Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates
Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E an...
Uložené v:
| Vydané v: | The Journal of cell biology Ročník 200; číslo 6; s. 699 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
18.03.2013
|
| Predmet: | |
| ISSN: | 1540-8140, 1540-8140 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints. |
|---|---|
| AbstractList | Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints.Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints. Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints. |
| Author | Zanini, Isabella M Y Lopes, Massimo Neelsen, Kai J Herrador, Raquel |
| Author_xml | – sequence: 1 givenname: Kai J surname: Neelsen fullname: Neelsen, Kai J organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland – sequence: 2 givenname: Isabella M Y surname: Zanini fullname: Zanini, Isabella M Y – sequence: 3 givenname: Raquel surname: Herrador fullname: Herrador, Raquel – sequence: 4 givenname: Massimo surname: Lopes fullname: Lopes, Massimo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23479741$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLAzEUhYNU7EOXbiVLN603j-lkllJ8QaEb3QlDkrlTUmaSOsmA_fcGrODq3HP4OBzunEx88EjILYMVAyUeDtasODDOOBTqgsxYIWGpmITJv3tK5jEeAECWUlyRKReyrErJZuRz523Yo8dInW9GizSbkMK3szSmAWOk5kR7l0LKyXEINkfO72lo6ejHOOqODnjsnNXJBZ9LEg49Nk4njNfkstVdxJuzLsjH89P75nW53b28bR63SysVS0uNILRurbCtFAqACWDrynDTKtWuCwUWUa3LRqqKVUoaA5ZpYE0JlSy5sXxB7n97876vEWOqexctdp32GMZYM8FUZpUsMnp3RkeTZ9bHwfV6ONV_H-E_YvRlyw |
| CitedBy_id | crossref_primary_10_1091_mbc_E14_11_1563 crossref_primary_10_1101_gad_226373_113 crossref_primary_10_3390_genes5010147 crossref_primary_10_1038_nm_4323 crossref_primary_10_1016_j_molmed_2019_04_004 crossref_primary_10_1038_nsmb_3100 crossref_primary_10_1038_s41467_020_17324_z crossref_primary_10_3389_fonc_2018_00260 crossref_primary_10_1158_0008_5472_CAN_16_3389 crossref_primary_10_1158_1541_7786_MCR_18_0860 crossref_primary_10_3389_fcell_2021_774845 crossref_primary_10_1016_j_molcel_2022_09_009 crossref_primary_10_1038_s41580_020_0257_5 crossref_primary_10_3390_cancers16233993 crossref_primary_10_1016_j_dnarep_2014_03_016 crossref_primary_10_1016_j_envres_2014_11_018 crossref_primary_10_1158_1078_0432_CCR_18_1446 crossref_primary_10_1016_j_molonc_2014_07_008 crossref_primary_10_1242_jcs_212183 crossref_primary_10_3390_molecules30153056 crossref_primary_10_1038_s41467_017_00634_0 crossref_primary_10_1101_gad_223180_113 crossref_primary_10_1038_nrm_2017_53 crossref_primary_10_1083_jcb_2006iti1 crossref_primary_10_1038_nrm3935 crossref_primary_10_3390_genes10030232 crossref_primary_10_1158_2159_8290_CD_17_1461 crossref_primary_10_3389_fgene_2022_941565 crossref_primary_10_1038_s41467_021_22217_w crossref_primary_10_1093_nar_gkt645 crossref_primary_10_1016_j_molcel_2017_08_010 crossref_primary_10_1016_j_molcel_2015_06_026 crossref_primary_10_1083_jcb_201809012 crossref_primary_10_7124_bc_0008F4 crossref_primary_10_3390_genes8010017 crossref_primary_10_1016_j_molcel_2020_04_031 crossref_primary_10_1111_acel_12518 crossref_primary_10_1016_j_semcdb_2014_04_035 crossref_primary_10_1146_annurev_pathol_012414_040424 crossref_primary_10_1038_ncb2897 crossref_primary_10_1016_j_cub_2014_04_012 crossref_primary_10_1073_pnas_2413631121 crossref_primary_10_1016_j_yexcr_2023_113860 crossref_primary_10_1016_j_dnarep_2018_08_017 crossref_primary_10_1038_nrc_2017_52 crossref_primary_10_1080_10409238_2018_1488803 crossref_primary_10_1038_s41598_019_38579_7 crossref_primary_10_1016_j_dnarep_2025_103865 crossref_primary_10_1083_jcb_201304139 crossref_primary_10_1038_onc_2015_367 crossref_primary_10_1038_nsmb_3163 crossref_primary_10_15252_embj_2020106336 crossref_primary_10_1038_s41418_017_0012_4 crossref_primary_10_1016_j_semcdb_2020_04_003 crossref_primary_10_1128_MCB_01077_14 crossref_primary_10_1074_jbc_RA118_002905 crossref_primary_10_1038_s41598_019_40462_4 crossref_primary_10_1016_j_cell_2017_11_047 crossref_primary_10_1017_erm_2021_31 crossref_primary_10_1016_j_molcel_2023_07_026 crossref_primary_10_1016_j_mrfmmm_2013_07_003 crossref_primary_10_1007_s42764_020_00021_y crossref_primary_10_1093_nar_gkw858 crossref_primary_10_1242_jcs_194068 crossref_primary_10_1080_15384101_2017_1288322 crossref_primary_10_1093_nar_gkv880 crossref_primary_10_1007_s00412_013_0431_z crossref_primary_10_1016_j_tips_2015_11_007 crossref_primary_10_1038_onc_2017_40 crossref_primary_10_1038_s41388_021_02162_0 crossref_primary_10_1016_j_molcel_2015_05_013 crossref_primary_10_1073_pnas_1508543112 crossref_primary_10_3390_genes9120634 crossref_primary_10_1016_j_jmb_2014_08_022 crossref_primary_10_3390_v14081782 crossref_primary_10_1016_j_cell_2022_12_036 crossref_primary_10_1016_j_semcancer_2016_01_001 crossref_primary_10_1158_1078_0432_CCR_24_1152 crossref_primary_10_1016_j_cub_2015_03_022 crossref_primary_10_3390_ijms19103255 crossref_primary_10_1016_j_molcel_2014_12_038 crossref_primary_10_3390_cells12010148 crossref_primary_10_1161_JAHA_121_021768 crossref_primary_10_1093_nar_gkaa054 crossref_primary_10_1083_jcb_201406099 crossref_primary_10_1038_nrc3916 crossref_primary_10_3390_cancers16203507 crossref_primary_10_1038_ncb3378 crossref_primary_10_1038_nrg_2017_46 crossref_primary_10_3390_life11070637 crossref_primary_10_1016_j_molcel_2015_07_029 crossref_primary_10_1186_s12885_016_2117_4 crossref_primary_10_1038_nrm_2016_177 crossref_primary_10_3390_cancers13071656 crossref_primary_10_1080_10409238_2017_1304355 crossref_primary_10_1016_j_prp_2023_154693 crossref_primary_10_1093_nar_gkv1079 crossref_primary_10_1093_nar_gky451 crossref_primary_10_1007_s00018_013_1555_2 crossref_primary_10_3389_fonc_2020_00670 crossref_primary_10_1007_s00412_014_0471_z crossref_primary_10_1038_ncomms13087 crossref_primary_10_1083_jcb_201702006 crossref_primary_10_1016_j_gene_2015_05_065 crossref_primary_10_1016_j_radonc_2013_06_013 crossref_primary_10_1073_pnas_1417518111 crossref_primary_10_3390_ijms18061138 crossref_primary_10_1016_j_humgen_2023_201228 crossref_primary_10_1038_s41467_017_01164_5 crossref_primary_10_1016_j_tibs_2014_07_003 crossref_primary_10_1080_15384101_2018_1456296 crossref_primary_10_1038_s41467_019_11246_1 crossref_primary_10_3390_genes6020267 crossref_primary_10_1038_ncomms7746 crossref_primary_10_15252_embr_201948920 crossref_primary_10_1016_j_mrrev_2015_05_001 crossref_primary_10_1146_annurev_biochem_060815_014908 crossref_primary_10_1371_journal_pgen_1009875 crossref_primary_10_1016_j_jbc_2023_102957 crossref_primary_10_1016_j_molcel_2018_05_026 crossref_primary_10_1016_j_dnarep_2016_05_008 crossref_primary_10_1038_ncomms10660 crossref_primary_10_1007_s00018_017_2474_4 crossref_primary_10_1016_j_devcel_2016_11_017 crossref_primary_10_3390_genes8020074 crossref_primary_10_1016_j_dnarep_2015_04_026 crossref_primary_10_1002_bies_201300140 crossref_primary_10_1016_j_bcp_2019_03_028 crossref_primary_10_1080_15384101_2019_1638192 crossref_primary_10_1038_emboj_2013_148 crossref_primary_10_1172_JCI87724 crossref_primary_10_1016_j_dnarep_2020_102943 crossref_primary_10_1093_nar_gky275 crossref_primary_10_1038_srep44464 crossref_primary_10_1038_s41467_019_12297_0 crossref_primary_10_1186_s13062_021_00313_7 crossref_primary_10_7554_eLife_51963 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1083/jcb.201212058 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1540-8140 |
| ExternalDocumentID | 23479741 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0VX 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CGR CS3 CUY CVF D-I D0L DIK DU5 E3Z EBS ECM EIF EJD EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB NPM O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM 7X8 |
| ID | FETCH-LOGICAL-c481t-ae03aafc3cf43800130169b2bf88f6580cee867d4891984bb0c1a01d709472bc2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316255400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-8140 |
| IngestDate | Thu Sep 04 16:35:06 EDT 2025 Thu Apr 03 06:59:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-ae03aafc3cf43800130169b2bf88f6580cee867d4891984bb0c1a01d709472bc2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://jcb.rupress.org/content/jcb/200/6/699.full.pdf |
| PMID | 23479741 |
| PQID | 1318094845 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1318094845 pubmed_primary_23479741 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-18 |
| PublicationDateYYYYMMDD | 2013-03-18 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of cell biology |
| PublicationTitleAlternate | J Cell Biol |
| PublicationYear | 2013 |
| References | 21529715 - Cell. 2011 Apr 29;145(3):435-46 17136093 - Nature. 2006 Nov 30;444(7119):633-7 17036055 - EMBO J. 2006 Oct 18;25(20):4921-32 21962513 - Cell. 2011 Sep 30;147(1):158-72 17136094 - Nature. 2006 Nov 30;444(7119):638-42 19620979 - Nat Genet. 2009 Aug;41(8):891-8 22464441 - Mol Cell. 2012 Mar 30;45(6):710-8 21552262 - Nat Struct Mol Biol. 2011 Jun;18(6):721-7 10827953 - Science. 2000 May 26;288(5470):1425-9 20660628 - J Cell Biol. 2010 Jul 26;190(2):197-207 17597761 - Nature. 2007 Jul 26;448(7152):445-51 15829956 - Nature. 2005 Apr 14;434(7035):864-70 21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9 17934473 - Nat Struct Mol Biol. 2007 Nov;14(11):1096-104 12142537 - Science. 2002 Jul 26;297(5581):599-602 21784245 - Cell. 2011 Jul 22;146(2):233-46 15829965 - Nature. 2005 Apr 14;434(7035):907-13 20371347 - Cell. 2010 Apr 2;141(1):81-93 21859861 - J Cell Biol. 2011 Aug 22;194(4):567-79 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95 22945645 - Oncogene. 2013 Aug 8;32(32):3744-53 15282313 - Mol Cell Biol. 2004 Aug;24(16):7140-50 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25 24162989 - Methods Mol Biol. 2014;1094:177-208 11256629 - EMBO Rep. 2000 Jul;1(1):71-9 6574461 - Proc Natl Acad Sci U S A. 1983 May;80(10):2926-30 21369956 - Chromosoma. 2011 Apr;120(2):109-27 20194642 - J Cell Biol. 2010 Mar 8;188(5):629-38 11056156 - J Biol Chem. 2001 Jan 26;276(4):2790-6 22410776 - Oncogene. 2013 Jan 31;32(5):610-20 20098673 - PLoS One. 2010;5(1):e8821 21858151 - PLoS One. 2011;6(8):e23517 18066090 - Oncogene. 2007 Dec 10;26(56):7773-9 16818887 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10660-5 18310322 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3757-62 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23 22258507 - Nature. 2012 Feb 2;482(7383):53-8 16030261 - Mol Biol Cell. 2005 Oct;16(10):5013-25 21317883 - Nat Cell Biol. 2011 Mar;13(3):243-53 20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5 |
| References_xml | – reference: 16818887 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10660-5 – reference: 15829965 - Nature. 2005 Apr 14;434(7035):907-13 – reference: 15829956 - Nature. 2005 Apr 14;434(7035):864-70 – reference: 20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5 – reference: 21369956 - Chromosoma. 2011 Apr;120(2):109-27 – reference: 21859861 - J Cell Biol. 2011 Aug 22;194(4):567-79 – reference: 17136094 - Nature. 2006 Nov 30;444(7119):638-42 – reference: 18310322 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3757-62 – reference: 21962513 - Cell. 2011 Sep 30;147(1):158-72 – reference: 20194642 - J Cell Biol. 2010 Mar 8;188(5):629-38 – reference: 21552262 - Nat Struct Mol Biol. 2011 Jun;18(6):721-7 – reference: 18066090 - Oncogene. 2007 Dec 10;26(56):7773-9 – reference: 6574461 - Proc Natl Acad Sci U S A. 1983 May;80(10):2926-30 – reference: 21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9 – reference: 17136093 - Nature. 2006 Nov 30;444(7119):633-7 – reference: 22464441 - Mol Cell. 2012 Mar 30;45(6):710-8 – reference: 15282313 - Mol Cell Biol. 2004 Aug;24(16):7140-50 – reference: 20371347 - Cell. 2010 Apr 2;141(1):81-93 – reference: 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95 – reference: 22410776 - Oncogene. 2013 Jan 31;32(5):610-20 – reference: 20660628 - J Cell Biol. 2010 Jul 26;190(2):197-207 – reference: 16030261 - Mol Biol Cell. 2005 Oct;16(10):5013-25 – reference: 20098673 - PLoS One. 2010;5(1):e8821 – reference: 17934473 - Nat Struct Mol Biol. 2007 Nov;14(11):1096-104 – reference: 21858151 - PLoS One. 2011;6(8):e23517 – reference: 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23 – reference: 22945645 - Oncogene. 2013 Aug 8;32(32):3744-53 – reference: 10827953 - Science. 2000 May 26;288(5470):1425-9 – reference: 12142537 - Science. 2002 Jul 26;297(5581):599-602 – reference: 21317883 - Nat Cell Biol. 2011 Mar;13(3):243-53 – reference: 19620979 - Nat Genet. 2009 Aug;41(8):891-8 – reference: 17597761 - Nature. 2007 Jul 26;448(7152):445-51 – reference: 17036055 - EMBO J. 2006 Oct 18;25(20):4921-32 – reference: 21529715 - Cell. 2011 Apr 29;145(3):435-46 – reference: 22258507 - Nature. 2012 Feb 2;482(7383):53-8 – reference: 24162989 - Methods Mol Biol. 2014;1094:177-208 – reference: 21784245 - Cell. 2011 Jul 22;146(2):233-46 – reference: 11056156 - J Biol Chem. 2001 Jan 26;276(4):2790-6 – reference: 11256629 - EMBO Rep. 2000 Jul;1(1):71-9 – reference: 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25 |
| SSID | ssj0004743 |
| Score | 2.4866993 |
| Snippet | Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 699 |
| SubjectTerms | CDC2 Protein Kinase - genetics CDC2 Protein Kinase - metabolism cdc25 Phosphatases - genetics cdc25 Phosphatases - metabolism Cell Line, Tumor Chromosome Breakage Cyclin E - genetics Cyclin E - metabolism DNA Replication DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endonucleases - genetics Endonucleases - metabolism G2 Phase Humans Mitosis Oncogenes |
| Title | Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23479741 https://www.proquest.com/docview/1318094845 |
| Volume | 200 |
| WOSCitedRecordID | wos000316255400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPAaNm2yTXoSERcPuu5BZQ9CSdJEVrBdt1tx_72TtqteBMFLbynpZB5fMzPfIHTGA5sCkheEKmcItyIimtuUOLAO1Y2ZptW0hscb0e_L4TAeNBduRVNWOfeJlaNOc-PvyDsB80xTXPLu-fiN-KlRPrvajNBYRC0GUMZrtRj-YAtvCux98t8zOzUcm4A6Oi9G-7oucNy0K39Hl1WU6a3_d38baK3Bl_iiVohNtGCzLbRST5ycbaOnu8zkz96_YfgZh2PFnqR1mn-MDK7bRrCe4Vcwc1iPx3UXAUQ3nDtcZmVRwrsn9ivnjT3bxKTqPgHIuoMeelf3l9ekGbBADJfBlChLmYIzYsZ54nmfxAyiWIfaSekAmlCIoDISKZdxEEuuNTWBokEq4ENFqE24i5ayPLP7CIfSCqGtM75UMZJUm1gpkxomHIuNjtrodC62BBTYZyVUZvOySL4F10Z7teyTcc20kYS-zxUwz8EfVh-i1bAaVcFIII9Qy4H52mO0bN6no2JyUmkGPPuD20_FUsU_ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenes+induce+genotoxic+stress+by+mitotic+processing+of+unusual+replication+intermediates&rft.jtitle=The+Journal+of+cell+biology&rft.au=Neelsen%2C+Kai+J&rft.au=Zanini%2C+Isabella+M+Y&rft.au=Herrador%2C+Raquel&rft.au=Lopes%2C+Massimo&rft.date=2013-03-18&rft.eissn=1540-8140&rft.volume=200&rft.issue=6&rft.spage=699&rft_id=info:doi/10.1083%2Fjcb.201212058&rft_id=info%3Apmid%2F23479741&rft_id=info%3Apmid%2F23479741&rft.externalDocID=23479741 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon |