Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems

Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorith...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary computation Vol. 27; no. 1; p. 147
Main Authors: Blot, Aymeric, Kessaci, Marie-Éléonore, Jourdan, Laetitia, Hoos, Holger H
Format: Journal Article
Language:English
Published: United States 01.03.2019
Subjects:
ISSN:1530-9304, 1530-9304
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective optimisation problems, the bi-objective permutation flowshop and travelling salesman problems. Our results show that multi-objective algorithms are indeed best configured using a multi-objective configurator.
AbstractList Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective optimisation problems, the bi-objective permutation flowshop and travelling salesman problems. Our results show that multi-objective algorithms are indeed best configured using a multi-objective configurator.Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective optimisation problems, the bi-objective permutation flowshop and travelling salesman problems. Our results show that multi-objective algorithms are indeed best configured using a multi-objective configurator.
Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective optimisation problems, the bi-objective permutation flowshop and travelling salesman problems. Our results show that multi-objective algorithms are indeed best configured using a multi-objective configurator.
Author Blot, Aymeric
Hoos, Holger H
Jourdan, Laetitia
Kessaci, Marie-Éléonore
Author_xml – sequence: 1
  givenname: Aymeric
  surname: Blot
  fullname: Blot, Aymeric
  email: aymeric.blot@univ-lille.fr
  organization: Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France aymeric.blot@univ-lille.fr
– sequence: 2
  givenname: Marie-Éléonore
  surname: Kessaci
  fullname: Kessaci, Marie-Éléonore
  email: mkessaci@univ-lille.fr
  organization: Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France mkessaci@univ-lille.fr
– sequence: 3
  givenname: Laetitia
  surname: Jourdan
  fullname: Jourdan, Laetitia
  email: laetitia.jourdan@univ-lille.fr
  organization: Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France laetitia.jourdan@univ-lille.fr
– sequence: 4
  givenname: Holger H
  surname: Hoos
  fullname: Hoos, Holger H
  email: hh@liacs.nl
  organization: LIACS, Leiden University, Leiden, 2333 CA, The Netherlands hh@liacs.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30407875$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AUhQepWFvduZZZuonOM0mXpfiCSgvqykW4mZm0KZNMnUfBf2-gFVydew7fvXDPBI161xuEbii5pzRnD-agXAUVIUyQM3RJJSfZjBMx-jeP0SSEHSGUM0Iv0HiISFEW8hJ9zVN0HcRW4YXrm3aT_GBcj12D35KNbbaqd0bF9mDw0imw-N2AV1s8txvn27jtAm6cx2vjuxSPq2vvamu6cIXOG7DBXJ90ij6fHj8WL9ly9fy6mC8zJUoaM01qqYTWShjOIedMFgrKgudDTAFUWVCoc6JVKUQtNK2pbJgujS40wExKNkV3x7t7776TCbHq2qCMtdAbl0LFhreZZAXhA3p7QlPdGV3tfduB_6n-CmG_Fs9l3g
CitedBy_id crossref_primary_10_1109_TSE_2024_3388910
crossref_primary_10_3390_app12136316
crossref_primary_10_1016_j_jhydrol_2025_133431
crossref_primary_10_1007_s10515_023_00402_z
ContentType Journal Article
DBID NPM
7X8
DOI 10.1162/evco_a_00240
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 30407875
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
AAYOK
ABAZT
ABDBF
ABJNI
ACM
ACUHS
ADL
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
W7O
ZWS
7X8
ABVLG
AEFXT
AEJOY
ID FETCH-LOGICAL-c481t-d0b5c4ddc4e33a63257ca8736b5c1aac871ab60dc844b4d1b15f2d8ed7daa9552
IEDL.DBID 7X8
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460193700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Fri Jul 11 07:02:30 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords travelling salesman problem
permutation flowshop scheduling problem
local search
multi-objective optimisation
Algorithm configuration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-d0b5c4ddc4e33a63257ca8736b5c1aac871ab60dc844b4d1b15f2d8ed7daa9552
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://direct.mit.edu/evco/article-pdf/27/1/147/1552790/evco_a_00240.pdf
PMID 30407875
PQID 2132252703
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2132252703
pubmed_primary_30407875
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2019
SSID ssj0013201
Score 2.337126
Snippet Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 147
Title Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems
URI https://www.ncbi.nlm.nih.gov/pubmed/30407875
https://www.proquest.com/docview/2132252703
Volume 27
WOSCitedRecordID wos000460193700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPOjB6fyaX0TwGta1SdOeZIjDg84eFAYeSr46J9pO2-7v97VpcRdB8JJDIBCS3_vKe3k_hK4UVdzj2ieGa0qomyQE7LokSkvOjXJgOqnJJvhkEkynYdQ8uOVNWWWrE2tFrTNVvZEP3CpsYi4A9HrxSSrWqCq72lBorKOOB65MVdLFp6tZBKfpl-qQEOL2tvDddwdmqbJYxHWLr9-dy9rIjLv_3d4u2mncSzyyeNhDaybtoW5L3YAbSe6h7ZU-hPvoZVQWWd27FVc_AOez0uICZwmuf-iSR_lmNSO-r4wftlXKePQ-g00Urx85BucXR6DmS5vbx5FlqskP0PP49unmjjSsC0TRYFgQ7UimqNaKGs8TvgcyrUTAPR-mh0IoiLCE9B2tAkol1UM5ZImrA6O5FiJkzD1EG2mWmmOElebcY0ZqwSiEnToQTihDRwlPiEQb2keX7WHGgOoqVSFSk5V5_HOcfXRkbyRe2PYbMVwk-DWcnfxh9SnaAgyEtmjsDHUSkGlzjjbVspjnXxc1XGCcRA_fjE3N-Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Configuration+of+Multi-Objective+Local+Search+Algorithms+for+Permutation+Problems&rft.jtitle=Evolutionary+computation&rft.au=Blot%2C+Aymeric&rft.au=Kessaci%2C+Marie-%C3%89l%C3%A9onore&rft.au=Jourdan%2C+Laetitia&rft.au=Hoos%2C+Holger+H&rft.date=2019-03-01&rft.eissn=1530-9304&rft.volume=27&rft.issue=1&rft.spage=147&rft_id=info:doi/10.1162%2Fevco_a_00240&rft_id=info%3Apmid%2F30407875&rft_id=info%3Apmid%2F30407875&rft.externalDocID=30407875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon