Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been...
Uloženo v:
| Vydáno v: | Polymers Ročník 12; číslo 1; s. 163 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
08.01.2020
MDPI |
| Témata: | |
| ISSN: | 2073-4360, 2073-4360 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields. |
|---|---|
| AbstractList | Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields. Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields. |
| Author | Bi, Jinbo Chen, Wei Ghumman, Umar Farooq Li, Ying Chen, Guang Tang, Shan Shen, Zhiqiang Iyer, Akshay |
| AuthorAffiliation | 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; guang.chen@uconn.edu (G.C.); zhiqiang.shen@uconn.edu (Z.S.) 4 Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; jinbo.bi@uconn.edu 2 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; akshayiyer2021@u.northwestern.edu (A.I.); UmarGhumman2018@u.northwestern.edu (U.F.G.) 3 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; shantang@dlut.edu.cn 5 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA |
| AuthorAffiliation_xml | – name: 3 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; shantang@dlut.edu.cn – name: 2 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; akshayiyer2021@u.northwestern.edu (A.I.); UmarGhumman2018@u.northwestern.edu (U.F.G.) – name: 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; guang.chen@uconn.edu (G.C.); zhiqiang.shen@uconn.edu (Z.S.) – name: 4 Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; jinbo.bi@uconn.edu – name: 5 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA |
| Author_xml | – sequence: 1 givenname: Guang orcidid: 0000-0002-6753-6745 surname: Chen fullname: Chen, Guang – sequence: 2 givenname: Zhiqiang orcidid: 0000-0003-0804-2478 surname: Shen fullname: Shen, Zhiqiang – sequence: 3 givenname: Akshay surname: Iyer fullname: Iyer, Akshay – sequence: 4 givenname: Umar Farooq surname: Ghumman fullname: Ghumman, Umar Farooq – sequence: 5 givenname: Shan surname: Tang fullname: Tang, Shan – sequence: 6 givenname: Jinbo surname: Bi fullname: Bi, Jinbo – sequence: 7 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 8 givenname: Ying orcidid: 0000-0002-1487-3350 surname: Li fullname: Li, Ying |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31936321$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctr3DAQxkVJaZ7HXouhl1zc6GG9eiiEbdoGNtke2rPQymOvglZyJTuQ_75esg1JoHOZgfnNxzd8x-ggpggIvSf4E2MaXwwpPGwJxQQTwd6gI4olqxsm8MGz-RCdlXKH52q4EES-Q4eMaCYYJUdoc2Pdxkeol2Bz9LGvL0vxZYS2-grVbbpPcy--j1XqqlXubfSuukkB3BSgVDa21c-dCcjlc7UahpTHKfrR73eLjQ0BYg_lFL3tbChwtu8n6Pe3q1-LH_Vy9f16cbmsXaPIWDtnG6KYWLdSSwlY2IY6rtTaUSU5tZgKqUSnne5I5zTXDixwJWVLO8o4ZSfoy6PuMK230DqIY7bBDNlvbX4wyXrzchP9xvTp3khMGRZ8FjjfC-T0Z4Iymq0vDkKwEdJUDGVMaaU4FzP68RV6l6Yc5_cM5RxTToVWM_XhuaMnK_9CmIH6EXA5lZKhe0IINruczYucZ5694p0f7ejT7iEf_nP1Fx8jrK8 |
| CitedBy_id | crossref_primary_10_3390_polym16202936 crossref_primary_10_1016_j_commatsci_2024_113206 crossref_primary_10_1016_j_matpr_2022_02_101 crossref_primary_10_1038_s41428_022_00648_6 crossref_primary_10_1039_D0RA07820D crossref_primary_10_6023_A22110446 crossref_primary_10_3390_ma15041428 crossref_primary_10_1039_D1ME00160D crossref_primary_10_1038_s41524_024_01470_9 crossref_primary_10_1038_s41467_023_39396_3 crossref_primary_10_1186_s13321_021_00501_7 crossref_primary_10_1016_j_commatsci_2022_111859 crossref_primary_10_1016_j_cocis_2024_101847 crossref_primary_10_1016_j_eml_2022_101743 crossref_primary_10_1016_j_commatsci_2022_111612 crossref_primary_10_3390_polym13193219 crossref_primary_10_1016_j_ces_2023_118619 crossref_primary_10_3390_polym13111898 crossref_primary_10_1021_acs_jcim_5c01634 crossref_primary_10_1016_j_tifs_2023_06_005 crossref_primary_10_1039_D3PY00395G crossref_primary_10_1146_annurev_chembioeng_092220_024340 crossref_primary_10_1002_mats_202000051 crossref_primary_10_1038_s41598_021_03513_3 crossref_primary_10_1016_j_cej_2023_142949 crossref_primary_10_1186_s13321_020_00458_z crossref_primary_10_1557_s43577_021_00174_5 crossref_primary_10_1002_inf2_12425 crossref_primary_10_1016_j_apenergy_2024_125203 crossref_primary_10_1021_acs_macromol_5c01192 crossref_primary_10_1039_D1RA03008F crossref_primary_10_1021_acsami_5c12119 crossref_primary_10_3390_electronics12183772 crossref_primary_10_1007_s00521_024_10532_4 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1007_s10118_024_3237_y crossref_primary_10_1016_j_commatsci_2023_112031 crossref_primary_10_1039_D5CS00146C crossref_primary_10_1002_mats_202400008 crossref_primary_10_1021_acs_macromol_5c00427 crossref_primary_10_1016_j_resconrec_2020_105094 crossref_primary_10_1042_BCJ20200781 crossref_primary_10_1016_j_memsci_2025_124172 crossref_primary_10_3389_fchem_2021_820417 crossref_primary_10_3390_molecules25173772 crossref_primary_10_1016_j_nxener_2023_100078 crossref_primary_10_1002_aisy_202500427 crossref_primary_10_1039_D0MH01451F crossref_primary_10_1002_marc_202500380 crossref_primary_10_1016_j_apmt_2024_102061 crossref_primary_10_1039_D1SC01000J crossref_primary_10_1016_j_jhazmat_2024_135371 crossref_primary_10_1016_j_mee_2023_111950 crossref_primary_10_1002_nme_6690 crossref_primary_10_1016_j_compbiomed_2022_105403 crossref_primary_10_1007_s10973_021_10960_7 crossref_primary_10_3390_polym15183811 crossref_primary_10_1007_s10706_024_03067_x crossref_primary_10_3390_polym14235290 crossref_primary_10_3390_polym16091204 crossref_primary_10_1016_j_desal_2024_117502 crossref_primary_10_1016_j_jmr_2023_107438 crossref_primary_10_1080_10643389_2023_2190313 crossref_primary_10_1002_marc_202400260 crossref_primary_10_1016_j_trac_2025_118243 crossref_primary_10_1016_j_ijbiomac_2020_09_023 crossref_primary_10_3390_polym16101387 crossref_primary_10_1080_17458080_2023_2170356 crossref_primary_10_1007_s00466_021_01981_y crossref_primary_10_1002_pi_6345 crossref_primary_10_3390_ijms22031086 crossref_primary_10_1038_s41598_022_14394_5 crossref_primary_10_1016_j_mser_2023_100746 crossref_primary_10_1016_j_cej_2023_142768 crossref_primary_10_1007_s10409_021_01100_3 crossref_primary_10_1186_s13321_025_00989_3 crossref_primary_10_1080_17415993_2025_2539778 crossref_primary_10_1016_j_bprint_2024_e00331 crossref_primary_10_1002_adts_202400479 crossref_primary_10_1063_5_0023759 crossref_primary_10_1039_D1RA03086H crossref_primary_10_1016_j_ijmecsci_2022_107412 crossref_primary_10_3390_polym14173500 crossref_primary_10_1177_08839115241308202 |
| Cites_doi | 10.1007/s10822-013-9672-4 10.1016/S1741-8364(04)02393-5 10.1021/ci600342e 10.1021/ph500449v 10.1007/978-3-030-01418-6_41 10.1021/ci300535x 10.1021/ci050011h 10.1002/jcc.21707 10.1016/j.cis.2011.11.001 10.1016/j.cbpa.2010.03.017 10.1109/EIDWT.2011.13 10.1103/PhysRevB.87.184115 10.26434/chemrxiv.5309668 10.1021/jz200866s 10.1016/j.pmatsci.2018.01.005 10.1007/0-306-46857-3_19 10.1002/minf.201000061 10.1021/cr300014x 10.1039/b200393g 10.1016/j.ces.2014.07.022 10.1016/j.polymer.2013.12.069 10.1021/ja209640k 10.1038/s41598-017-05723-0 10.1016/j.compscitech.2018.04.017 10.1039/C4TC02495H 10.1038/s41524-018-0128-1 10.1038/347539a0 10.1002/047147875X 10.1137/100801275 10.1038/s41598-017-04013-z 10.1038/ncomms5845 10.1002/nme.5751 10.1186/1752-153X-2-5 10.1021/ci300415d 10.1115/1.4040912 10.1039/b812502n 10.1021/acs.jpcc.9b03925 10.1063/1.2746232 10.1063/1.4977487 10.1002/adma.201402532 10.1038/s41598-018-27344-x 10.1016/j.cossms.2014.02.003 10.1038/s41524-019-0203-2 10.1038/s41524-019-0248-2 10.1063/1.2032611 10.1201/9781482296945 10.1126/science.1259439 10.1016/j.jhazmat.2008.04.011 10.1021/acs.jcim.7b00690 10.1186/s13321-018-0287-6 10.1016/j.actamat.2019.03.010 10.1023/A:1010933404324 10.1080/09506608.2017.1296605 10.1007/12_2009_18 10.1126/sciadv.aay4275 10.1093/nar/gkr777 10.1002/advs.201901395 10.1002/adma.201600377 10.1186/1758-2946-4-22 10.1063/1.5019667 10.4155/fmc-2018-0358 10.1038/s41467-018-04897-z 10.1016/0032-3950(70)90345-X 10.1080/08927022.2011.614242 10.1038/nphoton.2014.12 10.1109/JPROC.2015.2494218 10.1186/1758-2946-6-3 10.1126/science.1230444 10.1038/s41586-018-0337-2 10.1007/3-540-45712-7_29 10.1038/s41467-019-12928-6 10.1016/j.solmat.2004.02.030 10.1115/1.4036582 10.1093/nar/gkq1126 10.1038/35015037 10.1021/ja801047g 10.1007/s10822-018-0133-y 10.1021/acs.jcim.5b00628 10.1016/j.mattod.2017.11.021 10.1126/science.257.5073.1078 10.1021/ci5005288 10.1063/1.5007873 10.1021/ja902302h 10.18632/oncotarget.14073 10.1016/j.jmgm.2003.10.002 10.1126/science.aat2663 10.1038/srep20952 10.1021/acs.cgd.9b01050 10.1021/acs.jcim.6b00207 10.1080/09506608.2017.1301014 10.1039/b914956m 10.1038/nrd3078 10.1021/acsmacrolett.7b00228 10.1186/s13321-015-0109-z 10.1038/s41587-019-0224-x 10.1063/1.1724816 10.1038/s41578-018-0005-z 10.1103/PhysRevE.58.224 10.1063/1.5023563 10.1063/1.3553717 10.1002/aenm.201802820 10.1007/s10822-016-0008-z 10.1063/1.4812323 10.1021/acs.jcim.6b00740 10.1016/j.ejor.2007.10.013 10.1021/cm4018776 10.1016/S0360-1285(97)00015-4 10.1021/ci025584y 10.1093/nar/gkp456 10.1007/978-3-540-28650-9_4 10.1080/00401706.2019.1638834 10.1038/srep19660 10.1517/17460441.2016.1117070 10.1038/s41524-019-0153-8 10.1038/s41524-017-0056-5 10.1016/j.cad.2012.03.007 10.1126/science.1158722 10.1186/1758-2946-3-33 10.1007/978-94-009-9027-2_2 10.1126/sciadv.aap7885 10.1115/DETC2018-86154 10.1007/978-1-4020-9783-6 10.1103/PhysRevLett.108.058301 10.1016/j.drudis.2014.10.012 10.1039/b909690f 10.1017/CBO9780511816581 10.1021/acscombsci.7b00056 10.1109/TDEI.2004.1349782 10.1016/j.coche.2019.02.009 10.1080/17460441.2018.1547278 10.1038/nmat4717 10.1016/S0040-4020(98)83040-8 10.1021/ci100050t 10.1021/acscentsci.7b00572 10.1109/ADPRL.2013.6615007 10.1103/PhysRevB.100.024112 10.1115/1.3653121 10.1126/science.277.5330.1237 10.1002/9783527645121 10.1002/qua.24917 10.1016/j.commatsci.2013.12.046 10.1186/s13321-018-0286-7 10.1126/science.293.5532.1119 10.1021/acscentsci.7b00512 10.1038/ncomms11241 10.1021/ci0155053 10.1021/jz100290q 10.1115/1.4026649 10.1186/s13321-017-0220-4 10.1016/S0004-3702(01)00152-7 10.1002/minf.201700111 10.1007/BF00994018 10.1115/1.1483342 10.1021/acs.chemrev.8b00728 10.1186/1758-2946-1-4 10.1115/DETC2019-98222 10.1557/mrc.2019.54 10.1021/acs.iecr.7b02021 10.1021/acs.nanolett.8b05196 10.1021/acs.jpcc.8b02913 10.1073/pnas.1704711114 10.1038/nchem.1192 10.1021/acsami.9b02719 10.1103/PhysRevB.92.014106 10.1039/C9ME00039A 10.1039/c1ee02056k 10.1038/s41598-020-60652-9 10.1016/0032-3861(95)96850-8 10.1002/polb.24854 10.1016/j.cpc.2019.106949 10.1016/j.drudis.2018.01.039 10.1557/mrs.2012.194 10.1063/1.4946894 10.2174/138161206777585274 10.1021/acs.nanolett.6b01169 10.1109/TDEI.2017.006563 10.1021/acs.jpcc.9b01147 10.1039/C6CP00415F 10.1023/A:1008306431147 10.1038/srep02810 10.1038/nature16961 10.1021/ci600423u 10.1103/PhysRevMaterials.2.120301 10.1103/PhysRevB.48.12581 10.1007/s00158-001-0160-4 10.1002/prep.201600032 10.1038/s41570-018-0066-y 10.1016/S1359-6454(99)00285-2 10.1021/ci00057a005 10.1021/acsami.9b01226 10.1021/acs.jpclett.5b00831 10.1021/jm4004285 10.1093/nar/gkr320 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/polym12010163 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2073-4360 |
| ExternalDocumentID | PMC7023065 31936321 10_3390_polym12010163 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1755779 – fundername: National Science Foundation grantid: 1662435 – fundername: National Science Foundation grantid: 1762661 – fundername: Center for Hierarchical Materials Design grantid: 70NANB19H005 – fundername: National Science Foundation grantid: 1934829 – fundername: National Science Foundation grantid: 1729743 – fundername: National Science Foundation grantid: 1530734 |
| GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RNS RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 ESTFP 5PM |
| ID | FETCH-LOGICAL-c481t-cca41836bd7977e06a42c588bc28752a026786f9c9f1fc959ceae5877d2f23523 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 136 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519848300163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4360 |
| IngestDate | Tue Nov 04 02:04:52 EST 2025 Sun Nov 09 13:06:17 EST 2025 Fri Jul 25 11:46:14 EDT 2025 Mon Jul 21 06:00:03 EDT 2025 Tue Nov 18 21:19:38 EST 2025 Sat Nov 29 07:17:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | organic molecules data-driven algorithm de novo materials design materials database polymers machine learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-cca41836bd7977e06a42c588bc28752a026786f9c9f1fc959ceae5877d2f23523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6753-6745 0000-0003-0804-2478 0000-0002-1487-3350 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2550252698?pq-origsite=%requestingapplication% |
| PMID | 31936321 |
| PQID | 2550252698 |
| PQPubID | 2032345 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7023065 proquest_miscellaneous_2338988556 proquest_journals_2550252698 pubmed_primary_31936321 crossref_primary_10_3390_polym12010163 crossref_citationtrail_10_3390_polym12010163 |
| PublicationCentury | 2000 |
| PublicationDate | 20200108 |
| PublicationDateYYYYMMDD | 2020-01-08 |
| PublicationDate_xml | – month: 1 year: 2020 text: 20200108 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Polymers |
| PublicationTitleAlternate | Polymers (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 Rogers (ref_88) 2010; 50 Zhavoronkov (ref_203) 2019; 37 ref_99 Yu (ref_133) 2017; 7 Ramprasad (ref_58) 2017; 3 Paul (ref_26) 2010; 9 (ref_200) 2012; 4 Zhou (ref_10) 2012; 112 Mesta (ref_89) 2018; 148 Winkler (ref_222) 2004; 2 Gaudiana (ref_66) 2010; 1 Gaulton (ref_196) 2011; 40 Lee (ref_136) 2016; 16 ref_126 Stahl (ref_181) 2005; 45 ref_127 Lee (ref_118) 2017; 114 Wang (ref_195) 2009; 37 Balachandran (ref_220) 2016; 6 Tanaka (ref_226) 2004; 11 Dimitrov (ref_63) 2019; 11 May (ref_175) 2014; 6 Landrum (ref_86) 2013; 1 Bostanabad (ref_119) 2018; 95 ref_120 Ghumman (ref_128) 2018; 140 ref_240 ref_121 Goedecker (ref_77) 2004; 120 Zhang (ref_139) 2015; 4 Cohen (ref_28) 2008; 321 Audus (ref_42) 2017; 6 Yu (ref_134) 2017; 139 ref_159 Morley (ref_184) 2008; 2 ref_71 ref_158 Hansson (ref_103) 2018; 63 Ravi (ref_97) 2012; 38 ref_151 Wong (ref_34) 2009; 1 ref_153 ref_152 ref_76 Haghighatlari (ref_206) 2019; 23 De (ref_166) 2016; 18 Agrawal (ref_16) 1998; 24 ref_160 Deb (ref_79) 2002; 6 Jou (ref_80) 2015; 3 Rupp (ref_90) 2012; 108 Dong (ref_144) 2015; 7 ref_148 Gil (ref_38) 2014; 346 Allen (ref_110) 1993; 48 ref_147 Green (ref_51) 2017; 4 ref_149 Madhukar (ref_224) 2019; 10 Lei (ref_2) 2013; 26 ref_146 Biswas (ref_125) 2012; 170 ref_145 Backman (ref_178) 2011; 39 Hirzel (ref_83) 2016; 15 Wang (ref_230) 2018; 162 Pilania (ref_78) 2013; 3 Uiterwijk (ref_55) 2002; 134 Gupta (ref_199) 2018; 37 ref_213 Mauri (ref_154) 2006; 56 Zhang (ref_82) 2014; 8 Knox (ref_197) 2010; 39 Li (ref_218) 2017; 7 Treich (ref_74) 2016; 28 Mathieu (ref_96) 2017; 56 Butler (ref_57) 2018; 559 Outlook (ref_65) 2010; 92010 Banck (ref_185) 2011; 3 Scott (ref_215) 2011; 21 Shahriari (ref_216) 2015; 104 Blum (ref_108) 2009; 131 ref_202 ref_207 Marcou (ref_182) 2007; 47 Afzal (ref_100) 2019; 123 ref_209 ref_208 ref_201 White (ref_48) 2012; 37 Morikawa (ref_109) 1995; 36 Kleijnen (ref_137) 2009; 192 Tetko (ref_117) 2014; 54 Behler (ref_168) 2007; 127 Agrawal (ref_37) 2016; 4 Munshi (ref_122) 2019; 11 ref_235 ref_238 ref_237 ref_239 Chen (ref_62) 2018; 23 Faber (ref_163) 2015; 115 ref_232 Talawar (ref_17) 2009; 161 Putin (ref_115) 2018; 58 ref_234 ref_233 Pagoria (ref_46) 2016; 41 James (ref_11) 2003; 32 Weininger (ref_87) 1988; 28 Sunseri (ref_172) 2019; 33 Batra (ref_161) 2019; 123 Wu (ref_106) 2019; 5 ref_227 ref_229 ref_107 Jones (ref_204) 1998; 13 Razeeb (ref_104) 2018; 63 Jin (ref_138) 2001; 23 Xue (ref_219) 2016; 7 Olson (ref_123) 1997; 277 Wen (ref_217) 2019; 170 Tabor (ref_156) 2018; 3 Bucior (ref_13) 2019; 19 Tropsha (ref_31) 2010; 29 Kim (ref_43) 2018; 122 Segler (ref_112) 2017; 4 Li (ref_157) 2018; 10 Liu (ref_56) 2017; 3 Afzal (ref_102) 2018; 148 Bushuyev (ref_18) 2012; 134 Muegge (ref_155) 2016; 11 Brabec (ref_6) 2004; 83 Swain (ref_142) 2016; 56 Huan (ref_143) 2015; 92 Gubernatis (ref_53) 2018; 2 Akella (ref_85) 2010; 14 ref_25 Wang (ref_52) 2018; 9 Hachmann (ref_70) 2011; 4 ref_20 Ragoza (ref_171) 2017; 57 Wei (ref_54) 2018; 4 Kim (ref_72) 2008; 130 Gross (ref_15) 2000; 405 ref_29 ref_27 Cherkasov (ref_32) 2014; 57 Himanen (ref_164) 2020; 247 Kim (ref_205) 2018; 4 Pardakhti (ref_191) 2017; 19 Paloumpa (ref_73) 2005; 98 Hachmann (ref_69) 2011; 2 Sarkisov (ref_40) 2015; 121 Willighagen (ref_176) 2017; 9 Consonni (ref_150) 2002; 42 Gastegger (ref_170) 2018; 148 Polishchuk (ref_22) 2013; 27 (ref_236) 2014; 15 Jones (ref_50) 2014; 18 Xu (ref_132) 2014; 85 Polman (ref_135) 2015; 2 Heeger (ref_68) 2010; 39 Ruddigkeit (ref_198) 2013; 53 Ikebata (ref_111) 2017; 31 Chandrasekaran (ref_44) 2018; 21 Burroughes (ref_14) 1990; 347 Yeong (ref_131) 1998; 58 Wang (ref_8) 2014; 55 Ruddigkeit (ref_23) 2012; 52 Moons (ref_5) 2001; 293 Elton (ref_91) 2018; 8 Breiman (ref_211) 2001; 45 Lim (ref_113) 2018; 10 ref_177 ref_179 Silver (ref_36) 2016; 529 Nielsen (ref_47) 1998; 54 Kondor (ref_165) 2013; 87 Liu (ref_129) 2013; 45 ref_180 Torquato (ref_228) 2002; 55 Slonimskii (ref_101) 1970; 12 Xu (ref_130) 2014; 136 ref_162 ref_67 Wan (ref_105) 2019; 19 ref_64 ref_167 Furukawa (ref_12) 2013; 341 Liu (ref_98) 2009; 19 Gromski (ref_140) 2019; 3 Olsson (ref_84) 2001; 4 Pilania (ref_9) 2016; 6 Sharma (ref_75) 2014; 5 Kippelen (ref_4) 2009; 2 Elton (ref_60) 2019; 4 Kadurin (ref_114) 2017; 8 Lavecchia (ref_223) 2015; 20 Hansen (ref_92) 2015; 6 Behler (ref_169) 2011; 134 Kuntz (ref_19) 1992; 257 ref_194 Cortes (ref_212) 1995; 20 ref_30 (ref_24) 2018; 361 Miyao (ref_35) 2016; 56 ref_39 Kushner (ref_214) 1964; 86 Yap (ref_186) 2011; 32 Wilmer (ref_192) 2012; 4 Xu (ref_61) 2018; 13 Kailkhura (ref_59) 2019; 5 Fink (ref_193) 2007; 47 Yang (ref_21) 2019; 119 Steinbeck (ref_174) 2006; 12 ref_183 ref_45 Sun (ref_7) 2019; 5 Popova (ref_116) 2018; 4 Jain (ref_49) 2013; 1 Tao (ref_81) 2014; 26 ref_188 ref_187 Yuan (ref_221) 2019; 6 ref_41 ref_189 Mueller (ref_190) 2016; 29 ref_1 ref_3 Xu (ref_93) 2019; 11 Cooper (ref_141) 2019; 9 Huang (ref_95) 2013; 12 Bostanabad (ref_210) 2018; 114 Lookman (ref_225) 2019; 5 Zhao (ref_231) 2017; 24 Churchwell (ref_33) 2004; 22 Gleiter (ref_124) 2000; 48 Steinbeck (ref_173) 2003; 43 |
| References_xml | – volume: 27 start-page: 675 year: 2013 ident: ref_22 article-title: Estimation of the size of drug-like chemical space based on GDB-17 data publication-title: J. Comput.-Aided Mol. Des. doi: 10.1007/s10822-013-9672-4 – volume: 2 start-page: 104 year: 2004 ident: ref_222 article-title: Bayesian neural nets for modeling in drug discovery publication-title: Drug Discov. Today BIOSILICO doi: 10.1016/S1741-8364(04)02393-5 – volume: 47 start-page: 195 year: 2007 ident: ref_182 article-title: Optimizing fragment and scaffold docking by use of molecular interaction fingerprints publication-title: J. Chem. Inf. Model. doi: 10.1021/ci600342e – volume: 2 start-page: 822 year: 2015 ident: ref_135 article-title: Optimized scattering power spectral density of photovoltaic light-trapping patterns publication-title: ACS Photonics doi: 10.1021/ph500449v – ident: ref_158 doi: 10.1007/978-3-030-01418-6_41 – volume: 53 start-page: 56 year: 2013 ident: ref_198 article-title: Visualization and virtual screening of the chemical universe database GDB-17 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300535x – volume: 45 start-page: 542 year: 2005 ident: ref_181 article-title: Database clustering with a combination of fingerprint and maximum common substructure methods publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050011h – volume: 32 start-page: 1466 year: 2011 ident: ref_186 article-title: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints publication-title: J. Comput. Chem. doi: 10.1002/jcc.21707 – volume: 170 start-page: 2 year: 2012 ident: ref_125 article-title: Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2011.11.001 – volume: 14 start-page: 325 year: 2010 ident: ref_85 article-title: Cheminformatics approaches to analyze diversity in compound screening libraries publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.03.017 – ident: ref_71 – ident: ref_94 – ident: ref_107 doi: 10.1109/EIDWT.2011.13 – volume: 87 start-page: 184115 year: 2013 ident: ref_165 article-title: On representing chemical environments publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.184115 – ident: ref_25 doi: 10.26434/chemrxiv.5309668 – volume: 2 start-page: 2241 year: 2011 ident: ref_69 article-title: The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200866s – volume: 95 start-page: 1 year: 2018 ident: ref_119 article-title: Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2018.01.005 – ident: ref_151 doi: 10.1007/0-306-46857-3_19 – volume: 29 start-page: 476 year: 2010 ident: ref_31 article-title: Best practices for QSAR model development, validation, and exploitation publication-title: Mol. Inf. doi: 10.1002/minf.201000061 – volume: 112 start-page: 673 year: 2012 ident: ref_10 article-title: Introduction to metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr300014x – volume: 15 start-page: 3483 year: 2014 ident: ref_236 article-title: Multi-objective reinforcement learning using sets of pareto dominating policies publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 276 year: 2003 ident: ref_11 article-title: Metal-organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/b200393g – volume: 121 start-page: 322 year: 2015 ident: ref_40 article-title: Computational structure characterization tools for the era of material informatics publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.07.022 – ident: ref_149 – volume: 55 start-page: 979 year: 2014 ident: ref_8 article-title: Computational strategies for polymer dielectrics design publication-title: Polymer doi: 10.1016/j.polymer.2013.12.069 – volume: 134 start-page: 1422 year: 2012 ident: ref_18 article-title: Ionic polymers as a new structural motif for high-energy-density materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209640k – ident: ref_3 – volume: 7 start-page: 5683 year: 2017 ident: ref_218 article-title: Rapid Bayesian optimisation for synthesis of short polymer fiber materials publication-title: Sci. Rep. doi: 10.1038/s41598-017-05723-0 – volume: 162 start-page: 146 year: 2018 ident: ref_230 article-title: Identifying interphase properties in polymer nanocomposites using adaptive optimization publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.04.017 – ident: ref_177 – volume: 3 start-page: 2974 year: 2015 ident: ref_80 article-title: Approaches for fabricating high efficiency organic light emitting diodes publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02495H – ident: ref_234 – volume: 4 start-page: 67 year: 2018 ident: ref_205 article-title: Deep-learning-based inverse design model for intelligent discovery of organic molecules publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-018-0128-1 – volume: 347 start-page: 539 year: 1990 ident: ref_14 article-title: Light-emitting diodes based on conjugated polymers publication-title: Nature doi: 10.1038/347539a0 – ident: ref_99 doi: 10.1002/047147875X – ident: ref_148 – volume: 21 start-page: 996 year: 2011 ident: ref_215 article-title: The correlated knowledge gradient for simulation optimization of continuous parameters using gaussian process regression publication-title: SIAM J. Optim. doi: 10.1137/100801275 – volume: 7 start-page: 3752 year: 2017 ident: ref_133 article-title: Design of non-deterministic quasi-random nanophotonic structures using Fourier space representations publication-title: Sci. Rep. doi: 10.1038/s41598-017-04013-z – volume: 5 start-page: 4845 year: 2014 ident: ref_75 article-title: Rational design of all organic polymer dielectrics publication-title: Nat. Commun. doi: 10.1038/ncomms5845 – volume: 114 start-page: 501 year: 2018 ident: ref_210 article-title: Leveraging the nugget parameter for efficient Gaussian process modeling publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5751 – volume: 2 start-page: 5 year: 2008 ident: ref_184 article-title: Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit publication-title: Chem. Cent. J. doi: 10.1186/1752-153X-2-5 – ident: ref_179 – volume: 52 start-page: 2864 year: 2012 ident: ref_23 article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300415d – ident: ref_126 – volume: 140 start-page: 111408 year: 2018 ident: ref_128 article-title: A Spectral Density Function Approach for Active Layer Design of Organic Photovoltaic Cells publication-title: J. Mech. Des. doi: 10.1115/1.4040912 – ident: ref_160 – volume: 2 start-page: 251 year: 2009 ident: ref_4 article-title: Organic photovoltaics publication-title: Energy Environ. Sci. doi: 10.1039/b812502n – volume: 123 start-page: 15859 year: 2019 ident: ref_161 article-title: A General Atomic Neighborhood Fingerprint for Machine Learning Based Methods publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03925 – volume: 127 start-page: 07B603 year: 2007 ident: ref_168 article-title: Representing molecule-surface interactions with symmetry-adapted neural networks publication-title: J. Chem. Phys. doi: 10.1063/1.2746232 – volume: 4 start-page: 011105 year: 2017 ident: ref_51 article-title: Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies publication-title: Appl. Phys. Rev. doi: 10.1063/1.4977487 – volume: 26 start-page: 7931 year: 2014 ident: ref_81 article-title: Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics publication-title: Adv. Mater. doi: 10.1002/adma.201402532 – volume: 8 start-page: 9059 year: 2018 ident: ref_91 article-title: Applying machine learning techniques to predict the properties of energetic materials publication-title: Sci. Rep. doi: 10.1038/s41598-018-27344-x – volume: 18 start-page: 99 year: 2014 ident: ref_50 article-title: The materials genome initiative, the interplay of experiment, theory and computation publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2014.02.003 – volume: 5 start-page: 5 year: 2019 ident: ref_106 article-title: Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm publication-title: Npj Comput. Mater. doi: 10.1038/s41524-019-0203-2 – ident: ref_194 – volume: 5 start-page: 1 year: 2019 ident: ref_59 article-title: Reliable and explainable machine-learning methods for accelerated material discovery publication-title: Npj Comput. Mater. doi: 10.1038/s41524-019-0248-2 – volume: 98 start-page: 056104 year: 2005 ident: ref_73 article-title: A polymer high-k dielectric insulator for organic field-effect transistors publication-title: J. Appl. Phys. doi: 10.1063/1.2032611 – ident: ref_152 doi: 10.1201/9781482296945 – volume: 346 start-page: 171 year: 2014 ident: ref_38 article-title: Amplify scientific discovery with artificial intelligence publication-title: Science doi: 10.1126/science.1259439 – ident: ref_127 – volume: 161 start-page: 589 year: 2009 ident: ref_17 article-title: Environmentally compatible next generation green energetic materials (GEMs) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.04.011 – volume: 58 start-page: 1194 year: 2018 ident: ref_115 article-title: Reinforced adversarial neural computer for de novo molecular design publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00690 – volume: 56 start-page: 237 year: 2006 ident: ref_154 article-title: Dragon software: An easy approach to molecular descriptor calculations publication-title: Match – volume: 10 start-page: 33 year: 2018 ident: ref_157 article-title: Multi-objective de novo drug design with conditional graph generative model publication-title: J. Cheminform. doi: 10.1186/s13321-018-0287-6 – volume: 170 start-page: 109 year: 2019 ident: ref_217 article-title: Machine learning assisted design of high entropy alloys with desired property publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.03.010 – ident: ref_188 – volume: 45 start-page: 5 year: 2001 ident: ref_211 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 63 start-page: 1 year: 2018 ident: ref_104 article-title: Present and future thermal interface materials for electronic devices publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2017.1296605 – ident: ref_41 doi: 10.1007/12_2009_18 – volume: 5 start-page: eaay4275 year: 2019 ident: ref_7 article-title: Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4275 – volume: 40 start-page: D1100 year: 2011 ident: ref_196 article-title: ChEMBL: A large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr777 – ident: ref_227 – volume: 6 start-page: 1901395 year: 2019 ident: ref_221 article-title: Accelerated Search for BaTiO3-Based Ceramics with Large Energy Storage at Low Fields Using Machine Learning and Experimental Design publication-title: Adv. Sci. doi: 10.1002/advs.201901395 – volume: 28 start-page: 6277 year: 2016 ident: ref_74 article-title: Rational Co-Design of Polymer Dielectrics for Energy Storage publication-title: Adv. Mater. doi: 10.1002/adma.201600377 – volume: 4 start-page: 22 year: 2012 ident: ref_200 article-title: Towards a Universal SMILES representation-A standard method to generate canonical SMILES based on the InChI publication-title: J. Cheminform. doi: 10.1186/1758-2946-4-22 – volume: 148 start-page: 241709 year: 2018 ident: ref_170 article-title: wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials publication-title: J. Chem. Phys. doi: 10.1063/1.5019667 – volume: 11 start-page: 567 year: 2019 ident: ref_93 article-title: Deep learning for molecular generation publication-title: Future Med. Chem. doi: 10.4155/fmc-2018-0358 – volume: 9 start-page: 2444 year: 2018 ident: ref_52 article-title: Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach publication-title: Nat. Commun. doi: 10.1038/s41467-018-04897-z – volume: 6 start-page: 182 year: 2002 ident: ref_79 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 12 start-page: 556 year: 1970 ident: ref_101 article-title: The packing of polymer molecules publication-title: Polym. Sci. USSR doi: 10.1016/0032-3950(70)90345-X – ident: ref_233 – volume: 38 start-page: 218 year: 2012 ident: ref_97 article-title: DFT study on the structure and explosive properties of nitropyrazoles publication-title: Mol. Simul. doi: 10.1080/08927022.2011.614242 – volume: 8 start-page: 326 year: 2014 ident: ref_82 article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.12 – ident: ref_20 – ident: ref_145 – ident: ref_162 – ident: ref_183 – ident: ref_76 – volume: 104 start-page: 148 year: 2015 ident: ref_216 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 6 start-page: 3 year: 2014 ident: ref_175 article-title: Efficient ring perception for the Chemistry Development Kit publication-title: J. Cheminform. doi: 10.1186/1758-2946-6-3 – volume: 341 start-page: 1230444 year: 2013 ident: ref_12 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 559 start-page: 547 year: 2018 ident: ref_57 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – ident: ref_239 doi: 10.1007/3-540-45712-7_29 – volume: 10 start-page: 1 year: 2019 ident: ref_224 article-title: A Bayesian machine learning approach for drug target identification using diverse data types publication-title: Nat. Commun. doi: 10.1038/s41467-019-12928-6 – volume: 83 start-page: 273 year: 2004 ident: ref_6 article-title: Organic photovoltaics: Technology and market publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2004.02.030 – volume: 139 start-page: 071401 year: 2017 ident: ref_134 article-title: Characterization and design of functional quasi-random nanostructured materials using spectral density function publication-title: J. Mech. Des. doi: 10.1115/1.4036582 – ident: ref_238 – volume: 39 start-page: D1035 year: 2010 ident: ref_197 article-title: DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1126 – volume: 405 start-page: 661 year: 2000 ident: ref_15 article-title: Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes publication-title: Nature doi: 10.1038/35015037 – volume: 130 start-page: 6867 year: 2008 ident: ref_72 article-title: Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801047g – ident: ref_189 – volume: 92010 start-page: 1 year: 2010 ident: ref_65 article-title: Energy information administration publication-title: Dep. Energy – volume: 33 start-page: 19 year: 2019 ident: ref_172 article-title: Convolutional neural network scoring and minimization in the D3R 2017 community challenge publication-title: J. Comput.-Aided Mol. Des. doi: 10.1007/s10822-018-0133-y – volume: 56 start-page: 286 year: 2016 ident: ref_35 article-title: Inverse QSPR/QSAR analysis for chemical structure generation (from y to x) publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00628 – volume: 21 start-page: 785 year: 2018 ident: ref_44 article-title: Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond publication-title: Mater. Today doi: 10.1016/j.mattod.2017.11.021 – volume: 257 start-page: 1078 year: 1992 ident: ref_19 article-title: Structure-based strategies for drug design and discovery publication-title: Science doi: 10.1126/science.257.5073.1078 – volume: 54 start-page: 3320 year: 2014 ident: ref_117 article-title: How accurately can we predict the melting points of drug-like compounds? publication-title: J. Chem. Inf. Model. doi: 10.1021/ci5005288 – volume: 148 start-page: 241712 year: 2018 ident: ref_102 article-title: Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers publication-title: J. Chem. Phys. doi: 10.1063/1.5007873 – volume: 131 start-page: 8732 year: 2009 ident: ref_108 article-title: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902302h – volume: 8 start-page: 10883 year: 2017 ident: ref_114 article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology publication-title: Oncotarget doi: 10.18632/oncotarget.14073 – volume: 22 start-page: 263 year: 2004 ident: ref_33 article-title: The signature molecular descriptor: 3. Inverse-quantitative structure–activity relationship of ICAM-1 inhibitory peptides publication-title: J. Mol. Graph. Modell. doi: 10.1016/j.jmgm.2003.10.002 – volume: 361 start-page: 360 year: 2018 ident: ref_24 article-title: Inverse molecular design using machine learning: Generative models for matter engineering publication-title: Science doi: 10.1126/science.aat2663 – volume: 6 start-page: 20952 year: 2016 ident: ref_9 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 19 start-page: 6682 year: 2019 ident: ref_13 article-title: Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01050 – volume: 3 start-page: 159 year: 2017 ident: ref_56 article-title: Materials discovery and design using machine learning publication-title: J. Mater. – volume: 56 start-page: 1894 year: 2016 ident: ref_142 article-title: ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00207 – volume: 1 start-page: 1 year: 2013 ident: ref_86 article-title: Rdkit documentation publication-title: Release – ident: ref_39 – volume: 63 start-page: 22 year: 2018 ident: ref_103 article-title: Novel nanostructured thermal interface materials: A review publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2017.1301014 – volume: 39 start-page: 2354 year: 2010 ident: ref_68 article-title: Semiconducting polymers: The third generation publication-title: Chem. Soc. Rev. doi: 10.1039/b914956m – ident: ref_1 – volume: 9 start-page: 203 year: 2010 ident: ref_26 article-title: How to improve R&D productivity: The pharmaceutical industry’s grand challenge publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3078 – volume: 6 start-page: 1078 year: 2017 ident: ref_42 article-title: Polymer Informatics: Opportunities and Challenges publication-title: ACS Macro. Lett. doi: 10.1021/acsmacrolett.7b00228 – volume: 7 start-page: 60 year: 2015 ident: ref_144 article-title: ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation publication-title: J. Cheminform. doi: 10.1186/s13321-015-0109-z – volume: 37 start-page: 1038 year: 2019 ident: ref_203 article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0224-x – volume: 120 start-page: 9911 year: 2004 ident: ref_77 article-title: Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems publication-title: J. Chem. Phys. doi: 10.1063/1.1724816 – volume: 3 start-page: 5 year: 2018 ident: ref_156 article-title: Accelerating the discovery of materials for clean energy in the era of smart automation publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0005-z – volume: 58 start-page: 224 year: 1998 ident: ref_131 article-title: Reconstructing random media. II. Three-dimensional media from two-dimensional cuts publication-title: Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.58.224 – volume: 148 start-page: 241735 year: 2018 ident: ref_89 article-title: Machine learning-based screening of complex molecules for polymer solar cells publication-title: J. Chem. Phys. doi: 10.1063/1.5023563 – volume: 134 start-page: 074106 year: 2011 ident: ref_169 article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials publication-title: J. Chem. Phys. doi: 10.1063/1.3553717 – ident: ref_45 – ident: ref_237 – volume: 9 start-page: 1802820 year: 2019 ident: ref_141 article-title: Design-to-Device Approach Affords Panchromatic Co-Sensitized Solar Cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802820 – volume: 31 start-page: 379 year: 2017 ident: ref_111 article-title: Bayesian molecular design with a chemical language model publication-title: J. Comput.-Aided Mol. Des. doi: 10.1007/s10822-016-0008-z – ident: ref_187 – volume: 1 start-page: 011002 year: 2013 ident: ref_49 article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 57 start-page: 942 year: 2017 ident: ref_171 article-title: Protein–ligand scoring with convolutional neural networks publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00740 – volume: 192 start-page: 707 year: 2009 ident: ref_137 article-title: Kriging metamodeling in simulation: A review publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.10.013 – volume: 26 start-page: 594 year: 2013 ident: ref_2 article-title: Roles of flexible chains in organic semiconducting materials publication-title: Chem. Mater. doi: 10.1021/cm4018776 – volume: 24 start-page: 1 year: 1998 ident: ref_16 article-title: Recent trends in high-energy materials publication-title: Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(97)00015-4 – volume: 12 start-page: 197 year: 2013 ident: ref_95 article-title: Applications of energetic materials by a theoretical method (discover energetic materials by a theoretical method) publication-title: Int. J. Energ. Mater. Chem. Propul. – volume: 43 start-page: 493 year: 2003 ident: ref_173 article-title: The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci025584y – volume: 37 start-page: W623 year: 2009 ident: ref_195 article-title: PubChem: A public information system for analyzing bioactivities of small molecules publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp456 – ident: ref_209 doi: 10.1007/978-3-540-28650-9_4 – ident: ref_232 doi: 10.1080/00401706.2019.1638834 – volume: 6 start-page: 19660 year: 2016 ident: ref_220 article-title: Adaptive strategies for materials design using uncertainties publication-title: Sci. Rep. doi: 10.1038/srep19660 – ident: ref_67 – volume: 11 start-page: 137 year: 2016 ident: ref_155 article-title: An overview of molecular fingerprint similarity search in virtual screening publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2016.1117070 – volume: 5 start-page: 21 year: 2019 ident: ref_225 article-title: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design publication-title: Npj Comput. Mater. doi: 10.1038/s41524-019-0153-8 – volume: 3 start-page: 54 year: 2017 ident: ref_58 article-title: Machine learning in materials informatics: Recent applications and prospects publication-title: Npj Comput. Mater. doi: 10.1038/s41524-017-0056-5 – volume: 45 start-page: 65 year: 2013 ident: ref_129 article-title: Computational microstructure characterization and reconstruction for stochastic multiscale material design publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2012.03.007 – volume: 321 start-page: 792 year: 2008 ident: ref_28 article-title: Insights into current limitations of density functional theory publication-title: Science doi: 10.1126/science.1158722 – volume: 3 start-page: 33 year: 2011 ident: ref_185 article-title: Open Babel: An open chemical toolbox publication-title: J. Cheminform. doi: 10.1186/1758-2946-3-33 – ident: ref_27 doi: 10.1007/978-94-009-9027-2_2 – volume: 4 start-page: eaap7885 year: 2018 ident: ref_116 article-title: Deep reinforcement learning for de novo drug design publication-title: Sci. Adv. doi: 10.1126/sciadv.aap7885 – ident: ref_120 doi: 10.1115/DETC2018-86154 – ident: ref_146 doi: 10.1007/978-1-4020-9783-6 – volume: 108 start-page: 058301 year: 2012 ident: ref_90 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.058301 – volume: 20 start-page: 318 year: 2015 ident: ref_223 article-title: Machine-learning approaches in drug discovery: Methods and applications publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2014.10.012 – volume: 19 start-page: 8907 year: 2009 ident: ref_98 article-title: High refractive index polymers: Fundamental research and practical applications publication-title: J. Mater. Chem. doi: 10.1039/b909690f – ident: ref_30 doi: 10.1017/CBO9780511816581 – volume: 19 start-page: 640 year: 2017 ident: ref_191 article-title: Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs) publication-title: ACS Comb. Sci. doi: 10.1021/acscombsci.7b00056 – volume: 11 start-page: 763 year: 2004 ident: ref_226 article-title: Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2004.1349782 – volume: 23 start-page: 51 year: 2019 ident: ref_206 article-title: Advances of machine learning in molecular modeling and simulation publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2019.02.009 – volume: 13 start-page: 1091 year: 2018 ident: ref_61 article-title: An overview of neural networks for drug discovery and the inputs used publication-title: Expert Opin. Drug Discov. doi: 10.1080/17460441.2018.1547278 – volume: 15 start-page: 1120 year: 2016 ident: ref_83 article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach publication-title: Nat. Mater. doi: 10.1038/nmat4717 – volume: 54 start-page: 11793 year: 1998 ident: ref_47 article-title: Synthesis of polyazapolycyclic caged polynitramines publication-title: Tetrahedron doi: 10.1016/S0040-4020(98)83040-8 – volume: 50 start-page: 742 year: 2010 ident: ref_88 article-title: Extended-connectivity fingerprints publication-title: J. Chem. Inf. Model. doi: 10.1021/ci100050t – volume: 4 start-page: 268 year: 2018 ident: ref_54 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 – ident: ref_159 – ident: ref_235 doi: 10.1109/ADPRL.2013.6615007 – volume: 4 start-page: 69 year: 2015 ident: ref_139 article-title: Sobol sensitivity analysis: A tool to guide the development and evaluation of systems pharmacology models publication-title: CPT: Pharmacomet. Syst. Pharmacol. – ident: ref_167 doi: 10.1103/PhysRevB.100.024112 – volume: 86 start-page: 97 year: 1964 ident: ref_214 article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise publication-title: J. Basic Eng. doi: 10.1115/1.3653121 – volume: 277 start-page: 1237 year: 1997 ident: ref_123 article-title: Computational design of hierarchically structured materials publication-title: Science doi: 10.1126/science.277.5330.1237 – ident: ref_147 doi: 10.1002/9783527645121 – ident: ref_180 – ident: ref_213 – volume: 115 start-page: 1094 year: 2015 ident: ref_163 article-title: Crystal structure representations for machine learning models of formation energies publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24917 – volume: 85 start-page: 206 year: 2014 ident: ref_132 article-title: Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.12.046 – volume: 10 start-page: 31 year: 2018 ident: ref_113 article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design publication-title: J. Cheminform. doi: 10.1186/s13321-018-0286-7 – volume: 293 start-page: 1119 year: 2001 ident: ref_5 article-title: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics publication-title: Science doi: 10.1126/science.293.5532.1119 – volume: 4 start-page: 120 year: 2017 ident: ref_112 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00512 – volume: 7 start-page: 11241 year: 2016 ident: ref_219 article-title: Accelerated search for materials with targeted properties by adaptive design publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – ident: ref_202 – volume: 42 start-page: 693 year: 2002 ident: ref_150 article-title: Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci0155053 – volume: 1 start-page: 1288 year: 2010 ident: ref_66 article-title: Third-generation photovoltaic technology- the potential for low-cost solar energy conversion publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100290q – volume: 136 start-page: 051007 year: 2014 ident: ref_130 article-title: A descriptor-based design methodology for developing heterogeneous microstructural materials system publication-title: J. Mech. Des. doi: 10.1115/1.4026649 – volume: 9 start-page: 33 year: 2017 ident: ref_176 article-title: The Chemistry Development Kit (CDK) v2. 0: Atom typing, depiction, molecular formulas, and substructure searching publication-title: J. Cheminform. doi: 10.1186/s13321-017-0220-4 – volume: 134 start-page: 277 year: 2002 ident: ref_55 article-title: Games solved: Now and in the future publication-title: Artif. Intell. doi: 10.1016/S0004-3702(01)00152-7 – volume: 37 start-page: 1700111 year: 2018 ident: ref_199 article-title: Generative recurrent networks for de novo drug design publication-title: Mol. Inf. doi: 10.1002/minf.201700111 – volume: 20 start-page: 273 year: 1995 ident: ref_212 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 55 start-page: B62 year: 2002 ident: ref_228 article-title: Random heterogeneous materials: Microstructure and macroscopic properties publication-title: Appl. Mech. Rev. doi: 10.1115/1.1483342 – volume: 119 start-page: 10520 year: 2019 ident: ref_21 article-title: Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00728 – volume: 1 start-page: 4 year: 2009 ident: ref_34 article-title: A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem publication-title: J. Cheminform. doi: 10.1186/1758-2946-1-4 – ident: ref_208 doi: 10.1115/DETC2019-98222 – ident: ref_64 doi: 10.1557/mrc.2019.54 – volume: 56 start-page: 8191 year: 2017 ident: ref_96 article-title: Sensitivity of energetic materials: Theoretical relationships to detonation performance and molecular structure publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02021 – volume: 19 start-page: 3387 year: 2019 ident: ref_105 article-title: Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05196 – ident: ref_240 – volume: 122 start-page: 17575 year: 2018 ident: ref_43 article-title: Polymer genome: A data-powered polymer informatics platform for property predictions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02913 – volume: 114 start-page: 8734 year: 2017 ident: ref_118 article-title: Concurrent design of quasi-random photonic nanostructures publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1704711114 – volume: 29 start-page: 186 year: 2016 ident: ref_190 article-title: Machine learning in materials science: Recent progress and emerging applications publication-title: Rev. Comput. Chem. – volume: 4 start-page: 83 year: 2012 ident: ref_192 article-title: Large-scale screening of hypothetical metal–organic frameworks publication-title: Nat. Chem. doi: 10.1038/nchem.1192 – volume: 11 start-page: 17056 year: 2019 ident: ref_122 article-title: Solution Processing Dependent Bulk Heterojunction Nanomorphology of P3HT/PCBM Thin Films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02719 – volume: 92 start-page: 014106 year: 2015 ident: ref_143 article-title: Accelerated materials property predictions and design using motif-based fingerprints publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.92.014106 – volume: 4 start-page: 828 year: 2019 ident: ref_60 article-title: Deep learning for molecular design-a review of the state of the art publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C9ME00039A – volume: 4 start-page: 4849 year: 2011 ident: ref_70 article-title: Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02056k – ident: ref_201 – ident: ref_207 doi: 10.1038/s41598-020-60652-9 – volume: 36 start-page: 4439 year: 1995 ident: ref_109 article-title: Study of change in thermal diffusivity of amorphous polymers during glass transition publication-title: Polymer doi: 10.1016/0032-3861(95)96850-8 – ident: ref_121 doi: 10.1002/polb.24854 – volume: 247 start-page: 106949 year: 2020 ident: ref_164 article-title: DScribe: Library of descriptors for machine learning in materials science publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.106949 – volume: 23 start-page: 1241 year: 2018 ident: ref_62 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.01.039 – volume: 37 start-page: 715 year: 2012 ident: ref_48 article-title: The materials genome initiative: One year on publication-title: MRS Bull. doi: 10.1557/mrs.2012.194 – volume: 4 start-page: 053208 year: 2016 ident: ref_37 article-title: Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science publication-title: APL Mater. doi: 10.1063/1.4946894 – volume: 12 start-page: 2111 year: 2006 ident: ref_174 article-title: Recent developments of the chemistry development kit (CDK)-an open-source java library for chemo-and bioinformatics publication-title: Curr. Pharm. Des. doi: 10.2174/138161206777585274 – volume: 16 start-page: 3774 year: 2016 ident: ref_136 article-title: Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01169 – volume: 24 start-page: 3776 year: 2017 ident: ref_231 article-title: Dielectric spectroscopy analysis using viscoelasticity-inspired relaxation theory with finite element modeling publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2017.006563 – volume: 123 start-page: 14610 year: 2019 ident: ref_100 article-title: Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01147 – ident: ref_153 – volume: 18 start-page: 13754 year: 2016 ident: ref_166 article-title: Comparing molecules and solids across structural and alchemical space publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00415F – volume: 13 start-page: 455 year: 1998 ident: ref_204 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 3 start-page: 2810 year: 2013 ident: ref_78 article-title: Accelerating materials property predictions using machine learning publication-title: Sci. Rep. doi: 10.1038/srep02810 – volume: 529 start-page: 484 year: 2016 ident: ref_36 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref_29 – ident: ref_229 – volume: 47 start-page: 342 year: 2007 ident: ref_193 article-title: Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: Assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/ci600423u – volume: 4 start-page: 308 year: 2001 ident: ref_84 article-title: Cheminformatics: A tool for decision-makers in drug discovery publication-title: Curr. Opin. Drug Discov. Dev. – volume: 2 start-page: 120301 year: 2018 ident: ref_53 article-title: Machine learning in materials design and discovery: Examples from the present and suggestions for the future publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.120301 – volume: 48 start-page: 12581 year: 1993 ident: ref_110 article-title: Thermal conductivity of disordered harmonic solids publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.48.12581 – volume: 23 start-page: 1 year: 2001 ident: ref_138 article-title: Comparative studies of metamodelling techniques under multiple modelling criteria publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-001-0160-4 – volume: 41 start-page: 452 year: 2016 ident: ref_46 article-title: A comparison of the structure, synthesis, and properties of insensitive energetic compounds publication-title: Propellants Explos. Pyrotech. doi: 10.1002/prep.201600032 – volume: 3 start-page: 119 year: 2019 ident: ref_140 article-title: How to explore chemical space using algorithms and automation publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0066-y – volume: 48 start-page: 1 year: 2000 ident: ref_124 article-title: Nanostructured materials: Basic concepts and microstructure publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00285-2 – volume: 28 start-page: 31 year: 1988 ident: ref_87 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00057a005 – volume: 11 start-page: 24825 year: 2019 ident: ref_63 article-title: Autonomous molecular design: Then and now publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01226 – volume: 6 start-page: 2326 year: 2015 ident: ref_92 article-title: Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00831 – volume: 57 start-page: 4977 year: 2014 ident: ref_32 article-title: QSAR modeling: Where have you been? Where are you going to? publication-title: J. Med. Chem. doi: 10.1021/jm4004285 – volume: 39 start-page: W486 year: 2011 ident: ref_178 article-title: ChemMine tools: An online service for analyzing and clustering small molecules publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr320 |
| SSID | ssj0000456617 |
| Score | 2.5688987 |
| SecondaryResourceType | review_article |
| Snippet | Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 163 |
| SubjectTerms | Artificial intelligence Biomedical materials Case studies Design Genomes Informatics Machine learning Machining Market entry Material properties Materials science Methods Molecular structure Organic chemistry Polymers Review Source code |
| Title | Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31936321 https://www.proquest.com/docview/2550252698 https://www.proquest.com/docview/2338988556 https://pubmed.ncbi.nlm.nih.gov/PMC7023065 |
| Volume | 12 |
| WOSCitedRecordID | wos000519848300163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KB. dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLRJc-IYNLJWRECdCGydObC6ILbsCoZYIgVROUew47Eq7Sdm0K_HvmUmcQEFw4hRFHikfY4_f2OP3AJ4KHeRaGIPILS-JVLvwEeUXfjjTNhBG2UAVrdhEslzK1Uql7nh048oq-5jYBuqO7ZnqtjEIT4va0Ir5FIEwTtY8VvLV-ptPGlK01-oENfZgTMRbsxGM03eL9Muw5kLwBWfsjmozxGx_uq7Pvp8HvCVaC3enpj_w5u9lk7_MQ8c3_-8X3IIbDo-y110Hug1XbHUHrs17Gbi7cLJoyy2t75hYv_roUeobBXtj2bK-rPFKVSCsLll3stOwRSe6axuWVwVL6fMRZr5kH9YE97dVS-Pats17MZfmHnw-Pvo0f-s7eQbfRDLY-Oj7CANCrIsEQaSdxXnEjZBSG8zCBM9J20rGpTKqDEqjhDI2t0ImScFLjrgvvA-jqq7sPrBEK1tGuiy4ziNM6aRGG2sw9-SE-IwHz3vPZMZxl5OExlmGOQw5MttxpAfPBvN1R9rxN8OD3lWZG7tN9tMzHjwZmvGv01ZKXtl6izaY2SsphYg9eND1iuFJGNTCOOSBB8lOfxkMiNF7t6U6PWmZvZM2IxQP__1aj-A6p6yfFoLkAYw2F1v7GK6ay81pczGBvWQlJzA-PFqmH_Hu_eGLiRsIPwAy_RpJ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU6Sy4f0IFDASsCLqxIkTGwkhNKXqqJ1hFkUqqzR-hFYqydDMFPWn-EbuzQsGBLsuWGXhq8Rxju1zbeccgOdCB5kWxiBzy3IS1bY-snzrh0PtAmGUC5StzSaS6VQeHqrZGnzv_oWhY5XdmFgP1LY0tEa-hdQXp2ceK_l2_tUn1yjaXe0sNBpY7LmLb5iyVW_G2_h9X3C-8_5gtOu3rgK-iWSw8LHKEeI41jZB7uOGcRZxI6TUBpMHwTOyZJJxrozKg9wooYzLnJBJYnnOka6EeN8rsB4h2IcDWJ-NJ7NP_aoOESTkBI2YZxiq4da8PL34EvBayi1cnfz-YLS_H8z8ZabbufG_tdFNuN5yavau6QS3YM0Vt2Fj1FnZ3YHjSX1k1PmtmuxnH1FJ-LZs27FpeV7ilU6ysDJnzd-phk0a42BXsaywbEYNjFT5Nfswp5RlWdRStHXZqDOkqe7Cx0t50XswKMrCPQCWaOXySOeW6yzCtFRqjHEG82dOrNV48Kr79qlp9dfJBuQ0xTyMoJKuQMWDl334vBEe-VvgZgeGtB1_qvQnEjx41hdjq9N2UFa4cokxIZJVKYWIPbjf4K5_Eg7MYRzywINkBZF9AKmSr5YUJ8e1OnlSZ7Xi4b-r9RQ2dg8m--n-eLr3CK5xWsWghS25CYPF2dI9hqvmfHFSnT1puxiDo8tG7A8SoGdl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUwRsyqtASgEjASuimdhxYiMhBDMdUZWGEQKpuzTxg1YqydDMFPXX-Dqu84IBwa4LVln4Kg_nxD7XvjkH4AnPgyznSiFzy6wT1dY-snzts1FuAq6kCaSuzSbiJBEHB3K2Bt-7f2FcWWU3JtYDtS6VWyMfIvXF6ZlGUgxtWxYxm0xfzb_6zkHK7bR2dhoNRPbM-TdM36qXuxN8108pne58HL_1W4cBX4UiWPh4-yFiOsp1jDzIjKIspIoLkStMJDjNnD2TiKxU0gZWSS6VyQwXcayppUhdGJ73EqzHDJOeAay_2UlmH_oVHkeWkB80wp6MydFwXp6cfwloLevGVifCP9jt70Wav8x60-v_c3_dgI2Wa5PXzcdxE9ZMcQuujjuLu9twtF-Xkhq_VZn97CNaHe41mRiSlGclHl2FCyktaf5aVWS_MRQ2FckKTWaus5FCvyDv5y6VWRa1RG3dNu6MaqpN-HQhD3oHBkVZmHtA4lwaG-ZW0zwLMV0VOcYYhXk1dWxWefC8w0GqWl12Zw9ykmJ-5mCTrsDGg2d9-LwRJPlb4HYHjLQdl6r0Jyo8eNw3Y6-7baKsMOUSYxiSWCE4jzy422CwvxIO2CxiNPAgXkFnH-DUyldbiuOjWrU8rrNdvvXv23oEVxCm6bvdZO8-XKNuccOtd4ltGCxOl-YBXFZni-Pq9GH7tRE4vGjA_gCvbG__ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning-Assisted+De+Novo+Design+of+Organic+Molecules+and+Polymers%3A+Opportunities+and+Challenges&rft.jtitle=Polymers&rft.au=Chen%2C+Guang&rft.au=Shen%2C+Zhiqiang&rft.au=Iyer%2C+Akshay&rft.au=Ghumman%2C+Umar+Farooq&rft.date=2020-01-08&rft.eissn=2073-4360&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fpolym12010163&rft_id=info%3Apmid%2F31936321&rft.externalDocID=31936321 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |