Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells

Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of cell biology Ročník 208; číslo 5; s. 563
Hlavní autori: Zellweger, Ralph, Dalcher, Damian, Mutreja, Karun, Berti, Matteo, Schmid, Jonas A, Herrador, Raquel, Vindigni, Alessandro, Lopes, Massimo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 02.03.2015
Predmet:
ISSN:1540-8140, 1540-8140
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy.
AbstractList Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy.
Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy.Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy.
Author Mutreja, Karun
Schmid, Jonas A
Zellweger, Ralph
Lopes, Massimo
Berti, Matteo
Dalcher, Damian
Herrador, Raquel
Vindigni, Alessandro
Author_xml – sequence: 1
  givenname: Ralph
  surname: Zellweger
  fullname: Zellweger, Ralph
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 2
  givenname: Damian
  surname: Dalcher
  fullname: Dalcher, Damian
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 3
  givenname: Karun
  surname: Mutreja
  fullname: Mutreja, Karun
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 4
  givenname: Matteo
  surname: Berti
  fullname: Berti, Matteo
  organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
– sequence: 5
  givenname: Jonas A
  surname: Schmid
  fullname: Schmid, Jonas A
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 6
  givenname: Raquel
  surname: Herrador
  fullname: Herrador, Raquel
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
– sequence: 7
  givenname: Alessandro
  surname: Vindigni
  fullname: Vindigni, Alessandro
  organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
– sequence: 8
  givenname: Massimo
  surname: Lopes
  fullname: Lopes, Massimo
  email: lopes@imcr.uzh.ch
  organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland lopes@imcr.uzh.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25733714$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA9dupUs3XRM2iRtlzL4ggFBdF3yuB0ztklNUtF_b8URXN1zLx-Xc84SzZx3gNA5JWtKquJqr9U6J5QRQer6CC0oZySrpn32T8_RMsY9IYSVrDhB85yXRVFStkDmSRpOsx6MlQkMDjB0VstkvcOtD2_T4QNClB22EUu867yadIA4eBcBJ4934Hzyn1bjFECmHlyK2Dr8OvbSYQ1dF0_RcSu7CGeHuUIvtzfPm_ts-3j3sLneZppVNGW6pdyIwjBJay5MbqqyFnmtyzpvFaVKyJqBqI1Uikg6cYQrw7motKhAGJ6v0OXv3yH49xFianobfxxIB36MDRWCCM6E-EEvDuiopvDNEGwvw1fz10z-DeW7Z6k
CitedBy_id crossref_primary_10_1016_j_bbagen_2025_130797
crossref_primary_10_26508_lsa_202000668
crossref_primary_10_1073_pnas_1620208114
crossref_primary_10_1016_j_jmb_2025_169401
crossref_primary_10_1038_s41598_019_47600_y
crossref_primary_10_3390_cancers13081957
crossref_primary_10_1016_j_molcel_2021_09_008
crossref_primary_10_1016_j_molcel_2022_04_023
crossref_primary_10_1016_j_molcel_2021_09_005
crossref_primary_10_1101_gad_299172_117
crossref_primary_10_1002_1873_3468_12556
crossref_primary_10_1016_j_dnarep_2016_05_022
crossref_primary_10_1038_s41586_018_0261_5
crossref_primary_10_1016_j_bpc_2016_11_007
crossref_primary_10_1016_j_bpc_2016_11_008
crossref_primary_10_1038_nrm3935
crossref_primary_10_1158_2159_8290_CD_17_1461
crossref_primary_10_2147_OTT_S278092
crossref_primary_10_1016_j_bbcan_2019_08_002
crossref_primary_10_1016_j_molcel_2017_08_010
crossref_primary_10_1016_j_pbiomolbio_2020_11_005
crossref_primary_10_1128_MMBR_00013_18
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1371_journal_pgen_1007942
crossref_primary_10_1016_j_celrep_2024_114178
crossref_primary_10_1016_j_bpc_2016_11_005
crossref_primary_10_3390_ijms19102909
crossref_primary_10_1016_j_dnarep_2018_08_017
crossref_primary_10_3390_ijms22116144
crossref_primary_10_1042_EBC20200012
crossref_primary_10_3390_cells12222607
crossref_primary_10_1038_s41467_020_16096_w
crossref_primary_10_1016_j_dnarep_2023_103548
crossref_primary_10_1016_j_bbrc_2025_152393
crossref_primary_10_15252_emmm_201404824
crossref_primary_10_1371_journal_pbio_3000464
crossref_primary_10_1146_annurev_genet_021920_092410
crossref_primary_10_1016_j_molcel_2019_05_026
crossref_primary_10_1073_pnas_2316491121
crossref_primary_10_3389_fcell_2023_1118716
crossref_primary_10_3389_fgene_2021_780293
crossref_primary_10_3390_genes12060920
crossref_primary_10_1002_1873_3468_14406
crossref_primary_10_1016_j_molcel_2022_11_008
crossref_primary_10_1016_j_dnarep_2022_103356
crossref_primary_10_1093_nar_gkab964
crossref_primary_10_1016_j_canlet_2020_12_023
crossref_primary_10_1038_s41467_023_43494_7
crossref_primary_10_1038_s41589_024_01611_7
crossref_primary_10_1038_s44318_024_00204_3
crossref_primary_10_1016_j_tig_2019_03_008
crossref_primary_10_1371_journal_pone_0192421
crossref_primary_10_1016_j_tig_2019_03_001
crossref_primary_10_1016_j_dnarep_2020_102869
crossref_primary_10_1371_journal_pbio_3001543
crossref_primary_10_1128_MCB_00576_18
crossref_primary_10_1007_s00294_019_00945_3
crossref_primary_10_1016_j_molcel_2015_05_013
crossref_primary_10_1371_journal_pgen_1011181
crossref_primary_10_1016_j_molcel_2017_09_036
crossref_primary_10_15252_embj_2022110632
crossref_primary_10_1016_j_dnarep_2020_102994
crossref_primary_10_1093_nar_gkac746
crossref_primary_10_1016_j_dnarep_2020_102875
crossref_primary_10_1016_j_mrfmmm_2017_09_006
crossref_primary_10_1038_s41467_021_27443_w
crossref_primary_10_1016_j_semcdb_2020_10_001
crossref_primary_10_1016_j_semcancer_2016_01_001
crossref_primary_10_1038_s41589_024_01833_9
crossref_primary_10_1371_journal_pgen_1005699
crossref_primary_10_1038_ncb3378
crossref_primary_10_1080_15384101_2015_1066539
crossref_primary_10_1093_nar_gkae811
crossref_primary_10_1016_j_dnarep_2019_02_003
crossref_primary_10_1038_s41568_022_00518_6
crossref_primary_10_1101_gad_256404_114
crossref_primary_10_3390_cells14060442
crossref_primary_10_1002_path_5097
crossref_primary_10_1016_j_molcel_2015_12_026
crossref_primary_10_1016_j_semcdb_2020_07_004
crossref_primary_10_1093_nar_gkz026
crossref_primary_10_1016_j_celrep_2024_115066
crossref_primary_10_1093_nar_gkx088
crossref_primary_10_1007_s00018_019_03206_1
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1146_annurev_genet_071719_020312
crossref_primary_10_1158_1078_0432_CCR_21_1367
crossref_primary_10_1158_0008_5472_CAN_18_2705
crossref_primary_10_1016_j_semcdb_2020_08_010
crossref_primary_10_1073_pnas_2201738119
crossref_primary_10_3390_genes12101550
crossref_primary_10_1038_s41467_022_34310_9
crossref_primary_10_3389_fmolb_2021_712971
crossref_primary_10_1093_nar_gkab511
crossref_primary_10_1016_j_molcel_2019_04_027
crossref_primary_10_1093_hmg_ddaa087
crossref_primary_10_1016_j_cub_2015_09_026
crossref_primary_10_15252_embr_201948920
crossref_primary_10_1016_j_jbc_2021_101301
crossref_primary_10_1371_journal_pgen_1005792
crossref_primary_10_1016_j_dnarep_2016_05_008
crossref_primary_10_3390_cells12081169
crossref_primary_10_1016_j_bpc_2016_11_014
crossref_primary_10_1038_s41467_017_01074_6
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_1093_nar_gkab526
crossref_primary_10_1093_nar_gkaa559
crossref_primary_10_1016_j_biopsych_2023_08_023
crossref_primary_10_1038_s41467_024_52250_4
crossref_primary_10_1093_nar_gkac734
crossref_primary_10_1016_j_dnarep_2015_04_026
crossref_primary_10_1038_s41598_019_45244_6
crossref_primary_10_3390_ijms231810212
crossref_primary_10_3390_ijms241512419
crossref_primary_10_1093_nar_gky275
crossref_primary_10_1093_hmg_ddac281
crossref_primary_10_1093_nar_gkab771
crossref_primary_10_3390_ijms25020952
crossref_primary_10_1080_19491034_2016_1267092
crossref_primary_10_1016_j_coph_2022_102313
crossref_primary_10_1093_nar_gkad999
crossref_primary_10_1146_annurev_biochem_062917_011921
crossref_primary_10_1038_s41467_020_17324_z
crossref_primary_10_1083_jcb_201506071
crossref_primary_10_1016_j_ceb_2019_05_005
crossref_primary_10_1038_s41580_020_0257_5
crossref_primary_10_1093_nar_gkab344
crossref_primary_10_1074_jbc_RA119_011099
crossref_primary_10_1093_nar_gkab101
crossref_primary_10_1016_j_arr_2016_03_002
crossref_primary_10_1038_s41467_017_00634_0
crossref_primary_10_1038_s41580_019_0152_0
crossref_primary_10_3390_genes8020057
crossref_primary_10_1093_nar_gkaf707
crossref_primary_10_1038_s41594_022_00747_1
crossref_primary_10_1083_jcb_202002175
crossref_primary_10_1016_j_molcel_2017_06_023
crossref_primary_10_1016_j_molcel_2023_07_008
crossref_primary_10_3389_fgene_2021_753535
crossref_primary_10_1016_j_dnarep_2022_103418
crossref_primary_10_1021_jacs_7b10284
crossref_primary_10_1146_annurev_micro_090817_062514
crossref_primary_10_1038_s41389_022_00410_w
crossref_primary_10_3233_JHD_200448
crossref_primary_10_1016_j_molcel_2022_05_004
crossref_primary_10_1016_j_tig_2024_04_013
crossref_primary_10_1093_nar_gkae828
crossref_primary_10_1016_j_molcel_2024_09_021
crossref_primary_10_3390_genes12040552
crossref_primary_10_1016_j_dnarep_2021_103104
crossref_primary_10_1093_nar_gkad856
crossref_primary_10_3389_fonc_2022_808757
crossref_primary_10_1534_genetics_119_302238
crossref_primary_10_1042_BST20180308
crossref_primary_10_3390_v14050948
crossref_primary_10_1038_s41467_018_03159_2
crossref_primary_10_1126_science_aad5634
crossref_primary_10_3390_genes12081229
crossref_primary_10_1016_j_tcb_2025_01_006
crossref_primary_10_1038_s41467_023_37498_6
crossref_primary_10_15252_embj_201593265
crossref_primary_10_3390_cancers13246215
crossref_primary_10_3390_biology10100977
crossref_primary_10_1016_j_mrrev_2020_108346
crossref_primary_10_1038_s41467_023_42011_0
crossref_primary_10_1093_nar_gkad624
crossref_primary_10_1146_annurev_genet_120116_024745
crossref_primary_10_1101_gad_264192_115
crossref_primary_10_1038_s44319_025_00497_3
crossref_primary_10_1016_j_devcel_2020_01_024
crossref_primary_10_1038_s41467_023_36149_0
crossref_primary_10_1093_nar_gkae721
crossref_primary_10_1016_j_mrfmmm_2017_09_004
crossref_primary_10_15252_embj_201593132
crossref_primary_10_4103_jcrt_jcrt_1723_22
crossref_primary_10_1038_s41467_019_12064_1
crossref_primary_10_1158_2159_8290_CD_24_1326
crossref_primary_10_1093_nar_gkv859
crossref_primary_10_1002_pmic_201800406
crossref_primary_10_1158_0008_5472_CAN_18_3631
crossref_primary_10_1038_s41467_021_26624_x
crossref_primary_10_3389_fcell_2021_670392
crossref_primary_10_1016_j_dnarep_2021_103209
crossref_primary_10_1089_zeb_2015_1151
crossref_primary_10_3389_fmolb_2022_875102
crossref_primary_10_1158_0008_5472_CAN_20_1602
crossref_primary_10_1016_j_semcancer_2018_08_003
crossref_primary_10_1093_nar_gkad441
crossref_primary_10_1093_nar_gkae770
crossref_primary_10_1016_j_celrep_2024_113845
crossref_primary_10_1016_j_molcel_2021_05_014
crossref_primary_10_1038_s41419_022_04644_9
crossref_primary_10_3389_fcell_2020_00416
crossref_primary_10_1093_nar_gkw1026
crossref_primary_10_15252_embr_201745535
crossref_primary_10_1038_s41467_020_19162_5
crossref_primary_10_1093_nar_gkac1116
crossref_primary_10_1038_s41467_023_37341_y
crossref_primary_10_1172_JCI147301
crossref_primary_10_3390_cancers13122930
crossref_primary_10_1126_sciadv_adv0381
crossref_primary_10_1126_science_add7328
crossref_primary_10_3389_fonc_2020_00670
crossref_primary_10_1038_s41467_017_01180_5
crossref_primary_10_1093_nar_gkaf512
crossref_primary_10_1038_s41467_020_20520_6
crossref_primary_10_1093_nar_gkae663
crossref_primary_10_3390_cancers14235722
crossref_primary_10_1016_j_jbc_2022_101672
crossref_primary_10_1242_bio_057729
crossref_primary_10_1093_nar_gkab151
crossref_primary_10_1093_nar_gkv836
crossref_primary_10_15252_embr_201846263
crossref_primary_10_1093_nar_gkac447
crossref_primary_10_3389_fgene_2021_748033
crossref_primary_10_26508_lsa_202201584
crossref_primary_10_1038_s41467_021_26811_w
crossref_primary_10_1016_j_dnarep_2019_04_005
crossref_primary_10_1038_s41467_019_09196_9
crossref_primary_10_1146_annurev_genet_121415_121658
crossref_primary_10_1080_15384101_2016_1259038
crossref_primary_10_1093_nar_gkad1237
crossref_primary_10_1038_s41467_024_51961_y
crossref_primary_10_1038_s41388_020_1265_9
crossref_primary_10_1242_bio_018028
crossref_primary_10_15252_embr_202357585
crossref_primary_10_1016_j_molcel_2018_09_014
crossref_primary_10_1038_s41467_024_50429_3
crossref_primary_10_3390_genes8020074
crossref_primary_10_1016_j_mrgentox_2018_02_004
crossref_primary_10_1016_j_ccell_2018_05_008
crossref_primary_10_1016_j_molcel_2017_07_001
crossref_primary_10_1128_JB_00237_15
crossref_primary_10_1093_nar_gkac583
crossref_primary_10_3390_ijms18071562
crossref_primary_10_1016_j_molcel_2017_04_002
crossref_primary_10_1038_s41467_023_41801_w
crossref_primary_10_1038_s41467_023_42830_1
crossref_primary_10_3390_cancers13143604
crossref_primary_10_1093_nar_gkz1162
crossref_primary_10_1093_nar_gkad481
crossref_primary_10_1016_j_molcel_2020_12_010
crossref_primary_10_3390_biomedicines11051450
crossref_primary_10_1016_j_arr_2016_05_010
crossref_primary_10_1016_j_pbiomolbio_2021_01_004
crossref_primary_10_1093_nar_gkaf544
crossref_primary_10_1007_s00294_020_01106_7
crossref_primary_10_1038_s41467_017_02144_5
crossref_primary_10_1042_BCJ20200318
crossref_primary_10_3390_genes9120603
crossref_primary_10_1093_nar_gkae211
crossref_primary_10_3390_genes11020232
crossref_primary_10_1038_s41467_024_55005_3
crossref_primary_10_1083_jcb_2085if
crossref_primary_10_1038_nrm_2017_53
crossref_primary_10_1093_femsre_fuaf041
crossref_primary_10_3390_cancers17020257
crossref_primary_10_1016_j_molcel_2022_08_028
crossref_primary_10_1038_srep31973
crossref_primary_10_1093_nar_gkad369
crossref_primary_10_1158_0008_5472_CAN_23_4130
crossref_primary_10_1016_j_dnarep_2025_103877
crossref_primary_10_1038_s44318_024_00038_z
crossref_primary_10_1093_nar_gkw515
crossref_primary_10_1093_nar_gkz1052
crossref_primary_10_1016_j_cels_2023_06_005
crossref_primary_10_15252_embj_2019103654
crossref_primary_10_1016_j_molcel_2020_04_035
crossref_primary_10_1083_jcb_201809012
crossref_primary_10_1016_j_molcel_2020_04_031
crossref_primary_10_1016_j_bbcan_2017_01_004
crossref_primary_10_1158_1078_0432_CCR_18_2523
crossref_primary_10_1038_s41467_018_06435_3
crossref_primary_10_1093_nar_gkab195
crossref_primary_10_1093_nar_gkac009
crossref_primary_10_7554_eLife_14709
crossref_primary_10_1016_j_molcel_2022_07_010
crossref_primary_10_1074_jbc_M116_745646
crossref_primary_10_1016_j_jbiotec_2023_12_001
crossref_primary_10_5812_gct_81645
crossref_primary_10_1080_10409238_2018_1488803
crossref_primary_10_1038_s41467_022_32861_5
crossref_primary_10_1093_nar_gkae546
crossref_primary_10_1158_0008_5472_CAN_15_2908
crossref_primary_10_3892_or_2023_8657
crossref_primary_10_1016_j_dnarep_2025_103865
crossref_primary_10_15252_embr_201744877
crossref_primary_10_1038_nsmb_3163
crossref_primary_10_1016_j_molcel_2021_06_011
crossref_primary_10_1016_j_tcb_2023_03_015
crossref_primary_10_1371_journal_pgen_1010545
crossref_primary_10_1016_j_celrep_2023_112484
crossref_primary_10_1371_journal_pone_0266645
crossref_primary_10_1074_jbc_RA118_002905
crossref_primary_10_1038_s41467_023_43183_5
crossref_primary_10_3390_cells11040643
crossref_primary_10_3390_biom5031652
crossref_primary_10_1093_nar_gkae317
crossref_primary_10_1016_j_molcel_2015_07_009
crossref_primary_10_1038_s41467_019_13667_4
crossref_primary_10_1038_s41467_022_33028_y
crossref_primary_10_1083_jcb_201808134
crossref_primary_10_1093_nar_gkv880
crossref_primary_10_1371_journal_pgen_1007486
crossref_primary_10_1158_2159_8290_CD_23_0641
crossref_primary_10_1038_ncomms13905
crossref_primary_10_1038_s41467_023_40071_w
crossref_primary_10_1093_nar_gkad596
crossref_primary_10_1093_nar_gkae563
crossref_primary_10_1038_nrm_2017_67
crossref_primary_10_1186_s13046_022_02334_0
crossref_primary_10_1093_nar_gkaa1232
crossref_primary_10_1016_j_molcel_2016_10_037
crossref_primary_10_1371_journal_pgen_1009256
crossref_primary_10_1093_nar_gkad281
crossref_primary_10_1093_nar_gkad1054
crossref_primary_10_1016_j_molcel_2018_07_011
crossref_primary_10_1016_j_molcel_2017_05_001
crossref_primary_10_3389_fcell_2020_574466
crossref_primary_10_3390_genes7070032
crossref_primary_10_1016_j_molcel_2019_10_026
crossref_primary_10_1016_j_celrep_2019_04_032
crossref_primary_10_1101_gad_336446_120
crossref_primary_10_1002_gcc_23243
crossref_primary_10_1007_s00412_017_0658_1
crossref_primary_10_1080_10409238_2017_1304355
crossref_primary_10_1093_nar_gkw433
crossref_primary_10_1111_febs_14663
crossref_primary_10_1038_s12276_020_00533_3
crossref_primary_10_15252_embr_201949367
crossref_primary_10_1016_j_molcel_2025_05_010
crossref_primary_10_1007_s00432_024_05757_8
crossref_primary_10_1016_j_cell_2022_06_028
crossref_primary_10_1038_s41467_020_19570_7
crossref_primary_10_3390_cancers13061442
crossref_primary_10_1016_j_molcel_2019_10_010
crossref_primary_10_1016_j_molcel_2022_08_014
crossref_primary_10_1038_s41467_019_11246_1
crossref_primary_10_1074_jbc_RA119_008420
crossref_primary_10_3390_genes6020267
crossref_primary_10_1038_s41467_019_11760_2
crossref_primary_10_1016_j_molcel_2020_12_036
crossref_primary_10_15252_embr_202153639
crossref_primary_10_1038_ncomms10660
crossref_primary_10_1038_ncomms11752
crossref_primary_10_1007_s00018_017_2474_4
crossref_primary_10_1016_j_semcancer_2019_02_005
crossref_primary_10_1016_j_molcel_2019_10_008
crossref_primary_10_1016_j_molcel_2016_04_032
crossref_primary_10_1091_mbc_E18_10_0668
crossref_primary_10_1007_s42764_024_00129_5
crossref_primary_10_1038_s41416_020_01158_z
crossref_primary_10_26508_lsa_201800096
crossref_primary_10_1038_s41467_019_12297_0
crossref_primary_10_1016_j_molcel_2020_11_007
crossref_primary_10_1016_j_pharmthera_2024_108642
crossref_primary_10_1083_jcb_201406100
crossref_primary_10_1038_s41586_018_0050_1
crossref_primary_10_1093_nar_gkz738
crossref_primary_10_1016_j_molcel_2023_12_025
crossref_primary_10_1002_cmdc_201900075
crossref_primary_10_1016_j_molcel_2022_09_009
crossref_primary_10_3390_genes7120134
crossref_primary_10_3390_ijms242316903
crossref_primary_10_2147_OTT_S322297
crossref_primary_10_1016_j_molcel_2017_11_035
crossref_primary_10_1038_s41467_024_45139_9
crossref_primary_10_1016_j_pbiomolbio_2021_03_007
crossref_primary_10_1016_j_dnarep_2016_11_002
crossref_primary_10_3390_genes10030232
crossref_primary_10_1007_s00412_020_00743_8
crossref_primary_10_1083_jcb_201709121
crossref_primary_10_1186_s13578_020_00391_6
crossref_primary_10_1083_jcb_202106022
crossref_primary_10_1038_celldisc_2016_16
crossref_primary_10_1016_j_dnarep_2019_102654
crossref_primary_10_1038_s41467_024_46283_y
crossref_primary_10_1371_journal_pgen_1007541
crossref_primary_10_1016_j_dnarep_2019_102657
crossref_primary_10_1016_j_molcel_2017_11_022
crossref_primary_10_1002_sstr_202200361
crossref_primary_10_3390_jof8060621
crossref_primary_10_1016_j_semcdb_2016_09_011
crossref_primary_10_1016_j_molcel_2018_04_022
crossref_primary_10_1038_ng_3692
crossref_primary_10_1038_s41388_022_02527_z
crossref_primary_10_1093_nar_gkz1101
crossref_primary_10_1146_annurev_cancerbio_030617_050502
crossref_primary_10_1074_jbc_M115_642884
crossref_primary_10_1016_j_dnarep_2024_103786
crossref_primary_10_1038_s41467_023_40096_1
crossref_primary_10_3390_genes12071096
crossref_primary_10_1038_s41594_022_00871_y
crossref_primary_10_1016_j_bcp_2023_115675
crossref_primary_10_1016_j_ceb_2016_03_015
crossref_primary_10_1093_nar_gkab1184
crossref_primary_10_1128_MCB_00472_17
crossref_primary_10_3389_fonc_2021_646256
crossref_primary_10_1158_0008_5472_CAN_18_0618
crossref_primary_10_1016_j_devcel_2022_02_013
crossref_primary_10_1016_j_molcel_2024_11_034
crossref_primary_10_1038_s41467_022_32756_5
crossref_primary_10_1016_j_cell_2017_11_047
crossref_primary_10_1371_journal_ppat_1010275
crossref_primary_10_1093_nar_gky519
crossref_primary_10_1038_s41594_018_0075_z
crossref_primary_10_3390_biomedicines10112775
crossref_primary_10_1038_s41467_021_25830_x
crossref_primary_10_1016_j_molcel_2021_01_012
crossref_primary_10_1016_j_molcel_2025_08_017
crossref_primary_10_1093_nar_gkab1173
crossref_primary_10_1038_onc_2017_40
crossref_primary_10_1158_1541_7786_MCR_20_0651
crossref_primary_10_3389_fmolb_2020_00169
crossref_primary_10_1083_jcb_201908192
crossref_primary_10_1073_pnas_1508543112
crossref_primary_10_3390_ijms26020667
crossref_primary_10_1038_s41594_023_00928_6
crossref_primary_10_1098_rsos_201932
crossref_primary_10_1080_10409238_2017_1380597
crossref_primary_10_1083_jcb_201802083
crossref_primary_10_1016_j_jmb_2023_168236
crossref_primary_10_1016_j_tibs_2025_07_004
crossref_primary_10_1038_nature25748
crossref_primary_10_7554_eLife_41426
crossref_primary_10_1038_srep36022
crossref_primary_10_1016_j_arr_2023_101887
crossref_primary_10_1016_j_dnarep_2023_103450
crossref_primary_10_1038_s41467_024_45684_3
crossref_primary_10_1074_jbc_M115_708594
crossref_primary_10_1007_s00412_023_00813_7
crossref_primary_10_1101_gad_288142_116
crossref_primary_10_1093_femsre_fuad065
crossref_primary_10_1016_j_molcel_2018_05_018
crossref_primary_10_1016_j_dnarep_2024_103731
crossref_primary_10_1534_genetics_118_301439
crossref_primary_10_1016_j_dnarep_2024_103738
crossref_primary_10_1093_biomethods_bpaa012
crossref_primary_10_1038_s41389_020_00289_5
crossref_primary_10_1038_s41467_022_34519_8
crossref_primary_10_1080_09168451_2016_1141039
crossref_primary_10_1038_s41418_020_00733_4
crossref_primary_10_1101_gad_348517_121
crossref_primary_10_1038_aps_2017_53
crossref_primary_10_3390_biom7010019
crossref_primary_10_3390_cancers12020402
crossref_primary_10_7554_eLife_31723
crossref_primary_10_1038_s41467_017_01164_5
crossref_primary_10_1038_s41467_023_42831_0
crossref_primary_10_3389_fcell_2022_866601
crossref_primary_10_1155_2021_5524076
crossref_primary_10_1093_nar_gkae078
crossref_primary_10_1016_j_tcb_2019_06_005
crossref_primary_10_1101_gad_297663_117
crossref_primary_10_1016_j_molcel_2024_11_006
crossref_primary_10_1038_s41467_025_60817_y
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1016_j_dnarep_2024_103753
crossref_primary_10_1038_s41467_023_43685_2
crossref_primary_10_1016_j_dnarep_2020_102943
crossref_primary_10_1016_j_dnarep_2024_103758
crossref_primary_10_1371_journal_pgen_1005384
crossref_primary_10_3389_fcell_2021_657305
crossref_primary_10_1158_0008_5472_CAN_24_1404
crossref_primary_10_1016_j_molcel_2021_09_013
crossref_primary_10_1016_j_gene_2022_146208
crossref_primary_10_1038_s41388_019_0810_x
crossref_primary_10_1016_j_celrep_2024_114594
ContentType Journal Article
Copyright 2015 Zellweger et al.
Copyright_xml – notice: 2015 Zellweger et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1083/jcb.201406099
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1540-8140
ExternalDocumentID 25733714
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01GM108648
– fundername: NIGMS NIH HHS
  grantid: R01 GM108648
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
NPM
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
7X8
ID FETCH-LOGICAL-c481t-cf15d63d4a1956d2d879629c792fb11b6a94e69dabb0a13d405bd5568c68e6d52
IEDL.DBID 7X8
ISICitedReferencesCount 530
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350530600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-8140
IngestDate Thu Sep 04 16:29:17 EDT 2025
Thu Apr 03 06:55:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2015 Zellweger et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-cf15d63d4a1956d2d879629c792fb11b6a94e69dabb0a13d405bd5568c68e6d52
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://rupress.org/jcb/article-pdf/208/5/563/1366785/jcb_201406099.pdf
PMID 25733714
PQID 1660654665
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1660654665
pubmed_primary_25733714
PublicationCentury 2000
PublicationDate 2015-03-02
PublicationDateYYYYMMDD 2015-03-02
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2015
References 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
23259582 - ACS Chem Biol. 2013 Jan 18;8(1):82-95
23684611 - Cell Rep. 2013 May 30;3(5):1651-62
24561620 - Nat Cell Biol. 2014 Mar;16(3):281-93
25083873 - Cell. 2014 Jul 31;158(3):633-46
20188668 - Mol Cell. 2010 Feb 26;37(4):492-502
24298053 - Genes Dev. 2013 Dec 1;27(23):2537-42
22279047 - Genes Dev. 2012 Jan 15;26(2):151-62
19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85
11395575 - Anticancer Drugs. 2001 Jun;12(5):467-73
15737996 - J Biol Chem. 2005 Apr 29;280(17):17076-83
3041238 - NCI Monogr. 1987;(4):117-21
22383038 - Nat Protoc. 2012 Mar;7(3):594-605
12142537 - Science. 2002 Jul 26;297(5581):599-602
21784245 - Cell. 2011 Jul 22;146(2):233-46
17003056 - Nucleic Acids Res. 2006;34(18):5217-31
15743907 - Mol Biol Cell. 2005 May;16(5):2372-81
6895473 - Biochemistry. 1981 Nov 10;20(23):6553-63
24198246 - Nucleic Acids Res. 2014 Feb;42(3):1711-20
20935632 - Nat Struct Mol Biol. 2010 Nov;17(11):1305-11
23993743 - Mol Cell. 2013 Sep 12;51(5):678-90
19103807 - J Cell Biol. 2008 Dec 29;183(7):1203-12
24366029 - Nat Cell Biol. 2014 Jan;16(1):2-9
9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95
15829967 - Nature. 2005 Apr 14;434(7035):917-21
1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25
24162989 - Methods Mol Biol. 2014;1094:177-208
21685366 - Genes Dev. 2011 Jun 15;25(12):1320-7
22789542 - Cancer Cell. 2012 Jul 10;22(1):106-16
24005329 - Nature. 2013 Oct 17;502(7471):381-4
22918414 - Nat Rev Cancer. 2012 Sep;12(9):587-98
12791985 - Science. 2003 Jun 6;300(5625):1542-8
16766518 - J Biol Chem. 2006 Aug 11;281(32):22839-46
22149429 - Expert Rev Anticancer Ther. 2012 Jan;12(1):19-29
20842177 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7
21821141 - Semin Cell Dev Biol. 2011 Oct;22(8):898-905
11484058 - Nature. 2001 Aug 2;412(6846):557-61
18206976 - Mol Cell. 2008 Jan 18;29(1):141-8
22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23
21173116 - J Cell Biol. 2010 Dec 27;191(7):1285-97
20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301
23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708
20515732 - Front Biosci (Landmark Ed). 2010;15:883-900
24794434 - Cell Rep. 2014 May 22;7(4):1030-8
24776801 - Nature. 2014 Jun 26;510(7506):556-9
22187152 - Nucleic Acids Res. 2012 Apr;40(8):3431-42
23562323 - Trends Biochem Sci. 2013 Jun;38(6):321-30
17115688 - Biochemistry. 2006 Nov 28;45(47):13939-46
24815912 - DNA Repair (Amst). 2014 Jul;19:152-62
19948885 - Mol Cell Biol. 2010 Feb;30(3):684-93
21701511 - Nat Rev Cancer. 2011 Jul;11(7):467-80
23396353 - Nat Struct Mol Biol. 2013 Mar;20(3):347-54
22365495 - Curr Opin Genet Dev. 2012 Jun;22(3):204-10
22704558 - Mol Cell. 2012 Aug 10;47(3):396-409
21565612 - Cell. 2011 May 13;145(4):529-42
21097884 - Nucleic Acids Res. 2011 Mar;39(6):2153-64
21615334 - Biochem J. 2011 Jun 15;436(3):527-36
25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62
25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20
23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69
24556218 - Hum Mol Genet. 2014 Jul 15;23(14):3695-705
21910633 - Annu Rev Genet. 2011;45:247-71
References_xml – reference: 21097884 - Nucleic Acids Res. 2011 Mar;39(6):2153-64
– reference: 21565612 - Cell. 2011 May 13;145(4):529-42
– reference: 22187152 - Nucleic Acids Res. 2012 Apr;40(8):3431-42
– reference: 24794434 - Cell Rep. 2014 May 22;7(4):1030-8
– reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
– reference: 25083873 - Cell. 2014 Jul 31;158(3):633-46
– reference: 20515732 - Front Biosci (Landmark Ed). 2010;15:883-900
– reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21
– reference: 12791985 - Science. 2003 Jun 6;300(5625):1542-8
– reference: 22279047 - Genes Dev. 2012 Jan 15;26(2):151-62
– reference: 15737996 - J Biol Chem. 2005 Apr 29;280(17):17076-83
– reference: 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62
– reference: 22918414 - Nat Rev Cancer. 2012 Sep;12(9):587-98
– reference: 21701511 - Nat Rev Cancer. 2011 Jul;11(7):467-80
– reference: 22383038 - Nat Protoc. 2012 Mar;7(3):594-605
– reference: 11395575 - Anticancer Drugs. 2001 Jun;12(5):467-73
– reference: 19948885 - Mol Cell Biol. 2010 Feb;30(3):684-93
– reference: 21821141 - Semin Cell Dev Biol. 2011 Oct;22(8):898-905
– reference: 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95
– reference: 22149429 - Expert Rev Anticancer Ther. 2012 Jan;12(1):19-29
– reference: 19103807 - J Cell Biol. 2008 Dec 29;183(7):1203-12
– reference: 24366029 - Nat Cell Biol. 2014 Jan;16(1):2-9
– reference: 24776801 - Nature. 2014 Jun 26;510(7506):556-9
– reference: 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23
– reference: 12142537 - Science. 2002 Jul 26;297(5581):599-602
– reference: 21173116 - J Cell Biol. 2010 Dec 27;191(7):1285-97
– reference: 22789542 - Cancer Cell. 2012 Jul 10;22(1):106-16
– reference: 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20
– reference: 20842177 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7
– reference: 24162989 - Methods Mol Biol. 2014;1094:177-208
– reference: 21615334 - Biochem J. 2011 Jun 15;436(3):527-36
– reference: 24198246 - Nucleic Acids Res. 2014 Feb;42(3):1711-20
– reference: 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25
– reference: 23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69
– reference: 23562323 - Trends Biochem Sci. 2013 Jun;38(6):321-30
– reference: 23684611 - Cell Rep. 2013 May 30;3(5):1651-62
– reference: 19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85
– reference: 24005329 - Nature. 2013 Oct 17;502(7471):381-4
– reference: 11484058 - Nature. 2001 Aug 2;412(6846):557-61
– reference: 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502
– reference: 24556218 - Hum Mol Genet. 2014 Jul 15;23(14):3695-705
– reference: 16766518 - J Biol Chem. 2006 Aug 11;281(32):22839-46
– reference: 18206976 - Mol Cell. 2008 Jan 18;29(1):141-8
– reference: 23396353 - Nat Struct Mol Biol. 2013 Mar;20(3):347-54
– reference: 22365495 - Curr Opin Genet Dev. 2012 Jun;22(3):204-10
– reference: 24815912 - DNA Repair (Amst). 2014 Jul;19:152-62
– reference: 6895473 - Biochemistry. 1981 Nov 10;20(23):6553-63
– reference: 22704558 - Mol Cell. 2012 Aug 10;47(3):396-409
– reference: 21685366 - Genes Dev. 2011 Jun 15;25(12):1320-7
– reference: 20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301
– reference: 17115688 - Biochemistry. 2006 Nov 28;45(47):13939-46
– reference: 3041238 - NCI Monogr. 1987;(4):117-21
– reference: 20935632 - Nat Struct Mol Biol. 2010 Nov;17(11):1305-11
– reference: 23993743 - Mol Cell. 2013 Sep 12;51(5):678-90
– reference: 21910633 - Annu Rev Genet. 2011;45:247-71
– reference: 23259582 - ACS Chem Biol. 2013 Jan 18;8(1):82-95
– reference: 24298053 - Genes Dev. 2013 Dec 1;27(23):2537-42
– reference: 17003056 - Nucleic Acids Res. 2006;34(18):5217-31
– reference: 21784245 - Cell. 2011 Jul 22;146(2):233-46
– reference: 24561620 - Nat Cell Biol. 2014 Mar;16(3):281-93
– reference: 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708
– reference: 15743907 - Mol Biol Cell. 2005 May;16(5):2372-81
SSID ssj0004743
Score 2.636416
Snippet Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 563
SubjectTerms Cell Line, Tumor
DNA Damage
DNA Replication
HEK293 Cells
Humans
Poly(ADP-ribose) Polymerases - genetics
Poly(ADP-ribose) Polymerases - metabolism
Rad51 Recombinase - metabolism
RecQ Helicases - genetics
RecQ Helicases - metabolism
Topoisomerase Inhibitors - toxicity
Title Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells
URI https://www.ncbi.nlm.nih.gov/pubmed/25733714
https://www.proquest.com/docview/1660654665
Volume 208
WOSCitedRecordID wos000350530600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3qKLjx_RhfRHAbbJImbVYi4uDGYRCF2ZU8YRTacVpF_94k7YyuRHDTRWlKSG5zT3NPzgHgQtEsyZ2WyDnMUaolQ4rZDDlsiP878AmXqmg2kQ2H-XgsRt2GW93RKudrYlyoTaXDHvkl5jw6d3N2NX1FwTUqVFc7C41l0KMeyoSozsY_1MI7gn0o_gdlp05j06OOy2etAq_Lp7NE_IIuY5YZbP63f1tgo8OX8LoNiG2wZMsdsNY6Tn7uAvMgDcMonhfxWBPO7KJ-DT18fYFB0WlW-zdMaihhKxfib0YirYVNBYOoa1N9TDRccNRrOClhNPuDoQ5Q74Gnwe3jzR3qjBaQTnPcIO0wM5yaVIbTg4aYPBOcCJ0J4hTGikuRWi6MVCqR2D-XMGWCdJnmueWGkX2wUlalPQQwsTS4GWNHiUlzTZUHVNpoIRhVHou5PjifD1_hAzn0Spa2equL7wHsg4N2Doppq7hRkKDamOH06A-tj8G6n1gWeWLkBPSc_4ztKVjV782knp3FCPHX4ej-CyTKxl0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rad51-mediated+replication+fork+reversal+is+a+global+response+to+genotoxic+treatments+in+human+cells&rft.jtitle=The+Journal+of+cell+biology&rft.au=Zellweger%2C+Ralph&rft.au=Dalcher%2C+Damian&rft.au=Mutreja%2C+Karun&rft.au=Berti%2C+Matteo&rft.date=2015-03-02&rft.eissn=1540-8140&rft.volume=208&rft.issue=5&rft.spage=563&rft_id=info:doi/10.1083%2Fjcb.201406099&rft_id=info%3Apmid%2F25733714&rft_id=info%3Apmid%2F25733714&rft.externalDocID=25733714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon