Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges

Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Polymers Ročník 12; číslo 1; s. 163
Hlavní autoři: Chen, Guang, Shen, Zhiqiang, Iyer, Akshay, Ghumman, Umar Farooq, Tang, Shan, Bi, Jinbo, Chen, Wei, Li, Ying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 08.01.2020
MDPI
Témata:
ISSN:2073-4360, 2073-4360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.
AbstractList Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.
Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.
Author Bi, Jinbo
Chen, Wei
Ghumman, Umar Farooq
Li, Ying
Chen, Guang
Tang, Shan
Shen, Zhiqiang
Iyer, Akshay
AuthorAffiliation 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; guang.chen@uconn.edu (G.C.); zhiqiang.shen@uconn.edu (Z.S.)
4 Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; jinbo.bi@uconn.edu
2 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; akshayiyer2021@u.northwestern.edu (A.I.); UmarGhumman2018@u.northwestern.edu (U.F.G.)
3 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; shantang@dlut.edu.cn
5 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
AuthorAffiliation_xml – name: 3 State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; shantang@dlut.edu.cn
– name: 2 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; akshayiyer2021@u.northwestern.edu (A.I.); UmarGhumman2018@u.northwestern.edu (U.F.G.)
– name: 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; guang.chen@uconn.edu (G.C.); zhiqiang.shen@uconn.edu (Z.S.)
– name: 4 Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; jinbo.bi@uconn.edu
– name: 5 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
Author_xml – sequence: 1
  givenname: Guang
  orcidid: 0000-0002-6753-6745
  surname: Chen
  fullname: Chen, Guang
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0003-0804-2478
  surname: Shen
  fullname: Shen, Zhiqiang
– sequence: 3
  givenname: Akshay
  surname: Iyer
  fullname: Iyer, Akshay
– sequence: 4
  givenname: Umar Farooq
  surname: Ghumman
  fullname: Ghumman, Umar Farooq
– sequence: 5
  givenname: Shan
  surname: Tang
  fullname: Tang, Shan
– sequence: 6
  givenname: Jinbo
  surname: Bi
  fullname: Bi, Jinbo
– sequence: 7
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 8
  givenname: Ying
  orcidid: 0000-0002-1487-3350
  surname: Li
  fullname: Li, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31936321$$D View this record in MEDLINE/PubMed
BookMark eNp1kctr3DAQxkVJaZ7HXouhl1zc6GG9eiiEbdoGNtke2rPQymOvglZyJTuQ_75esg1JoHOZgfnNxzd8x-ggpggIvSf4E2MaXwwpPGwJxQQTwd6gI4olqxsm8MGz-RCdlXKH52q4EES-Q4eMaCYYJUdoc2Pdxkeol2Bz9LGvL0vxZYS2-grVbbpPcy--j1XqqlXubfSuukkB3BSgVDa21c-dCcjlc7UahpTHKfrR73eLjQ0BYg_lFL3tbChwtu8n6Pe3q1-LH_Vy9f16cbmsXaPIWDtnG6KYWLdSSwlY2IY6rtTaUSU5tZgKqUSnne5I5zTXDixwJWVLO8o4ZSfoy6PuMK230DqIY7bBDNlvbX4wyXrzchP9xvTp3khMGRZ8FjjfC-T0Z4Iymq0vDkKwEdJUDGVMaaU4FzP68RV6l6Yc5_cM5RxTToVWM_XhuaMnK_9CmIH6EXA5lZKhe0IINruczYucZ5694p0f7ejT7iEf_nP1Fx8jrK8
CitedBy_id crossref_primary_10_3390_polym16202936
crossref_primary_10_1016_j_commatsci_2024_113206
crossref_primary_10_1016_j_matpr_2022_02_101
crossref_primary_10_1038_s41428_022_00648_6
crossref_primary_10_1039_D0RA07820D
crossref_primary_10_6023_A22110446
crossref_primary_10_3390_ma15041428
crossref_primary_10_1039_D1ME00160D
crossref_primary_10_1038_s41524_024_01470_9
crossref_primary_10_1038_s41467_023_39396_3
crossref_primary_10_1186_s13321_021_00501_7
crossref_primary_10_1016_j_commatsci_2022_111859
crossref_primary_10_1016_j_cocis_2024_101847
crossref_primary_10_1016_j_eml_2022_101743
crossref_primary_10_1016_j_commatsci_2022_111612
crossref_primary_10_3390_polym13193219
crossref_primary_10_1016_j_ces_2023_118619
crossref_primary_10_3390_polym13111898
crossref_primary_10_1021_acs_jcim_5c01634
crossref_primary_10_1016_j_tifs_2023_06_005
crossref_primary_10_1039_D3PY00395G
crossref_primary_10_1146_annurev_chembioeng_092220_024340
crossref_primary_10_1002_mats_202000051
crossref_primary_10_1038_s41598_021_03513_3
crossref_primary_10_1016_j_cej_2023_142949
crossref_primary_10_1186_s13321_020_00458_z
crossref_primary_10_1557_s43577_021_00174_5
crossref_primary_10_1002_inf2_12425
crossref_primary_10_1016_j_apenergy_2024_125203
crossref_primary_10_1021_acs_macromol_5c01192
crossref_primary_10_1039_D1RA03008F
crossref_primary_10_1021_acsami_5c12119
crossref_primary_10_3390_electronics12183772
crossref_primary_10_1007_s00521_024_10532_4
crossref_primary_10_1002_adma_202413695
crossref_primary_10_1007_s10118_024_3237_y
crossref_primary_10_1016_j_commatsci_2023_112031
crossref_primary_10_1039_D5CS00146C
crossref_primary_10_1002_mats_202400008
crossref_primary_10_1021_acs_macromol_5c00427
crossref_primary_10_1016_j_resconrec_2020_105094
crossref_primary_10_1042_BCJ20200781
crossref_primary_10_1016_j_memsci_2025_124172
crossref_primary_10_3389_fchem_2021_820417
crossref_primary_10_3390_molecules25173772
crossref_primary_10_1016_j_nxener_2023_100078
crossref_primary_10_1002_aisy_202500427
crossref_primary_10_1039_D0MH01451F
crossref_primary_10_1002_marc_202500380
crossref_primary_10_1016_j_apmt_2024_102061
crossref_primary_10_1039_D1SC01000J
crossref_primary_10_1016_j_jhazmat_2024_135371
crossref_primary_10_1016_j_mee_2023_111950
crossref_primary_10_1002_nme_6690
crossref_primary_10_1016_j_compbiomed_2022_105403
crossref_primary_10_1007_s10973_021_10960_7
crossref_primary_10_3390_polym15183811
crossref_primary_10_1007_s10706_024_03067_x
crossref_primary_10_3390_polym14235290
crossref_primary_10_3390_polym16091204
crossref_primary_10_1016_j_desal_2024_117502
crossref_primary_10_1016_j_jmr_2023_107438
crossref_primary_10_1080_10643389_2023_2190313
crossref_primary_10_1002_marc_202400260
crossref_primary_10_1016_j_trac_2025_118243
crossref_primary_10_1016_j_ijbiomac_2020_09_023
crossref_primary_10_3390_polym16101387
crossref_primary_10_1080_17458080_2023_2170356
crossref_primary_10_1007_s00466_021_01981_y
crossref_primary_10_1002_pi_6345
crossref_primary_10_3390_ijms22031086
crossref_primary_10_1038_s41598_022_14394_5
crossref_primary_10_1016_j_mser_2023_100746
crossref_primary_10_1016_j_cej_2023_142768
crossref_primary_10_1007_s10409_021_01100_3
crossref_primary_10_1186_s13321_025_00989_3
crossref_primary_10_1080_17415993_2025_2539778
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1002_adts_202400479
crossref_primary_10_1063_5_0023759
crossref_primary_10_1039_D1RA03086H
crossref_primary_10_1016_j_ijmecsci_2022_107412
crossref_primary_10_3390_polym14173500
crossref_primary_10_1177_08839115241308202
Cites_doi 10.1007/s10822-013-9672-4
10.1016/S1741-8364(04)02393-5
10.1021/ci600342e
10.1021/ph500449v
10.1007/978-3-030-01418-6_41
10.1021/ci300535x
10.1021/ci050011h
10.1002/jcc.21707
10.1016/j.cis.2011.11.001
10.1016/j.cbpa.2010.03.017
10.1109/EIDWT.2011.13
10.1103/PhysRevB.87.184115
10.26434/chemrxiv.5309668
10.1021/jz200866s
10.1016/j.pmatsci.2018.01.005
10.1007/0-306-46857-3_19
10.1002/minf.201000061
10.1021/cr300014x
10.1039/b200393g
10.1016/j.ces.2014.07.022
10.1016/j.polymer.2013.12.069
10.1021/ja209640k
10.1038/s41598-017-05723-0
10.1016/j.compscitech.2018.04.017
10.1039/C4TC02495H
10.1038/s41524-018-0128-1
10.1038/347539a0
10.1002/047147875X
10.1137/100801275
10.1038/s41598-017-04013-z
10.1038/ncomms5845
10.1002/nme.5751
10.1186/1752-153X-2-5
10.1021/ci300415d
10.1115/1.4040912
10.1039/b812502n
10.1021/acs.jpcc.9b03925
10.1063/1.2746232
10.1063/1.4977487
10.1002/adma.201402532
10.1038/s41598-018-27344-x
10.1016/j.cossms.2014.02.003
10.1038/s41524-019-0203-2
10.1038/s41524-019-0248-2
10.1063/1.2032611
10.1201/9781482296945
10.1126/science.1259439
10.1016/j.jhazmat.2008.04.011
10.1021/acs.jcim.7b00690
10.1186/s13321-018-0287-6
10.1016/j.actamat.2019.03.010
10.1023/A:1010933404324
10.1080/09506608.2017.1296605
10.1007/12_2009_18
10.1126/sciadv.aay4275
10.1093/nar/gkr777
10.1002/advs.201901395
10.1002/adma.201600377
10.1186/1758-2946-4-22
10.1063/1.5019667
10.4155/fmc-2018-0358
10.1038/s41467-018-04897-z
10.1016/0032-3950(70)90345-X
10.1080/08927022.2011.614242
10.1038/nphoton.2014.12
10.1109/JPROC.2015.2494218
10.1186/1758-2946-6-3
10.1126/science.1230444
10.1038/s41586-018-0337-2
10.1007/3-540-45712-7_29
10.1038/s41467-019-12928-6
10.1016/j.solmat.2004.02.030
10.1115/1.4036582
10.1093/nar/gkq1126
10.1038/35015037
10.1021/ja801047g
10.1007/s10822-018-0133-y
10.1021/acs.jcim.5b00628
10.1016/j.mattod.2017.11.021
10.1126/science.257.5073.1078
10.1021/ci5005288
10.1063/1.5007873
10.1021/ja902302h
10.18632/oncotarget.14073
10.1016/j.jmgm.2003.10.002
10.1126/science.aat2663
10.1038/srep20952
10.1021/acs.cgd.9b01050
10.1021/acs.jcim.6b00207
10.1080/09506608.2017.1301014
10.1039/b914956m
10.1038/nrd3078
10.1021/acsmacrolett.7b00228
10.1186/s13321-015-0109-z
10.1038/s41587-019-0224-x
10.1063/1.1724816
10.1038/s41578-018-0005-z
10.1103/PhysRevE.58.224
10.1063/1.5023563
10.1063/1.3553717
10.1002/aenm.201802820
10.1007/s10822-016-0008-z
10.1063/1.4812323
10.1021/acs.jcim.6b00740
10.1016/j.ejor.2007.10.013
10.1021/cm4018776
10.1016/S0360-1285(97)00015-4
10.1021/ci025584y
10.1093/nar/gkp456
10.1007/978-3-540-28650-9_4
10.1080/00401706.2019.1638834
10.1038/srep19660
10.1517/17460441.2016.1117070
10.1038/s41524-019-0153-8
10.1038/s41524-017-0056-5
10.1016/j.cad.2012.03.007
10.1126/science.1158722
10.1186/1758-2946-3-33
10.1007/978-94-009-9027-2_2
10.1126/sciadv.aap7885
10.1115/DETC2018-86154
10.1007/978-1-4020-9783-6
10.1103/PhysRevLett.108.058301
10.1016/j.drudis.2014.10.012
10.1039/b909690f
10.1017/CBO9780511816581
10.1021/acscombsci.7b00056
10.1109/TDEI.2004.1349782
10.1016/j.coche.2019.02.009
10.1080/17460441.2018.1547278
10.1038/nmat4717
10.1016/S0040-4020(98)83040-8
10.1021/ci100050t
10.1021/acscentsci.7b00572
10.1109/ADPRL.2013.6615007
10.1103/PhysRevB.100.024112
10.1115/1.3653121
10.1126/science.277.5330.1237
10.1002/9783527645121
10.1002/qua.24917
10.1016/j.commatsci.2013.12.046
10.1186/s13321-018-0286-7
10.1126/science.293.5532.1119
10.1021/acscentsci.7b00512
10.1038/ncomms11241
10.1021/ci0155053
10.1021/jz100290q
10.1115/1.4026649
10.1186/s13321-017-0220-4
10.1016/S0004-3702(01)00152-7
10.1002/minf.201700111
10.1007/BF00994018
10.1115/1.1483342
10.1021/acs.chemrev.8b00728
10.1186/1758-2946-1-4
10.1115/DETC2019-98222
10.1557/mrc.2019.54
10.1021/acs.iecr.7b02021
10.1021/acs.nanolett.8b05196
10.1021/acs.jpcc.8b02913
10.1073/pnas.1704711114
10.1038/nchem.1192
10.1021/acsami.9b02719
10.1103/PhysRevB.92.014106
10.1039/C9ME00039A
10.1039/c1ee02056k
10.1038/s41598-020-60652-9
10.1016/0032-3861(95)96850-8
10.1002/polb.24854
10.1016/j.cpc.2019.106949
10.1016/j.drudis.2018.01.039
10.1557/mrs.2012.194
10.1063/1.4946894
10.2174/138161206777585274
10.1021/acs.nanolett.6b01169
10.1109/TDEI.2017.006563
10.1021/acs.jpcc.9b01147
10.1039/C6CP00415F
10.1023/A:1008306431147
10.1038/srep02810
10.1038/nature16961
10.1021/ci600423u
10.1103/PhysRevMaterials.2.120301
10.1103/PhysRevB.48.12581
10.1007/s00158-001-0160-4
10.1002/prep.201600032
10.1038/s41570-018-0066-y
10.1016/S1359-6454(99)00285-2
10.1021/ci00057a005
10.1021/acsami.9b01226
10.1021/acs.jpclett.5b00831
10.1021/jm4004285
10.1093/nar/gkr320
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym12010163
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC7023065
31936321
10_3390_polym12010163
Genre Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1755779
– fundername: National Science Foundation
  grantid: 1662435
– fundername: National Science Foundation
  grantid: 1762661
– fundername: Center for Hierarchical Materials Design
  grantid: 70NANB19H005
– fundername: National Science Foundation
  grantid: 1934829
– fundername: National Science Foundation
  grantid: 1729743
– fundername: National Science Foundation
  grantid: 1530734
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c481t-cca41836bd7977e06a42c588bc28752a026786f9c9f1fc959ceae5877d2f23523
IEDL.DBID PIMPY
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519848300163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4360
IngestDate Tue Nov 04 02:04:52 EST 2025
Sun Nov 09 13:06:17 EST 2025
Fri Jul 25 11:46:14 EDT 2025
Mon Jul 21 06:00:03 EDT 2025
Tue Nov 18 21:19:38 EST 2025
Sat Nov 29 07:17:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords organic molecules
data-driven algorithm
de novo materials design
materials database
polymers
machine learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-cca41836bd7977e06a42c588bc28752a026786f9c9f1fc959ceae5877d2f23523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6753-6745
0000-0003-0804-2478
0000-0002-1487-3350
OpenAccessLink https://www.proquest.com/publiccontent/docview/2550252698?pq-origsite=%requestingapplication%
PMID 31936321
PQID 2550252698
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7023065
proquest_miscellaneous_2338988556
proquest_journals_2550252698
pubmed_primary_31936321
crossref_primary_10_3390_polym12010163
crossref_citationtrail_10_3390_polym12010163
PublicationCentury 2000
PublicationDate 20200108
PublicationDateYYYYMMDD 2020-01-08
PublicationDate_xml – month: 1
  year: 2020
  text: 20200108
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Rogers (ref_88) 2010; 50
Zhavoronkov (ref_203) 2019; 37
ref_99
Yu (ref_133) 2017; 7
Ramprasad (ref_58) 2017; 3
Paul (ref_26) 2010; 9
(ref_200) 2012; 4
Zhou (ref_10) 2012; 112
Mesta (ref_89) 2018; 148
Winkler (ref_222) 2004; 2
Gaudiana (ref_66) 2010; 1
Gaulton (ref_196) 2011; 40
Lee (ref_136) 2016; 16
ref_126
Stahl (ref_181) 2005; 45
ref_127
Lee (ref_118) 2017; 114
Wang (ref_195) 2009; 37
Balachandran (ref_220) 2016; 6
Tanaka (ref_226) 2004; 11
Dimitrov (ref_63) 2019; 11
May (ref_175) 2014; 6
Landrum (ref_86) 2013; 1
Bostanabad (ref_119) 2018; 95
ref_120
Ghumman (ref_128) 2018; 140
ref_240
ref_121
Goedecker (ref_77) 2004; 120
Zhang (ref_139) 2015; 4
Cohen (ref_28) 2008; 321
Audus (ref_42) 2017; 6
Yu (ref_134) 2017; 139
ref_159
Morley (ref_184) 2008; 2
ref_71
ref_158
Hansson (ref_103) 2018; 63
Ravi (ref_97) 2012; 38
ref_151
Wong (ref_34) 2009; 1
ref_153
ref_152
ref_76
Haghighatlari (ref_206) 2019; 23
De (ref_166) 2016; 18
Agrawal (ref_16) 1998; 24
ref_160
Deb (ref_79) 2002; 6
Jou (ref_80) 2015; 3
Rupp (ref_90) 2012; 108
Dong (ref_144) 2015; 7
ref_148
Gil (ref_38) 2014; 346
Allen (ref_110) 1993; 48
ref_147
Green (ref_51) 2017; 4
ref_149
Madhukar (ref_224) 2019; 10
Lei (ref_2) 2013; 26
ref_146
Biswas (ref_125) 2012; 170
ref_145
Backman (ref_178) 2011; 39
Hirzel (ref_83) 2016; 15
Wang (ref_230) 2018; 162
Pilania (ref_78) 2013; 3
Uiterwijk (ref_55) 2002; 134
Gupta (ref_199) 2018; 37
ref_213
Mauri (ref_154) 2006; 56
Zhang (ref_82) 2014; 8
Knox (ref_197) 2010; 39
Li (ref_218) 2017; 7
Treich (ref_74) 2016; 28
Mathieu (ref_96) 2017; 56
Butler (ref_57) 2018; 559
Outlook (ref_65) 2010; 92010
Banck (ref_185) 2011; 3
Scott (ref_215) 2011; 21
Shahriari (ref_216) 2015; 104
Blum (ref_108) 2009; 131
ref_202
ref_207
Marcou (ref_182) 2007; 47
Afzal (ref_100) 2019; 123
ref_209
ref_208
ref_201
White (ref_48) 2012; 37
Morikawa (ref_109) 1995; 36
Kleijnen (ref_137) 2009; 192
Tetko (ref_117) 2014; 54
Behler (ref_168) 2007; 127
Agrawal (ref_37) 2016; 4
Munshi (ref_122) 2019; 11
ref_235
ref_238
ref_237
ref_239
Chen (ref_62) 2018; 23
Faber (ref_163) 2015; 115
ref_232
Talawar (ref_17) 2009; 161
Putin (ref_115) 2018; 58
ref_234
ref_233
Pagoria (ref_46) 2016; 41
James (ref_11) 2003; 32
Weininger (ref_87) 1988; 28
Sunseri (ref_172) 2019; 33
Batra (ref_161) 2019; 123
Wu (ref_106) 2019; 5
ref_227
ref_229
ref_107
Jones (ref_204) 1998; 13
Razeeb (ref_104) 2018; 63
Jin (ref_138) 2001; 23
Xue (ref_219) 2016; 7
Olson (ref_123) 1997; 277
Wen (ref_217) 2019; 170
Tabor (ref_156) 2018; 3
Bucior (ref_13) 2019; 19
Tropsha (ref_31) 2010; 29
Kim (ref_43) 2018; 122
Segler (ref_112) 2017; 4
Li (ref_157) 2018; 10
Liu (ref_56) 2017; 3
Afzal (ref_102) 2018; 148
Bushuyev (ref_18) 2012; 134
Muegge (ref_155) 2016; 11
Brabec (ref_6) 2004; 83
Swain (ref_142) 2016; 56
Huan (ref_143) 2015; 92
Gubernatis (ref_53) 2018; 2
Akella (ref_85) 2010; 14
ref_25
Wang (ref_52) 2018; 9
Hachmann (ref_70) 2011; 4
ref_20
Ragoza (ref_171) 2017; 57
Wei (ref_54) 2018; 4
Kim (ref_72) 2008; 130
Gross (ref_15) 2000; 405
ref_29
ref_27
Cherkasov (ref_32) 2014; 57
Himanen (ref_164) 2020; 247
Kim (ref_205) 2018; 4
Pardakhti (ref_191) 2017; 19
Paloumpa (ref_73) 2005; 98
Hachmann (ref_69) 2011; 2
Sarkisov (ref_40) 2015; 121
Willighagen (ref_176) 2017; 9
Consonni (ref_150) 2002; 42
Gastegger (ref_170) 2018; 148
Polishchuk (ref_22) 2013; 27
(ref_236) 2014; 15
Jones (ref_50) 2014; 18
Xu (ref_132) 2014; 85
Polman (ref_135) 2015; 2
Heeger (ref_68) 2010; 39
Ruddigkeit (ref_198) 2013; 53
Ikebata (ref_111) 2017; 31
Chandrasekaran (ref_44) 2018; 21
Burroughes (ref_14) 1990; 347
Yeong (ref_131) 1998; 58
Wang (ref_8) 2014; 55
Ruddigkeit (ref_23) 2012; 52
Moons (ref_5) 2001; 293
Elton (ref_91) 2018; 8
Breiman (ref_211) 2001; 45
Lim (ref_113) 2018; 10
ref_177
ref_179
Silver (ref_36) 2016; 529
Nielsen (ref_47) 1998; 54
Kondor (ref_165) 2013; 87
Liu (ref_129) 2013; 45
ref_180
Torquato (ref_228) 2002; 55
Slonimskii (ref_101) 1970; 12
Xu (ref_130) 2014; 136
ref_162
ref_67
Wan (ref_105) 2019; 19
ref_64
ref_167
Furukawa (ref_12) 2013; 341
Liu (ref_98) 2009; 19
Gromski (ref_140) 2019; 3
Olsson (ref_84) 2001; 4
Pilania (ref_9) 2016; 6
Sharma (ref_75) 2014; 5
Kippelen (ref_4) 2009; 2
Elton (ref_60) 2019; 4
Kadurin (ref_114) 2017; 8
Lavecchia (ref_223) 2015; 20
Hansen (ref_92) 2015; 6
Behler (ref_169) 2011; 134
Kuntz (ref_19) 1992; 257
ref_194
Cortes (ref_212) 1995; 20
ref_30
(ref_24) 2018; 361
Miyao (ref_35) 2016; 56
ref_39
Kushner (ref_214) 1964; 86
Yap (ref_186) 2011; 32
Wilmer (ref_192) 2012; 4
Xu (ref_61) 2018; 13
Kailkhura (ref_59) 2019; 5
Fink (ref_193) 2007; 47
Yang (ref_21) 2019; 119
Steinbeck (ref_174) 2006; 12
ref_183
ref_45
Sun (ref_7) 2019; 5
Popova (ref_116) 2018; 4
Jain (ref_49) 2013; 1
Tao (ref_81) 2014; 26
ref_188
ref_187
Yuan (ref_221) 2019; 6
ref_41
ref_189
Mueller (ref_190) 2016; 29
ref_1
ref_3
Xu (ref_93) 2019; 11
Cooper (ref_141) 2019; 9
Huang (ref_95) 2013; 12
Bostanabad (ref_210) 2018; 114
Lookman (ref_225) 2019; 5
Zhao (ref_231) 2017; 24
Churchwell (ref_33) 2004; 22
Gleiter (ref_124) 2000; 48
Steinbeck (ref_173) 2003; 43
References_xml – volume: 27
  start-page: 675
  year: 2013
  ident: ref_22
  article-title: Estimation of the size of drug-like chemical space based on GDB-17 data
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/s10822-013-9672-4
– volume: 2
  start-page: 104
  year: 2004
  ident: ref_222
  article-title: Bayesian neural nets for modeling in drug discovery
  publication-title: Drug Discov. Today BIOSILICO
  doi: 10.1016/S1741-8364(04)02393-5
– volume: 47
  start-page: 195
  year: 2007
  ident: ref_182
  article-title: Optimizing fragment and scaffold docking by use of molecular interaction fingerprints
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci600342e
– volume: 2
  start-page: 822
  year: 2015
  ident: ref_135
  article-title: Optimized scattering power spectral density of photovoltaic light-trapping patterns
  publication-title: ACS Photonics
  doi: 10.1021/ph500449v
– ident: ref_158
  doi: 10.1007/978-3-030-01418-6_41
– volume: 53
  start-page: 56
  year: 2013
  ident: ref_198
  article-title: Visualization and virtual screening of the chemical universe database GDB-17
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300535x
– volume: 45
  start-page: 542
  year: 2005
  ident: ref_181
  article-title: Database clustering with a combination of fingerprint and maximum common substructure methods
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050011h
– volume: 32
  start-page: 1466
  year: 2011
  ident: ref_186
  article-title: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21707
– volume: 170
  start-page: 2
  year: 2012
  ident: ref_125
  article-title: Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2011.11.001
– volume: 14
  start-page: 325
  year: 2010
  ident: ref_85
  article-title: Cheminformatics approaches to analyze diversity in compound screening libraries
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.03.017
– ident: ref_71
– ident: ref_94
– ident: ref_107
  doi: 10.1109/EIDWT.2011.13
– volume: 87
  start-page: 184115
  year: 2013
  ident: ref_165
  article-title: On representing chemical environments
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.184115
– ident: ref_25
  doi: 10.26434/chemrxiv.5309668
– volume: 2
  start-page: 2241
  year: 2011
  ident: ref_69
  article-title: The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200866s
– volume: 95
  start-page: 1
  year: 2018
  ident: ref_119
  article-title: Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2018.01.005
– ident: ref_151
  doi: 10.1007/0-306-46857-3_19
– volume: 29
  start-page: 476
  year: 2010
  ident: ref_31
  article-title: Best practices for QSAR model development, validation, and exploitation
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201000061
– volume: 112
  start-page: 673
  year: 2012
  ident: ref_10
  article-title: Introduction to metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 15
  start-page: 3483
  year: 2014
  ident: ref_236
  article-title: Multi-objective reinforcement learning using sets of pareto dominating policies
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 276
  year: 2003
  ident: ref_11
  article-title: Metal-organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b200393g
– volume: 121
  start-page: 322
  year: 2015
  ident: ref_40
  article-title: Computational structure characterization tools for the era of material informatics
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.07.022
– ident: ref_149
– volume: 55
  start-page: 979
  year: 2014
  ident: ref_8
  article-title: Computational strategies for polymer dielectrics design
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.12.069
– volume: 134
  start-page: 1422
  year: 2012
  ident: ref_18
  article-title: Ionic polymers as a new structural motif for high-energy-density materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209640k
– ident: ref_3
– volume: 7
  start-page: 5683
  year: 2017
  ident: ref_218
  article-title: Rapid Bayesian optimisation for synthesis of short polymer fiber materials
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05723-0
– volume: 162
  start-page: 146
  year: 2018
  ident: ref_230
  article-title: Identifying interphase properties in polymer nanocomposites using adaptive optimization
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.04.017
– ident: ref_177
– volume: 3
  start-page: 2974
  year: 2015
  ident: ref_80
  article-title: Approaches for fabricating high efficiency organic light emitting diodes
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02495H
– ident: ref_234
– volume: 4
  start-page: 67
  year: 2018
  ident: ref_205
  article-title: Deep-learning-based inverse design model for intelligent discovery of organic molecules
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-018-0128-1
– volume: 347
  start-page: 539
  year: 1990
  ident: ref_14
  article-title: Light-emitting diodes based on conjugated polymers
  publication-title: Nature
  doi: 10.1038/347539a0
– ident: ref_99
  doi: 10.1002/047147875X
– ident: ref_148
– volume: 21
  start-page: 996
  year: 2011
  ident: ref_215
  article-title: The correlated knowledge gradient for simulation optimization of continuous parameters using gaussian process regression
  publication-title: SIAM J. Optim.
  doi: 10.1137/100801275
– volume: 7
  start-page: 3752
  year: 2017
  ident: ref_133
  article-title: Design of non-deterministic quasi-random nanophotonic structures using Fourier space representations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04013-z
– volume: 5
  start-page: 4845
  year: 2014
  ident: ref_75
  article-title: Rational design of all organic polymer dielectrics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5845
– volume: 114
  start-page: 501
  year: 2018
  ident: ref_210
  article-title: Leveraging the nugget parameter for efficient Gaussian process modeling
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5751
– volume: 2
  start-page: 5
  year: 2008
  ident: ref_184
  article-title: Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-2-5
– ident: ref_179
– volume: 52
  start-page: 2864
  year: 2012
  ident: ref_23
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300415d
– ident: ref_126
– volume: 140
  start-page: 111408
  year: 2018
  ident: ref_128
  article-title: A Spectral Density Function Approach for Active Layer Design of Organic Photovoltaic Cells
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4040912
– ident: ref_160
– volume: 2
  start-page: 251
  year: 2009
  ident: ref_4
  article-title: Organic photovoltaics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b812502n
– volume: 123
  start-page: 15859
  year: 2019
  ident: ref_161
  article-title: A General Atomic Neighborhood Fingerprint for Machine Learning Based Methods
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03925
– volume: 127
  start-page: 07B603
  year: 2007
  ident: ref_168
  article-title: Representing molecule-surface interactions with symmetry-adapted neural networks
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2746232
– volume: 4
  start-page: 011105
  year: 2017
  ident: ref_51
  article-title: Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4977487
– volume: 26
  start-page: 7931
  year: 2014
  ident: ref_81
  article-title: Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402532
– volume: 8
  start-page: 9059
  year: 2018
  ident: ref_91
  article-title: Applying machine learning techniques to predict the properties of energetic materials
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27344-x
– volume: 18
  start-page: 99
  year: 2014
  ident: ref_50
  article-title: The materials genome initiative, the interplay of experiment, theory and computation
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2014.02.003
– volume: 5
  start-page: 5
  year: 2019
  ident: ref_106
  article-title: Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-019-0203-2
– ident: ref_194
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_59
  article-title: Reliable and explainable machine-learning methods for accelerated material discovery
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-019-0248-2
– volume: 98
  start-page: 056104
  year: 2005
  ident: ref_73
  article-title: A polymer high-k dielectric insulator for organic field-effect transistors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2032611
– ident: ref_152
  doi: 10.1201/9781482296945
– volume: 346
  start-page: 171
  year: 2014
  ident: ref_38
  article-title: Amplify scientific discovery with artificial intelligence
  publication-title: Science
  doi: 10.1126/science.1259439
– ident: ref_127
– volume: 161
  start-page: 589
  year: 2009
  ident: ref_17
  article-title: Environmentally compatible next generation green energetic materials (GEMs)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.04.011
– volume: 58
  start-page: 1194
  year: 2018
  ident: ref_115
  article-title: Reinforced adversarial neural computer for de novo molecular design
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00690
– volume: 56
  start-page: 237
  year: 2006
  ident: ref_154
  article-title: Dragon software: An easy approach to molecular descriptor calculations
  publication-title: Match
– volume: 10
  start-page: 33
  year: 2018
  ident: ref_157
  article-title: Multi-objective de novo drug design with conditional graph generative model
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-018-0287-6
– volume: 170
  start-page: 109
  year: 2019
  ident: ref_217
  article-title: Machine learning assisted design of high entropy alloys with desired property
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.03.010
– ident: ref_188
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_211
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 63
  start-page: 1
  year: 2018
  ident: ref_104
  article-title: Present and future thermal interface materials for electronic devices
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2017.1296605
– ident: ref_41
  doi: 10.1007/12_2009_18
– volume: 5
  start-page: eaay4275
  year: 2019
  ident: ref_7
  article-title: Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4275
– volume: 40
  start-page: D1100
  year: 2011
  ident: ref_196
  article-title: ChEMBL: A large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr777
– ident: ref_227
– volume: 6
  start-page: 1901395
  year: 2019
  ident: ref_221
  article-title: Accelerated Search for BaTiO3-Based Ceramics with Large Energy Storage at Low Fields Using Machine Learning and Experimental Design
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901395
– volume: 28
  start-page: 6277
  year: 2016
  ident: ref_74
  article-title: Rational Co-Design of Polymer Dielectrics for Energy Storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600377
– volume: 4
  start-page: 22
  year: 2012
  ident: ref_200
  article-title: Towards a Universal SMILES representation-A standard method to generate canonical SMILES based on the InChI
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-4-22
– volume: 148
  start-page: 241709
  year: 2018
  ident: ref_170
  article-title: wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019667
– volume: 11
  start-page: 567
  year: 2019
  ident: ref_93
  article-title: Deep learning for molecular generation
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2018-0358
– volume: 9
  start-page: 2444
  year: 2018
  ident: ref_52
  article-title: Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04897-z
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_79
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 12
  start-page: 556
  year: 1970
  ident: ref_101
  article-title: The packing of polymer molecules
  publication-title: Polym. Sci. USSR
  doi: 10.1016/0032-3950(70)90345-X
– ident: ref_233
– volume: 38
  start-page: 218
  year: 2012
  ident: ref_97
  article-title: DFT study on the structure and explosive properties of nitropyrazoles
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2011.614242
– volume: 8
  start-page: 326
  year: 2014
  ident: ref_82
  article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.12
– ident: ref_20
– ident: ref_145
– ident: ref_162
– ident: ref_183
– ident: ref_76
– volume: 104
  start-page: 148
  year: 2015
  ident: ref_216
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 6
  start-page: 3
  year: 2014
  ident: ref_175
  article-title: Efficient ring perception for the Chemistry Development Kit
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-6-3
– volume: 341
  start-page: 1230444
  year: 2013
  ident: ref_12
  article-title: The chemistry and applications of metal-organic frameworks
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 559
  start-page: 547
  year: 2018
  ident: ref_57
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– ident: ref_239
  doi: 10.1007/3-540-45712-7_29
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_224
  article-title: A Bayesian machine learning approach for drug target identification using diverse data types
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12928-6
– volume: 83
  start-page: 273
  year: 2004
  ident: ref_6
  article-title: Organic photovoltaics: Technology and market
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.02.030
– volume: 139
  start-page: 071401
  year: 2017
  ident: ref_134
  article-title: Characterization and design of functional quasi-random nanostructured materials using spectral density function
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4036582
– ident: ref_238
– volume: 39
  start-page: D1035
  year: 2010
  ident: ref_197
  article-title: DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1126
– volume: 405
  start-page: 661
  year: 2000
  ident: ref_15
  article-title: Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes
  publication-title: Nature
  doi: 10.1038/35015037
– volume: 130
  start-page: 6867
  year: 2008
  ident: ref_72
  article-title: Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801047g
– ident: ref_189
– volume: 92010
  start-page: 1
  year: 2010
  ident: ref_65
  article-title: Energy information administration
  publication-title: Dep. Energy
– volume: 33
  start-page: 19
  year: 2019
  ident: ref_172
  article-title: Convolutional neural network scoring and minimization in the D3R 2017 community challenge
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/s10822-018-0133-y
– volume: 56
  start-page: 286
  year: 2016
  ident: ref_35
  article-title: Inverse QSPR/QSAR analysis for chemical structure generation (from y to x)
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00628
– volume: 21
  start-page: 785
  year: 2018
  ident: ref_44
  article-title: Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.11.021
– volume: 257
  start-page: 1078
  year: 1992
  ident: ref_19
  article-title: Structure-based strategies for drug design and discovery
  publication-title: Science
  doi: 10.1126/science.257.5073.1078
– volume: 54
  start-page: 3320
  year: 2014
  ident: ref_117
  article-title: How accurately can we predict the melting points of drug-like compounds?
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci5005288
– volume: 148
  start-page: 241712
  year: 2018
  ident: ref_102
  article-title: Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5007873
– volume: 131
  start-page: 8732
  year: 2009
  ident: ref_108
  article-title: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902302h
– volume: 8
  start-page: 10883
  year: 2017
  ident: ref_114
  article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14073
– volume: 22
  start-page: 263
  year: 2004
  ident: ref_33
  article-title: The signature molecular descriptor: 3. Inverse-quantitative structure–activity relationship of ICAM-1 inhibitory peptides
  publication-title: J. Mol. Graph. Modell.
  doi: 10.1016/j.jmgm.2003.10.002
– volume: 361
  start-page: 360
  year: 2018
  ident: ref_24
  article-title: Inverse molecular design using machine learning: Generative models for matter engineering
  publication-title: Science
  doi: 10.1126/science.aat2663
– volume: 6
  start-page: 20952
  year: 2016
  ident: ref_9
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 19
  start-page: 6682
  year: 2019
  ident: ref_13
  article-title: Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01050
– volume: 3
  start-page: 159
  year: 2017
  ident: ref_56
  article-title: Materials discovery and design using machine learning
  publication-title: J. Mater.
– volume: 56
  start-page: 1894
  year: 2016
  ident: ref_142
  article-title: ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00207
– volume: 1
  start-page: 1
  year: 2013
  ident: ref_86
  article-title: Rdkit documentation
  publication-title: Release
– ident: ref_39
– volume: 63
  start-page: 22
  year: 2018
  ident: ref_103
  article-title: Novel nanostructured thermal interface materials: A review
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2017.1301014
– volume: 39
  start-page: 2354
  year: 2010
  ident: ref_68
  article-title: Semiconducting polymers: The third generation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b914956m
– ident: ref_1
– volume: 9
  start-page: 203
  year: 2010
  ident: ref_26
  article-title: How to improve R&D productivity: The pharmaceutical industry’s grand challenge
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3078
– volume: 6
  start-page: 1078
  year: 2017
  ident: ref_42
  article-title: Polymer Informatics: Opportunities and Challenges
  publication-title: ACS Macro. Lett.
  doi: 10.1021/acsmacrolett.7b00228
– volume: 7
  start-page: 60
  year: 2015
  ident: ref_144
  article-title: ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-015-0109-z
– volume: 37
  start-page: 1038
  year: 2019
  ident: ref_203
  article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0224-x
– volume: 120
  start-page: 9911
  year: 2004
  ident: ref_77
  article-title: Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1724816
– volume: 3
  start-page: 5
  year: 2018
  ident: ref_156
  article-title: Accelerating the discovery of materials for clean energy in the era of smart automation
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0005-z
– volume: 58
  start-page: 224
  year: 1998
  ident: ref_131
  article-title: Reconstructing random media. II. Three-dimensional media from two-dimensional cuts
  publication-title: Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.58.224
– volume: 148
  start-page: 241735
  year: 2018
  ident: ref_89
  article-title: Machine learning-based screening of complex molecules for polymer solar cells
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5023563
– volume: 134
  start-page: 074106
  year: 2011
  ident: ref_169
  article-title: Atom-centered symmetry functions for constructing high-dimensional neural network potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553717
– ident: ref_45
– ident: ref_237
– volume: 9
  start-page: 1802820
  year: 2019
  ident: ref_141
  article-title: Design-to-Device Approach Affords Panchromatic Co-Sensitized Solar Cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802820
– volume: 31
  start-page: 379
  year: 2017
  ident: ref_111
  article-title: Bayesian molecular design with a chemical language model
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/s10822-016-0008-z
– ident: ref_187
– volume: 1
  start-page: 011002
  year: 2013
  ident: ref_49
  article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 57
  start-page: 942
  year: 2017
  ident: ref_171
  article-title: Protein–ligand scoring with convolutional neural networks
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00740
– volume: 192
  start-page: 707
  year: 2009
  ident: ref_137
  article-title: Kriging metamodeling in simulation: A review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.10.013
– volume: 26
  start-page: 594
  year: 2013
  ident: ref_2
  article-title: Roles of flexible chains in organic semiconducting materials
  publication-title: Chem. Mater.
  doi: 10.1021/cm4018776
– volume: 24
  start-page: 1
  year: 1998
  ident: ref_16
  article-title: Recent trends in high-energy materials
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(97)00015-4
– volume: 12
  start-page: 197
  year: 2013
  ident: ref_95
  article-title: Applications of energetic materials by a theoretical method (discover energetic materials by a theoretical method)
  publication-title: Int. J. Energ. Mater. Chem. Propul.
– volume: 43
  start-page: 493
  year: 2003
  ident: ref_173
  article-title: The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci025584y
– volume: 37
  start-page: W623
  year: 2009
  ident: ref_195
  article-title: PubChem: A public information system for analyzing bioactivities of small molecules
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp456
– ident: ref_209
  doi: 10.1007/978-3-540-28650-9_4
– ident: ref_232
  doi: 10.1080/00401706.2019.1638834
– volume: 6
  start-page: 19660
  year: 2016
  ident: ref_220
  article-title: Adaptive strategies for materials design using uncertainties
  publication-title: Sci. Rep.
  doi: 10.1038/srep19660
– ident: ref_67
– volume: 11
  start-page: 137
  year: 2016
  ident: ref_155
  article-title: An overview of molecular fingerprint similarity search in virtual screening
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1517/17460441.2016.1117070
– volume: 5
  start-page: 21
  year: 2019
  ident: ref_225
  article-title: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-019-0153-8
– volume: 3
  start-page: 54
  year: 2017
  ident: ref_58
  article-title: Machine learning in materials informatics: Recent applications and prospects
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-017-0056-5
– volume: 45
  start-page: 65
  year: 2013
  ident: ref_129
  article-title: Computational microstructure characterization and reconstruction for stochastic multiscale material design
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2012.03.007
– volume: 321
  start-page: 792
  year: 2008
  ident: ref_28
  article-title: Insights into current limitations of density functional theory
  publication-title: Science
  doi: 10.1126/science.1158722
– volume: 3
  start-page: 33
  year: 2011
  ident: ref_185
  article-title: Open Babel: An open chemical toolbox
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-3-33
– ident: ref_27
  doi: 10.1007/978-94-009-9027-2_2
– volume: 4
  start-page: eaap7885
  year: 2018
  ident: ref_116
  article-title: Deep reinforcement learning for de novo drug design
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap7885
– ident: ref_120
  doi: 10.1115/DETC2018-86154
– ident: ref_146
  doi: 10.1007/978-1-4020-9783-6
– volume: 108
  start-page: 058301
  year: 2012
  ident: ref_90
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 20
  start-page: 318
  year: 2015
  ident: ref_223
  article-title: Machine-learning approaches in drug discovery: Methods and applications
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.10.012
– volume: 19
  start-page: 8907
  year: 2009
  ident: ref_98
  article-title: High refractive index polymers: Fundamental research and practical applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/b909690f
– ident: ref_30
  doi: 10.1017/CBO9780511816581
– volume: 19
  start-page: 640
  year: 2017
  ident: ref_191
  article-title: Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs)
  publication-title: ACS Comb. Sci.
  doi: 10.1021/acscombsci.7b00056
– volume: 11
  start-page: 763
  year: 2004
  ident: ref_226
  article-title: Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2004.1349782
– volume: 23
  start-page: 51
  year: 2019
  ident: ref_206
  article-title: Advances of machine learning in molecular modeling and simulation
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2019.02.009
– volume: 13
  start-page: 1091
  year: 2018
  ident: ref_61
  article-title: An overview of neural networks for drug discovery and the inputs used
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1080/17460441.2018.1547278
– volume: 15
  start-page: 1120
  year: 2016
  ident: ref_83
  article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4717
– volume: 54
  start-page: 11793
  year: 1998
  ident: ref_47
  article-title: Synthesis of polyazapolycyclic caged polynitramines
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(98)83040-8
– volume: 50
  start-page: 742
  year: 2010
  ident: ref_88
  article-title: Extended-connectivity fingerprints
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci100050t
– volume: 4
  start-page: 268
  year: 2018
  ident: ref_54
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00572
– ident: ref_159
– ident: ref_235
  doi: 10.1109/ADPRL.2013.6615007
– volume: 4
  start-page: 69
  year: 2015
  ident: ref_139
  article-title: Sobol sensitivity analysis: A tool to guide the development and evaluation of systems pharmacology models
  publication-title: CPT: Pharmacomet. Syst. Pharmacol.
– ident: ref_167
  doi: 10.1103/PhysRevB.100.024112
– volume: 86
  start-page: 97
  year: 1964
  ident: ref_214
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume: 277
  start-page: 1237
  year: 1997
  ident: ref_123
  article-title: Computational design of hierarchically structured materials
  publication-title: Science
  doi: 10.1126/science.277.5330.1237
– ident: ref_147
  doi: 10.1002/9783527645121
– ident: ref_180
– ident: ref_213
– volume: 115
  start-page: 1094
  year: 2015
  ident: ref_163
  article-title: Crystal structure representations for machine learning models of formation energies
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24917
– volume: 85
  start-page: 206
  year: 2014
  ident: ref_132
  article-title: Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.12.046
– volume: 10
  start-page: 31
  year: 2018
  ident: ref_113
  article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-018-0286-7
– volume: 293
  start-page: 1119
  year: 2001
  ident: ref_5
  article-title: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics
  publication-title: Science
  doi: 10.1126/science.293.5532.1119
– volume: 4
  start-page: 120
  year: 2017
  ident: ref_112
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00512
– volume: 7
  start-page: 11241
  year: 2016
  ident: ref_219
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– ident: ref_202
– volume: 42
  start-page: 693
  year: 2002
  ident: ref_150
  article-title: Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci0155053
– volume: 1
  start-page: 1288
  year: 2010
  ident: ref_66
  article-title: Third-generation photovoltaic technology- the potential for low-cost solar energy conversion
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100290q
– volume: 136
  start-page: 051007
  year: 2014
  ident: ref_130
  article-title: A descriptor-based design methodology for developing heterogeneous microstructural materials system
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4026649
– volume: 9
  start-page: 33
  year: 2017
  ident: ref_176
  article-title: The Chemistry Development Kit (CDK) v2. 0: Atom typing, depiction, molecular formulas, and substructure searching
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-017-0220-4
– volume: 134
  start-page: 277
  year: 2002
  ident: ref_55
  article-title: Games solved: Now and in the future
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(01)00152-7
– volume: 37
  start-page: 1700111
  year: 2018
  ident: ref_199
  article-title: Generative recurrent networks for de novo drug design
  publication-title: Mol. Inf.
  doi: 10.1002/minf.201700111
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_212
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 55
  start-page: B62
  year: 2002
  ident: ref_228
  article-title: Random heterogeneous materials: Microstructure and macroscopic properties
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1483342
– volume: 119
  start-page: 10520
  year: 2019
  ident: ref_21
  article-title: Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00728
– volume: 1
  start-page: 4
  year: 2009
  ident: ref_34
  article-title: A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-1-4
– ident: ref_208
  doi: 10.1115/DETC2019-98222
– ident: ref_64
  doi: 10.1557/mrc.2019.54
– volume: 56
  start-page: 8191
  year: 2017
  ident: ref_96
  article-title: Sensitivity of energetic materials: Theoretical relationships to detonation performance and molecular structure
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02021
– volume: 19
  start-page: 3387
  year: 2019
  ident: ref_105
  article-title: Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05196
– ident: ref_240
– volume: 122
  start-page: 17575
  year: 2018
  ident: ref_43
  article-title: Polymer genome: A data-powered polymer informatics platform for property predictions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02913
– volume: 114
  start-page: 8734
  year: 2017
  ident: ref_118
  article-title: Concurrent design of quasi-random photonic nanostructures
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1704711114
– volume: 29
  start-page: 186
  year: 2016
  ident: ref_190
  article-title: Machine learning in materials science: Recent progress and emerging applications
  publication-title: Rev. Comput. Chem.
– volume: 4
  start-page: 83
  year: 2012
  ident: ref_192
  article-title: Large-scale screening of hypothetical metal–organic frameworks
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1192
– volume: 11
  start-page: 17056
  year: 2019
  ident: ref_122
  article-title: Solution Processing Dependent Bulk Heterojunction Nanomorphology of P3HT/PCBM Thin Films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02719
– volume: 92
  start-page: 014106
  year: 2015
  ident: ref_143
  article-title: Accelerated materials property predictions and design using motif-based fingerprints
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.92.014106
– volume: 4
  start-page: 828
  year: 2019
  ident: ref_60
  article-title: Deep learning for molecular design-a review of the state of the art
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00039A
– volume: 4
  start-page: 4849
  year: 2011
  ident: ref_70
  article-title: Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02056k
– ident: ref_201
– ident: ref_207
  doi: 10.1038/s41598-020-60652-9
– volume: 36
  start-page: 4439
  year: 1995
  ident: ref_109
  article-title: Study of change in thermal diffusivity of amorphous polymers during glass transition
  publication-title: Polymer
  doi: 10.1016/0032-3861(95)96850-8
– ident: ref_121
  doi: 10.1002/polb.24854
– volume: 247
  start-page: 106949
  year: 2020
  ident: ref_164
  article-title: DScribe: Library of descriptors for machine learning in materials science
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.106949
– volume: 23
  start-page: 1241
  year: 2018
  ident: ref_62
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 37
  start-page: 715
  year: 2012
  ident: ref_48
  article-title: The materials genome initiative: One year on
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.194
– volume: 4
  start-page: 053208
  year: 2016
  ident: ref_37
  article-title: Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science
  publication-title: APL Mater.
  doi: 10.1063/1.4946894
– volume: 12
  start-page: 2111
  year: 2006
  ident: ref_174
  article-title: Recent developments of the chemistry development kit (CDK)-an open-source java library for chemo-and bioinformatics
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161206777585274
– volume: 16
  start-page: 3774
  year: 2016
  ident: ref_136
  article-title: Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01169
– volume: 24
  start-page: 3776
  year: 2017
  ident: ref_231
  article-title: Dielectric spectroscopy analysis using viscoelasticity-inspired relaxation theory with finite element modeling
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2017.006563
– volume: 123
  start-page: 14610
  year: 2019
  ident: ref_100
  article-title: Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01147
– ident: ref_153
– volume: 18
  start-page: 13754
  year: 2016
  ident: ref_166
  article-title: Comparing molecules and solids across structural and alchemical space
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00415F
– volume: 13
  start-page: 455
  year: 1998
  ident: ref_204
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 3
  start-page: 2810
  year: 2013
  ident: ref_78
  article-title: Accelerating materials property predictions using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/srep02810
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_36
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref_29
– ident: ref_229
– volume: 47
  start-page: 342
  year: 2007
  ident: ref_193
  article-title: Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: Assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci600423u
– volume: 4
  start-page: 308
  year: 2001
  ident: ref_84
  article-title: Cheminformatics: A tool for decision-makers in drug discovery
  publication-title: Curr. Opin. Drug Discov. Dev.
– volume: 2
  start-page: 120301
  year: 2018
  ident: ref_53
  article-title: Machine learning in materials design and discovery: Examples from the present and suggestions for the future
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.120301
– volume: 48
  start-page: 12581
  year: 1993
  ident: ref_110
  article-title: Thermal conductivity of disordered harmonic solids
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.48.12581
– volume: 23
  start-page: 1
  year: 2001
  ident: ref_138
  article-title: Comparative studies of metamodelling techniques under multiple modelling criteria
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-001-0160-4
– volume: 41
  start-page: 452
  year: 2016
  ident: ref_46
  article-title: A comparison of the structure, synthesis, and properties of insensitive energetic compounds
  publication-title: Propellants Explos. Pyrotech.
  doi: 10.1002/prep.201600032
– volume: 3
  start-page: 119
  year: 2019
  ident: ref_140
  article-title: How to explore chemical space using algorithms and automation
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0066-y
– volume: 48
  start-page: 1
  year: 2000
  ident: ref_124
  article-title: Nanostructured materials: Basic concepts and microstructure
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00285-2
– volume: 28
  start-page: 31
  year: 1988
  ident: ref_87
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
– volume: 11
  start-page: 24825
  year: 2019
  ident: ref_63
  article-title: Autonomous molecular design: Then and now
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01226
– volume: 6
  start-page: 2326
  year: 2015
  ident: ref_92
  article-title: Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00831
– volume: 57
  start-page: 4977
  year: 2014
  ident: ref_32
  article-title: QSAR modeling: Where have you been? Where are you going to?
  publication-title: J. Med. Chem.
  doi: 10.1021/jm4004285
– volume: 39
  start-page: W486
  year: 2011
  ident: ref_178
  article-title: ChemMine tools: An online service for analyzing and clustering small molecules
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr320
SSID ssj0000456617
Score 2.5688987
SecondaryResourceType review_article
Snippet Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 163
SubjectTerms Artificial intelligence
Biomedical materials
Case studies
Design
Genomes
Informatics
Machine learning
Machining
Market entry
Material properties
Materials science
Methods
Molecular structure
Organic chemistry
Polymers
Review
Source code
Title Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
URI https://www.ncbi.nlm.nih.gov/pubmed/31936321
https://www.proquest.com/docview/2550252698
https://www.proquest.com/docview/2338988556
https://pubmed.ncbi.nlm.nih.gov/PMC7023065
Volume 12
WOSCitedRecordID wos000519848300163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KB.
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLRJc-IYNLJWRECdCGydObC6ILbsCoZYIgVROUew47Eq7Sdm0K_HvmUmcQEFw4hRFHikfY4_f2OP3AJ4KHeRaGIPILS-JVLvwEeUXfjjTNhBG2UAVrdhEslzK1Uql7nh048oq-5jYBuqO7ZnqtjEIT4va0Ir5FIEwTtY8VvLV-ptPGlK01-oENfZgTMRbsxGM03eL9Muw5kLwBWfsjmozxGx_uq7Pvp8HvCVaC3enpj_w5u9lk7_MQ8c3_-8X3IIbDo-y110Hug1XbHUHrs17Gbi7cLJoyy2t75hYv_roUeobBXtj2bK-rPFKVSCsLll3stOwRSe6axuWVwVL6fMRZr5kH9YE97dVS-Pats17MZfmHnw-Pvo0f-s7eQbfRDLY-Oj7CANCrIsEQaSdxXnEjZBSG8zCBM9J20rGpTKqDEqjhDI2t0ImScFLjrgvvA-jqq7sPrBEK1tGuiy4ziNM6aRGG2sw9-SE-IwHz3vPZMZxl5OExlmGOQw5MttxpAfPBvN1R9rxN8OD3lWZG7tN9tMzHjwZmvGv01ZKXtl6izaY2SsphYg9eND1iuFJGNTCOOSBB8lOfxkMiNF7t6U6PWmZvZM2IxQP__1aj-A6p6yfFoLkAYw2F1v7GK6ay81pczGBvWQlJzA-PFqmH_Hu_eGLiRsIPwAy_RpJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU6Sy4f0IFDASsCLqxIkTGwkhNKXqqJ1hFkUqqzR-hFYqydDMFPWn-EbuzQsGBLsuWGXhq8Rxju1zbeccgOdCB5kWxiBzy3IS1bY-snzrh0PtAmGUC5StzSaS6VQeHqrZGnzv_oWhY5XdmFgP1LY0tEa-hdQXp2ceK_l2_tUn1yjaXe0sNBpY7LmLb5iyVW_G2_h9X3C-8_5gtOu3rgK-iWSw8LHKEeI41jZB7uOGcRZxI6TUBpMHwTOyZJJxrozKg9wooYzLnJBJYnnOka6EeN8rsB4h2IcDWJ-NJ7NP_aoOESTkBI2YZxiq4da8PL34EvBayi1cnfz-YLS_H8z8ZabbufG_tdFNuN5yavau6QS3YM0Vt2Fj1FnZ3YHjSX1k1PmtmuxnH1FJ-LZs27FpeV7ilU6ysDJnzd-phk0a42BXsaywbEYNjFT5Nfswp5RlWdRStHXZqDOkqe7Cx0t50XswKMrCPQCWaOXySOeW6yzCtFRqjHEG82dOrNV48Kr79qlp9dfJBuQ0xTyMoJKuQMWDl334vBEe-VvgZgeGtB1_qvQnEjx41hdjq9N2UFa4cokxIZJVKYWIPbjf4K5_Eg7MYRzywINkBZF9AKmSr5YUJ8e1OnlSZ7Xi4b-r9RQ2dg8m--n-eLr3CK5xWsWghS25CYPF2dI9hqvmfHFSnT1puxiDo8tG7A8SoGdl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUwRsyqtASgEjASuimdhxYiMhBDMdUZWGEQKpuzTxg1YqydDMFPXX-Dqu84IBwa4LVln4Kg_nxD7XvjkH4AnPgyznSiFzy6wT1dY-snzts1FuAq6kCaSuzSbiJBEHB3K2Bt-7f2FcWWU3JtYDtS6VWyMfIvXF6ZlGUgxtWxYxm0xfzb_6zkHK7bR2dhoNRPbM-TdM36qXuxN8108pne58HL_1W4cBX4UiWPh4-yFiOsp1jDzIjKIspIoLkStMJDjNnD2TiKxU0gZWSS6VyQwXcayppUhdGJ73EqzHDJOeAay_2UlmH_oVHkeWkB80wp6MydFwXp6cfwloLevGVifCP9jt70Wav8x60-v_c3_dgI2Wa5PXzcdxE9ZMcQuujjuLu9twtF-Xkhq_VZn97CNaHe41mRiSlGclHl2FCyktaf5aVWS_MRQ2FckKTWaus5FCvyDv5y6VWRa1RG3dNu6MaqpN-HQhD3oHBkVZmHtA4lwaG-ZW0zwLMV0VOcYYhXk1dWxWefC8w0GqWl12Zw9ykmJ-5mCTrsDGg2d9-LwRJPlb4HYHjLQdl6r0Jyo8eNw3Y6-7baKsMOUSYxiSWCE4jzy422CwvxIO2CxiNPAgXkFnH-DUyldbiuOjWrU8rrNdvvXv23oEVxCm6bvdZO8-XKNuccOtd4ltGCxOl-YBXFZni-Pq9GH7tRE4vGjA_gCvbG__
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning-Assisted+De+Novo+Design+of+Organic+Molecules+and+Polymers%3A+Opportunities+and+Challenges&rft.jtitle=Polymers&rft.au=Chen%2C+Guang&rft.au=Shen%2C+Zhiqiang&rft.au=Iyer%2C+Akshay&rft.au=Ghumman%2C+Umar+Farooq&rft.date=2020-01-08&rft.eissn=2073-4360&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fpolym12010163&rft_id=info%3Apmid%2F31936321&rft.externalDocID=31936321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon