Drone Detection and Tracking in Real-Time by Fusion of Different Sensing Modalities
Automatic detection of flying drones is a key issue where its presence, especially if unauthorized, can create risky situations or compromise security. Here, we design and evaluate a multi-sensor drone detection system. In conjunction with standard video cameras and microphone sensors, we explore th...
Uloženo v:
| Vydáno v: | Drones (Basel) Ročník 6; číslo 11; s. 317 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
2022
|
| Témata: | |
| ISSN: | 2504-446X, 2504-446X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automatic detection of flying drones is a key issue where its presence, especially if unauthorized, can create risky situations or compromise security. Here, we design and evaluate a multi-sensor drone detection system. In conjunction with standard video cameras and microphone sensors, we explore the use of thermal infrared cameras, pointed out as a feasible and promising solution that is scarcely addressed in the related literature. Our solution integrates a fish-eye camera as well to monitor a wider part of the sky and steer the other cameras towards objects of interest. The sensing solutions are complemented with an ADS-B receiver, a GPS receiver, and a radar module. However, our final deployment has not included the latter due to its limited detection range. The thermal camera is shown to be a feasible solution as good as the video camera, even if the camera employed here has a lower resolution. Two other novelties of our work are the creation of a new public dataset of multi-sensor annotated data that expands the number of classes compared to existing ones, as well as the study of the detector performance as a function of the sensor-to-target distance. Sensor fusion is also explored, showing that the system can be made more robust in this way, mitigating false detections of the individual sensors. |
|---|---|
| AbstractList | Automatic detection of flying drones is a key issue where its presence, especially if unauthorized, can create risky situations or compromise security. Here, we design and evaluate a multi-sensor drone detection system. In conjunction with standard video cameras and microphone sensors, we explore the use of thermal infrared cameras, pointed out as a feasible and promising solution that is scarcely addressed in the related literature. Our solution integrates a fish-eye camera as well to monitor a wider part of the sky and steer the other cameras towards objects of interest. The sensing solutions are complemented with an ADS-B receiver, a GPS receiver, and a radar module. However, our final deployment has not included the latter due to its limited detection range. The thermal camera is shown to be a feasible solution as good as the video camera, even if the camera employed here has a lower resolution. Two other novelties of our work are the creation of a new public dataset of multi-sensor annotated data that expands the number of classes compared to existing ones, as well as the study of the detector performance as a function of the sensor-to-target distance. Sensor fusion is also explored, showing that the system can be made more robust in this way, mitigating false detections of the individual sensors. Automatic detection of flying drones is a key issue where its presence, especially if unauthorized, can create risky situations or compromise security. Here, we design and evaluate a multi-sensor drone detection system. In conjunction with standard video cameras and microphone sensors, we explore the use of thermal infrared cameras, pointed out as a feasible and promising solution that is scarcely addressed in the related literature. Our solution integrates a fish-eye camera as well to monitor a wider part of the sky and steer the other cameras towards objects of interest. The sensing solutions are complemented with an ADS-B receiver, a GPS receiver, and a radar module. However, our final deployment has not included the latter due to its limited detection range. The thermal camera is shown to be a feasible solution as good as the video camera, even if the camera employed here has a lower resolution. Two other novelties of our work are the creation of a new public dataset of multi-sensor annotated data that expands the number of classes compared to existing ones, as well as the study of the detector performance as a function of the sensor-to-target distance. Sensor fusion is also explored, showing that the system can be made more robust in this way, mitigating false detections of the individual sensors. © 2022 by the authors. |
| Audience | Academic |
| Author | Alonso-Fernandez, Fernando Svanström, Fredrik Englund, Cristofer |
| Author_xml | – sequence: 1 givenname: Fredrik surname: Svanström fullname: Svanström, Fredrik – sequence: 2 givenname: Fernando orcidid: 0000-0002-1400-346X surname: Alonso-Fernandez fullname: Alonso-Fernandez, Fernando – sequence: 3 givenname: Cristofer surname: Englund fullname: Englund, Cristofer |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48786$$DView record from Swedish Publication Index (Högskolan i Halmstad) https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-61199$$DView record from Swedish Publication Index |
| BookMark | eNqNkt9rFDEQx4NUsNY--r7go2xNNtlN8nj0rBYqgj3FtzCbH9ece8mZ5JD-92a7ClZ8kBAyGT7fL8PMPEcnIQaL0EuCLyiV-I1J9Z8HQjAl_Ak67XrMWsaGryd_xM_Qec47jHHXsX6Q5BTdrmdds7bF6uJjaCCYZpNAf_Nh2_jQfLIwtRu_t81431wd88xE16y9czbZUJpbG_LMfogGJl-8zS_QUwdTtue_3jP0-ert5vJ9e_Px3fXl6qbVTJDSaioHh4kEQw0zIwfdM947PnIuet1Ja0CTYeBCOuqqYpScA8OjFvUSLekZul58TYSdOiS_h3SvInj1kIhpqyAVryerWE-JNga4lph1DkZJOSMG2Ngz4WD2er145R_2cBwfua39l9WDW_KqNlj-J313p5jgYqj0q4U-pPj9aHNRu3hMobZGdZyyoauWvFIXC7WFWrAPLpY6hnqM3Xtdh-R8za84Y0wISboqoItAp5hzsk5pX2AeYhX6SRGs5s1Qjzajqtq_VL-L_zf_E9cnvQk |
| CitedBy_id | crossref_primary_10_3390_drones8090518 crossref_primary_10_3390_math13111825 crossref_primary_10_1007_s00138_025_01708_6 crossref_primary_10_1109_ACCESS_2025_3596857 crossref_primary_10_1016_j_measurement_2024_114883 crossref_primary_10_3390_drones8110650 crossref_primary_10_1016_j_eswa_2024_124626 crossref_primary_10_3390_drones7050296 crossref_primary_10_3390_drones9040251 crossref_primary_10_3390_s25133838 crossref_primary_10_1016_j_ast_2024_108946 crossref_primary_10_1016_j_cose_2025_104676 crossref_primary_10_3390_s23177650 crossref_primary_10_3390_drones9020149 crossref_primary_10_1007_s00521_025_11060_5 crossref_primary_10_3390_rs16244775 crossref_primary_10_3390_drones7050316 crossref_primary_10_1371_journal_pone_0330074 crossref_primary_10_1016_j_softx_2025_102201 crossref_primary_10_3390_acoustics7030048 crossref_primary_10_1016_j_phycom_2025_102676 crossref_primary_10_26906_SUNZ_2025_2_013 crossref_primary_10_3390_drones7060389 crossref_primary_10_3390_app132011320 crossref_primary_10_3788_AOS251247 crossref_primary_10_1016_j_neucom_2025_129823 crossref_primary_10_1016_j_atech_2025_101100 |
| Cites_doi | 10.1109/ICSEC.2018.8712755 10.3390/s18092776 10.1007/978-3-030-34995-0 10.1145/3243250.3243272 10.1088/1757-899X/322/5/052005 10.1109/MCOM.2018.1700455 10.1109/SAS.2017.7894058 10.1109/OJCOMS.2019.2955889 10.1109/MCOM.2018.1700430 10.1016/j.inffus.2017.12.003 10.1109/JSEN.2022.3171293 10.1109/RADAR.2017.7944346 10.1038/s41598-018-35880-9 10.1049/iet-rsn.2018.0020 10.1109/ACCESS.2019.2942944 10.1109/BigMM.2017.57 10.2352/ISSN.2470-1173.2017.10.IMAWM-168 10.1016/j.trpro.2017.12.184 10.23919/EuRAD.2018.8546569 10.1109/ICPR48806.2021.9413241 10.1186/s41074-019-0059-x 10.1109/ICSENS.2015.7370533 10.3390/drones6060147 10.1109/CVPR.2017.690 10.1016/j.dib.2021.107521 10.1109/IRS.2016.7497351 10.1162/neco.1997.9.8.1735 10.23919/IRS.2017.8008142 10.23919/ICCAS.2017.8204318 10.1017/ATSIP.2018.30 10.3390/s19224837 10.1109/OJSP.2020.3036276 10.1109/TVT.2019.2893615 10.2528/PIERM19020505 10.3390/s18113825 10.1186/s13049-019-0622-6 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAXBQ ADTPV AOWAS D8T D8Z ZZAVC DOA |
| DOI | 10.3390/drones6110317 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China SWEPUB Högskolan i Halmstad full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Högskolan i Halmstad SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_4531cdda7c9042fab93741da4b548fa9 oai_DiVA_org_ri_61199 oai_DiVA_org_hh_48786 A744488912 10_3390_drones6110317 |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC COVID DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS AAXBQ ADTPV AOWAS D8T D8Z ZZAVC |
| ID | FETCH-LOGICAL-c481t-c396f019ad3d4db7ac5475f7b7785c29edac166789f3f481b977a40bc80bc1c93 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881010600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-446X |
| IngestDate | Tue Oct 14 19:09:06 EDT 2025 Tue Nov 04 16:09:11 EST 2025 Tue Nov 04 16:10:03 EST 2025 Sun Nov 09 08:10:32 EST 2025 Tue Nov 04 18:34:05 EST 2025 Sat Nov 29 07:16:48 EST 2025 Tue Nov 18 21:30:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-c396f019ad3d4db7ac5475f7b7785c29edac166789f3f481b977a40bc80bc1c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1400-346X |
| OpenAccessLink | https://www.proquest.com/docview/2734621997?pq-origsite=%requestingapplication% |
| PQID | 2734621997 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4531cdda7c9042fab93741da4b548fa9 swepub_primary_oai_DiVA_org_ri_61199 swepub_primary_oai_DiVA_org_hh_48786 proquest_journals_2734621997 gale_infotracacademiconefile_A744488912 crossref_citationtrail_10_3390_drones6110317 crossref_primary_10_3390_drones6110317 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 ref_58 ref_13 ref_57 ref_12 ref_11 ref_54 ref_53 ref_52 ref_51 ref_19 ref_18 Hochreiter (ref_31) 1997; 9 ref_15 ref_59 Patel (ref_33) 2018; 12 Bernardini (ref_30) 2017; 2017 ref_60 Khan (ref_63) 2022; 22 Carapezza (ref_32) 2015; Volume 9647 ref_25 Fierrez (ref_61) 2018; 44 ref_24 ref_23 ref_20 ref_64 Yin (ref_62) 2020; 1 ref_29 ref_28 ref_26 Taha (ref_5) 2019; 7 Gong (ref_35) 2019; 81 ref_36 ref_34 Liu (ref_21) 2018; 322 Pham (ref_14) 2013; Volume 8742 ref_38 ref_37 Unlu (ref_22) 2019; 11 Shi (ref_10) 2018; 56 Ezuma (ref_42) 2020; 1 Englund (ref_56) 2021; 39 ref_47 ref_46 ref_45 ref_44 Guvenc (ref_7) 2018; 56 ref_43 ref_41 ref_40 ref_1 Wang (ref_17) 2019; 8 ref_3 ref_2 Anwar (ref_27) 2019; 68 Rahman (ref_39) 2018; 8 Sanfridsson (ref_55) 2019; 27 ref_49 ref_48 ref_9 ref_8 (ref_16) 2017; 28 ref_4 ref_6 |
| References_xml | – ident: ref_25 doi: 10.1109/ICSEC.2018.8712755 – ident: ref_51 – ident: ref_49 doi: 10.3390/s18092776 – ident: ref_9 doi: 10.1007/978-3-030-34995-0 – ident: ref_41 doi: 10.1145/3243250.3243272 – volume: 322 start-page: 052005 year: 2018 ident: ref_21 article-title: A drone detection with aircraft classification based on a camera array publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/322/5/052005 – ident: ref_23 – ident: ref_58 – volume: 56 start-page: 75 year: 2018 ident: ref_7 article-title: Detection, Tracking, and Interdiction for Amateur Drones publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1700455 – ident: ref_24 doi: 10.1109/SAS.2017.7894058 – volume: 1 start-page: 60 year: 2020 ident: ref_42 article-title: Detection and Classification of UAVs Using RF Fingerprints in the Presence of Wi-Fi and Bluetooth Interference publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2019.2955889 – volume: 56 start-page: 68 year: 2018 ident: ref_10 article-title: Anti-Drone System with Multiple Surveillance Technologies: Architecture, Implementation, and Challenges publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1700430 – ident: ref_4 – volume: 44 start-page: 57 year: 2018 ident: ref_61 article-title: Multiple classifiers in biometrics. part 1: Fundamentals and review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.12.003 – ident: ref_52 – volume: 22 start-page: 11439 year: 2022 ident: ref_63 article-title: On the Detection of Unauthorized Drones—Techniques and Future Perspectives: A Review publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2022.3171293 – ident: ref_48 – ident: ref_34 doi: 10.1109/RADAR.2017.7944346 – volume: 8 start-page: 17396 year: 2018 ident: ref_39 article-title: Radar micro-Doppler signatures of drones and birds at K-band and W-band publication-title: Sci. Rep. doi: 10.1038/s41598-018-35880-9 – volume: 12 start-page: 911 year: 2018 ident: ref_33 article-title: Review of radar classification and RCS characterisation techniques for small UAVs or drones publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2018.0020 – volume: 7 start-page: 138669 year: 2019 ident: ref_5 article-title: Machine Learning-Based Drone Detection and Classification: State-of-the-Art in Research publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942944 – ident: ref_45 – ident: ref_28 doi: 10.1109/BigMM.2017.57 – volume: 2017 start-page: 60 year: 2017 ident: ref_30 article-title: Drone detection by acoustic signature identification publication-title: Electron. Imaging doi: 10.2352/ISSN.2470-1173.2017.10.IMAWM-168 – volume: 28 start-page: 183 year: 2017 ident: ref_16 article-title: Night-time Detection of UAVs using Thermal Infrared Camera publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2017.12.184 – ident: ref_37 doi: 10.23919/EuRAD.2018.8546569 – ident: ref_59 – ident: ref_53 – ident: ref_3 – ident: ref_13 doi: 10.1109/ICPR48806.2021.9413241 – ident: ref_47 – ident: ref_11 – volume: 11 start-page: 7 year: 2019 ident: ref_22 article-title: Deep learning-based strategies for the detection and tracking of drones using several cameras publication-title: IPSJ Trans. Comput. Vis. Appl. doi: 10.1186/s41074-019-0059-x – ident: ref_26 doi: 10.1109/ICSENS.2015.7370533 – ident: ref_40 – ident: ref_1 doi: 10.3390/drones6060147 – ident: ref_20 doi: 10.1109/CVPR.2017.690 – ident: ref_18 – volume: Volume 9647 start-page: 53 year: 2015 ident: ref_32 article-title: Detection and tracking of drones using advanced acoustic cameras publication-title: Proceedings of the Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications – ident: ref_44 – volume: 39 start-page: 107521 year: 2021 ident: ref_56 article-title: A dataset for multi-sensor drone detection publication-title: Data Brief doi: 10.1016/j.dib.2021.107521 – ident: ref_38 doi: 10.1109/IRS.2016.7497351 – volume: Volume 8742 start-page: 293 year: 2013 ident: ref_14 article-title: A collaborative smartphone sensing platform for detecting and tracking hostile drones publication-title: Proceedings of the Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IV – ident: ref_6 – volume: 9 start-page: 1735 year: 1997 ident: ref_31 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_50 – ident: ref_29 – ident: ref_54 – ident: ref_36 doi: 10.23919/IRS.2017.8008142 – ident: ref_2 – ident: ref_19 doi: 10.23919/ICCAS.2017.8204318 – ident: ref_46 – ident: ref_12 – volume: 8 start-page: e5 year: 2019 ident: ref_17 article-title: Towards Visible and Thermal Drone Monitoring with Convolutional Neural Networks publication-title: APSIPA Trans. Signal Inf. Process. doi: 10.1017/ATSIP.2018.30 – ident: ref_15 – ident: ref_64 – ident: ref_8 doi: 10.3390/s19224837 – volume: 1 start-page: 187 year: 2020 ident: ref_62 article-title: FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing publication-title: IEEE Open J. Signal Process. doi: 10.1109/OJSP.2020.3036276 – ident: ref_60 – ident: ref_57 – volume: 68 start-page: 2526 year: 2019 ident: ref_27 article-title: Machine Learning Inspired Sound-Based Amateur Drone Detection for Public Safety Applications publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2893615 – volume: 81 start-page: 1 year: 2019 ident: ref_35 article-title: Interference of Radar Detection of Drones by Birds publication-title: Prog. Electromagn. Res. M doi: 10.2528/PIERM19020505 – ident: ref_43 doi: 10.3390/s18113825 – volume: 27 start-page: 40 year: 2019 ident: ref_55 article-title: Drone Delivery of An Automated External Defibrillator—A Mixed Method Simulation Study Of Bystander Experience publication-title: Scand J. Trauma Resusc. Emerg. Med. doi: 10.1186/s13049-019-0622-6 |
| SSID | ssj0002245691 |
| Score | 2.4174683 |
| Snippet | Automatic detection of flying drones is a key issue where its presence, especially if unauthorized, can create risky situations or compromise security. Here,... |
| SourceID | doaj swepub proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 317 |
| SubjectTerms | Aircraft Airports anti-drone systems Cameras Classification Datasets Drone aircraft drone detection Drones Infrared cameras Machine learning Methods Object recognition Radar systems Sensors Software Tracking systems UAV detection Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIomJ9kYPoxWLTZpPmuLouXlzEF95CHg2uSJW1Cv57Z9KuuIp48dBLmbbTmaTzTTr5hpA9ZgWgbsHTzHlIUKpMplZalnqYXdZ6XmTKxmYTcjQq7-7UxZdWX1gT1tIDt4Y74jBInPdGOgXjKxgL8ZQzb7gFrB1M3LqXSfUlmXqIpC4ADBRrSTULyOuP_AS57wXDtgZyJghFrv6fX-Rv3KEx3gyXyVIHFGm_VXCFzFX1Krka4P3poGpiBVVNTe0phBuHC950XNNLwH0pbuug9p0OX3EpjD4FOujaoDT0CgvWQfb8ySMChzx5jdwMT69PztKuLULqeMma1BVKBEBmxheeeyuN63HZC9JKWfZcripvHBMQhFQoAlxhAeIZnllXwsGcKtbJfA3KbhCaeVWEMucCf5BW0prgMWHyPcEBKRqekMOpnbTrOMOxdcWjhtwBzapnzJqQ_U_x55Ys4zfBYzT6pxByXMcT4HndeV7_5fmEHKDLNM5EUMqZbkMBPAc5rXRfcsg9S8XyhGxPvaq7KfqikddH5Fhnk5C91tMz-gzGt_2oz_29hqyuFH-ITcYa3k6pzf94ty2ymOM-i7jWs03mm8lrtUMW3FszfpnsxrH-ASmGBNg priority: 102 providerName: Directory of Open Access Journals |
| Title | Drone Detection and Tracking in Real-Time by Fusion of Different Sensing Modalities |
| URI | https://www.proquest.com/docview/2734621997 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48786 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-61199 https://doaj.org/article/4531cdda7c9042fab93741da4b548fa9 |
| Volume | 6 |
| WOSCitedRecordID | wos000881010600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cClBQEiUFY-VHAhah6OHZ-qLbsrOOwqagEVLpYfSbsSyrbZFKmX_nZmvN5FCwIOHJJDMlEmGc94Zjz-hpDD1HDwujmLE-sgQKkTERth0tiBdhnjWJ5I45tNiNmsPD-XVUi4LUNZ5domekPtFhZz5EcIw8IzLIs4vrqOsWsUrq6GFhr3yS6iJGDrhqr4usmxZLiqJ9MVtGYO0f2R6xABn6fY3EBsTUUesf93u_wLgqifdSb7_8vvI7IX_E06XA2Qx-Re3T4hZyNkkI7q3hditVS3jsKsZTFvTuctPQX3McbdIdTc0skNZtTooqGj0E2lp2dY9w6004VDRx7C7afk02T88d37OHRXiC0r0z62ueQNOHja5Y45I7QtmCgaYYQoC5vJ2mmbcpjLZJM38IQBT1GzxNgSjtTK_BnZaYHZ54QmTuZNmTGO66y1MLpxGHe5gjNwODWLyNv1j1Y2QI9jB4xvCkIQlIvakktEXm_Ir1aYG38iPEGpbYgQKttfWHQXKmieYmBlrHNaWAkGqtEGHDKWOs0MBGuNlhF5gzJXqNDAlNVhXwK8B6Gx1FAwCGFLmWYROViLWgVNX6qfco7I4WqobPEzmn8een4uLxUEhyX_B1k3V_B1Ur74-8tekocZbsTwyaADstN3N_Ur8sB-7-fLbkB2T8az6nTgMwxwnt6NB1414E71YVp9-QEqxRgU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyS48BAgAgV8KHAhah7eOD4gtBBWXbW7WtGCysn4kdCVULZkU1D_FL-RmTwWLQg49cAhl2giO_bnzzN-fAOwG5oEve6E-4F1GKDkgfCNMKHvcHQZ43gcSNMkmxCzWXpyIudb8L2_C0PHKntObIjaLS2tke-RDEsS0bGIl2dffMoaRburfQqNFhYH-cU3DNlWLyYZ9u-TKBq_OX6973dZBXzL07D2bSyTAh0b7WLHnRHaDrkYFsIIkQ5tJHOnbZggh8siLvALgx6S5oGxKT6hJfElpPxtTmAfwPZ8Mp1_WK_qRLSPKMNWzDOOZbDnKtLcT0JKpyA2Jr8mR8DvM8EvmqXNPDe-8b-10E243nnUbNQOgVuwlZe34SijBmFZXjdHzUqmS8dwXra0M8AWJXuLDrJP91-YuWDjc1ozZMuCZV2-mJod0cl-tJ0uHYUqi3x1B95dyn_chUGJlb0HLHAyLtKIJ7STnAujC0eRpRsmHF1qzT143nessp24OuX4-KwwyCIcqA0cePB0bX7Wqor8yfAVoWRtRGLgzYtl9Ul13KI48qh1TgsrkYILbdDl5KHT3GA4WmjpwTPCmCLKwkpZ3d28wHJI_EuNBMcgPZVh5MFODy3VcdlK_cSVB7stNDfqky3ej5r6nJ4qDH_T5B9m1ULh30l5_--FPYar-8fTQ3U4mR08gGsRXTtplr52YFBX5_lDuGK_1otV9agbhAw-XjaqfwCP-HGK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqghAXHgJEoIAPBS5Em4djxweEFsKKqrBaUUAVF9ePmEZC2ZJNQf1r_Dpm8li0IODUA4dcooniOJ_H89njbwjZjQ2HqJuzMLIOCEoZidAIE4cORpcxjqWRNF2xCTGf54eHcrFFvo9nYTCtcvSJnaN2S4tr5BOUYeEJpkVM_JAWsShmz06-hFhBCndax3IaPUT2y7NvQN9WT_cK-NcPk2T28t2LV-FQYSC0LI_b0KaSewhytEsdc0ZomzGReWGEyDObyNJpG3Pw59KnHp4wEC1pFhmbwxVbFGIC939BAMfEdMJF9nG9vpPgjqKMe1nPNJXRxDWovs9jLKwgNqbBrlrA73PCL-ql3Yw3u_o_99U1cmWIs-m0HxjXyVZZ3yAHBXYOLcq2S0Crqa4dhdna4n4BrWr6FsLmEE_FUHNGZ6e4kkiXnhZDFZmWHmC-P9i-WTokMFW5uknen8t33CLbNTT2NqGRk6nPE8Zxf7kURnuHfNNlnEGgrVlAnow_WdlBch0rf3xWQL0QE2oDEwF5tDY_6bVG_mT4HBGzNkKJ8O7GsvmkBo-jGHhX65wWVoJj9tpAIMpip5kBkuq1DMhjxJtCRwaNsno4jwHvQUkwNRUMqHsu4yQgOyPM1ODhVuonxgKy28N0oz1F9WHatef4WAEpzvk_zJpKwddJeefvL3tALgGU1eu9-f5dcjnBsyjdetgO2W6b0_IeuWi_ttWqud-NRkqOzhvSPwBIHHjt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone+Detection+and+Tracking+in+Real-Time+by+Fusion+of+Different+Sensing+Modalities&rft.jtitle=Drones+%28Basel%29&rft.au=Svanstr%C3%B6m%2C+Fredrik&rft.au=Alonso-Fernandez%2C+Fernando&rft.au=Englund%2C+Cristofer&rft.date=2022&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=6&rft.issue=11&rft.spage=317&rft_id=info:doi/10.3390%2Fdrones6110317&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |