYFEZlJLQnojWxU9u8oA1tYhIrEQJUnoLtOFBpTUqTIfW_5-y4YUXAC2-RfYpOvjv77nz-HcDzpJDoB2jc_XRaREyKEk2K2UhLoZQQRjPru5a85ZOJmE5lFhJuTSirXO-JfqMuauNy5EcYyAg8jNBdfrX4HrmuUe52NbTQ2IIdh5KQ-NK9rM-xjNBX56O4g9akGN0fzW2Layud5jqUkWtHkUfs_5Ob-Xu15LXj5-zu_zJ-D-4Ex5Mcd5pyH27Yahf2jisMuucrckh8KajPse_Cra5D5WoPvgREcxJGiKoK4h_tRu_mM9OQ8wA3geJ9ST4hJ4t6VrUNcc9WCDqX5MKvxWXtqdd1fiS8S2lXD-Dj2emH12-i0JQhMkzEbVQkWqVJmtiRYmlsCyaV5JYWvGClLDVFB9PQEX6U3CiH7GOEMTS1Ni4NtTah-7Bd1ZV9BIQZMZZKj7lMMU4pSu02D1MaVBZhE6sG8GItn9wExHLXOOMyx8jFiTPfEOcADnvyRQfV8TfCEyfsnsghbPuBevk1Dwabj7WVinM82K1kVMeKppyh_2TiBON6kw7gYC3uPJh9k_-S9QCe9dNosO4WRlW2vkIah6nHOKf4i4edZvWcuNsWijHoAPiGzm2wujlTzb55UPBxmlCWJo__zdYTuI0en78Oi8UBbLfLK_sUbpof7axZDmGLT8UQdk5OJ9n7oU9PDL1F4Vh2fpF9_gllbSyY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBceLRAAwWMBD0RdRM7axsJofKouurusoeC2lPqOA5dqZssuylo_xS_kbHzoIuAWw_comQUOck3428y9jcAz8NUIg9IMPolUeozKTJ0KWb8RAqlhNAJM65ryYCPRuL4WI7X4EezF8Yuq2xiogvUaaHtP_JdTGQETkZIl9_Mvvq2a5StrjYtNCpYHJrld0zZFq_77_H7vgjD_Q9H7w78uquAr5kISj8NExWFUWi6ikWBSZlUkhua8pRlMksoMiRNu3iQca2sNI0WWtPImCDT1BgrdIAhf51ZsHdgfdwfjk_avzpdzA54N6jEPCmV3d2pKfFrSusrVtfk0uTnegT8idj-vj7z0oS3f_t_e1V34FZNrcle5Qt3Yc3kG7C5l6uymC7JDnGLXV0VYQOuVz04l5twWmu2k_oMUXlK3LZk_-N0ohekXwtqIIBfkc_45LNikpcLYjfmEKTPZOje_XnhrJuVjKTeeVMu78GnK3nq-9DJi9xsAWFa9KRKelxGmImlWWLDo840uoMwoVEevGzwEOtak922BjmPMTez8IlX4OPBTms-q8RI_mb41oKrNbIa4u5EMf8S1yEp7iVGKs6RuhjJaBIoGnGGDFEHIQ-ojjzYbuAV14FtEf_ClgfP2ssYkmydSeWmuEAbqxrIOKd4iwcVktuR2HoSxSzbA76C8ZWhrl7JJ2dO9rwXhZRF4cN_D-sp3Dg4Gg7iQX90-AhuIr91xb9AbEOnnF-Yx3BNfysni_mT2ncJnF61D_wEDCKIOQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5NHSBe-LHxozDASLAnoia2U8dICA1GRbWt9AHQeMocx4FKa1LaDNR_jb-Os-OUFQFve-CtSk6RG393_i4-fwfwhOYSeUCG0S-L84DLpECX4ibIZKJUkuiMG9e15FCMRsnxsRxvwI_2LIwtq2xjogvUeaXtN_IeJjIJLkZIl3uFL4sY7w9ezr4GtoOU3Wlt22k0EDkwy--Yvi1eDPdxrp9SOnjz_vXbwHcYCDRPojrIaaZiGlMTKh5HJudSSWFYLnJeyCJjyJY0C_FHIbSyMjU60ZrFxkSFZsZY0QMM_5tIyTntwOZ4eDT-tPrCE2KmIMKoEfZkTIa9qalxZqX1G6txcm4hdP0C_kRyf6_VPLf4Da7_z6_tBlzzlJvsNT5yEzZMuQXbe6Wqq-mS7BJXBOt2F7bgctObc7kNJ17LnfgrRJU5cceVg3fTiV6QoRfaQGA_Jx_xLcyqSVkviD2wQ5BWkyM3D6eVs24rHIk_kVMvb8GHC_nXt6FTVqW5C4TrpC9V1hcyxgwtLzIbNnWh0U0SQ43qwrMWG6n2Wu22ZchpijmbhVK6BqUu7K7MZ41Iyd8MX1mgrYystri7UM0_pz5Upf3MSCUEUhojOcsixWLBkTnqiIqI6bgLOy3UUh_wFukvnHXh8eo2hiq7_6RKU52hjVUT5EIwfMSdBtWrkdh9JobZdxfEGt7Xhrp-p5x8cXLo_ZgyHtN7_x7WI7iCwE8Ph6OD-3AVaa_bE4ySHejU8zPzAC7pb_VkMX_o3ZjAyUW7wE_vzZD5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systems+Biology+and+Multi-Omics+Integration%3A+Viewpoints+from+the+Metabolomics+Research+Community&rft.jtitle=Metabolites&rft.au=Pinu%2C+Farhana+R.&rft.au=Beale%2C+David+J.&rft.au=Paten%2C+Amy+M.&rft.au=Kouremenos%2C+Konstantinos&rft.date=2019-04-18&rft.pub=MDPI&rft.eissn=2218-1989&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Fmetabo9040076&rft_id=info%3Apmid%2F31003499&rft.externalDocID=PMC6523452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon