Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates

Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of cell biology Ročník 200; číslo 6; s. 699
Hlavní autori: Neelsen, Kai J, Zanini, Isabella M Y, Herrador, Raquel, Lopes, Massimo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 18.03.2013
Predmet:
ISSN:1540-8140, 1540-8140
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints.
AbstractList Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints.Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints.
Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced fork reversal, suggestive of increased topological stress. Surprisingly, these phenotypes, per se, are neither associated with chromosomal breakage nor with significant DDR activation. Oncogene-induced DNA breakage and DDR activation instead occurred upon persistent G2/M arrest or, in a checkpoint-defective context, upon premature CDK1 activation. Depletion of MUS81, a cell cycle-regulated nuclease, markedly limited chromosomal breakage and led to further accumulation of reversed forks. We propose that nucleolytic processing of unusual replication intermediates mediates oncogene-induced genotoxicity and that limiting such processing to mitosis is a central anti-tumorigenic function of the DNA damage checkpoints.
Author Zanini, Isabella M Y
Lopes, Massimo
Neelsen, Kai J
Herrador, Raquel
Author_xml – sequence: 1
  givenname: Kai J
  surname: Neelsen
  fullname: Neelsen, Kai J
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 2
  givenname: Isabella M Y
  surname: Zanini
  fullname: Zanini, Isabella M Y
– sequence: 3
  givenname: Raquel
  surname: Herrador
  fullname: Herrador, Raquel
– sequence: 4
  givenname: Massimo
  surname: Lopes
  fullname: Lopes, Massimo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23479741$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EOXbiVLN603j-lkllJ8QaEb3QlDkrlTUmaSOsmA_fcGrODq3HP4OBzunEx88EjILYMVAyUeDtasODDOOBTqgsxYIWGpmITJv3tK5jEeAECWUlyRKReyrErJZuRz523Yo8dInW9GizSbkMK3szSmAWOk5kR7l0LKyXEINkfO72lo6ejHOOqODnjsnNXJBZ9LEg49Nk4njNfkstVdxJuzLsjH89P75nW53b28bR63SysVS0uNILRurbCtFAqACWDrynDTKtWuCwUWUa3LRqqKVUoaA5ZpYE0JlSy5sXxB7n97876vEWOqexctdp32GMZYM8FUZpUsMnp3RkeTZ9bHwfV6ONV_H-E_YvRlyw
CitedBy_id crossref_primary_10_1091_mbc_E14_11_1563
crossref_primary_10_1101_gad_226373_113
crossref_primary_10_3390_genes5010147
crossref_primary_10_1038_nm_4323
crossref_primary_10_1016_j_molmed_2019_04_004
crossref_primary_10_1038_nsmb_3100
crossref_primary_10_1038_s41467_020_17324_z
crossref_primary_10_3389_fonc_2018_00260
crossref_primary_10_1158_0008_5472_CAN_16_3389
crossref_primary_10_1158_1541_7786_MCR_18_0860
crossref_primary_10_3389_fcell_2021_774845
crossref_primary_10_1016_j_molcel_2022_09_009
crossref_primary_10_1038_s41580_020_0257_5
crossref_primary_10_3390_cancers16233993
crossref_primary_10_1016_j_dnarep_2014_03_016
crossref_primary_10_1016_j_envres_2014_11_018
crossref_primary_10_1158_1078_0432_CCR_18_1446
crossref_primary_10_1016_j_molonc_2014_07_008
crossref_primary_10_1242_jcs_212183
crossref_primary_10_3390_molecules30153056
crossref_primary_10_1038_s41467_017_00634_0
crossref_primary_10_1101_gad_223180_113
crossref_primary_10_1038_nrm_2017_53
crossref_primary_10_1083_jcb_2006iti1
crossref_primary_10_1038_nrm3935
crossref_primary_10_3390_genes10030232
crossref_primary_10_1158_2159_8290_CD_17_1461
crossref_primary_10_3389_fgene_2022_941565
crossref_primary_10_1038_s41467_021_22217_w
crossref_primary_10_1093_nar_gkt645
crossref_primary_10_1016_j_molcel_2017_08_010
crossref_primary_10_1016_j_molcel_2015_06_026
crossref_primary_10_1083_jcb_201809012
crossref_primary_10_7124_bc_0008F4
crossref_primary_10_3390_genes8010017
crossref_primary_10_1016_j_molcel_2020_04_031
crossref_primary_10_1111_acel_12518
crossref_primary_10_1016_j_semcdb_2014_04_035
crossref_primary_10_1146_annurev_pathol_012414_040424
crossref_primary_10_1038_ncb2897
crossref_primary_10_1016_j_cub_2014_04_012
crossref_primary_10_1073_pnas_2413631121
crossref_primary_10_1016_j_yexcr_2023_113860
crossref_primary_10_1016_j_dnarep_2018_08_017
crossref_primary_10_1038_nrc_2017_52
crossref_primary_10_1080_10409238_2018_1488803
crossref_primary_10_1038_s41598_019_38579_7
crossref_primary_10_1016_j_dnarep_2025_103865
crossref_primary_10_1083_jcb_201304139
crossref_primary_10_1038_onc_2015_367
crossref_primary_10_1038_nsmb_3163
crossref_primary_10_15252_embj_2020106336
crossref_primary_10_1038_s41418_017_0012_4
crossref_primary_10_1016_j_semcdb_2020_04_003
crossref_primary_10_1128_MCB_01077_14
crossref_primary_10_1074_jbc_RA118_002905
crossref_primary_10_1038_s41598_019_40462_4
crossref_primary_10_1016_j_cell_2017_11_047
crossref_primary_10_1017_erm_2021_31
crossref_primary_10_1016_j_molcel_2023_07_026
crossref_primary_10_1016_j_mrfmmm_2013_07_003
crossref_primary_10_1007_s42764_020_00021_y
crossref_primary_10_1093_nar_gkw858
crossref_primary_10_1242_jcs_194068
crossref_primary_10_1080_15384101_2017_1288322
crossref_primary_10_1093_nar_gkv880
crossref_primary_10_1007_s00412_013_0431_z
crossref_primary_10_1016_j_tips_2015_11_007
crossref_primary_10_1038_onc_2017_40
crossref_primary_10_1038_s41388_021_02162_0
crossref_primary_10_1016_j_molcel_2015_05_013
crossref_primary_10_1073_pnas_1508543112
crossref_primary_10_3390_genes9120634
crossref_primary_10_1016_j_jmb_2014_08_022
crossref_primary_10_3390_v14081782
crossref_primary_10_1016_j_cell_2022_12_036
crossref_primary_10_1016_j_semcancer_2016_01_001
crossref_primary_10_1158_1078_0432_CCR_24_1152
crossref_primary_10_1016_j_cub_2015_03_022
crossref_primary_10_3390_ijms19103255
crossref_primary_10_1016_j_molcel_2014_12_038
crossref_primary_10_3390_cells12010148
crossref_primary_10_1161_JAHA_121_021768
crossref_primary_10_1093_nar_gkaa054
crossref_primary_10_1083_jcb_201406099
crossref_primary_10_1038_nrc3916
crossref_primary_10_3390_cancers16203507
crossref_primary_10_1038_ncb3378
crossref_primary_10_1038_nrg_2017_46
crossref_primary_10_3390_life11070637
crossref_primary_10_1016_j_molcel_2015_07_029
crossref_primary_10_1186_s12885_016_2117_4
crossref_primary_10_1038_nrm_2016_177
crossref_primary_10_3390_cancers13071656
crossref_primary_10_1080_10409238_2017_1304355
crossref_primary_10_1016_j_prp_2023_154693
crossref_primary_10_1093_nar_gkv1079
crossref_primary_10_1093_nar_gky451
crossref_primary_10_1007_s00018_013_1555_2
crossref_primary_10_3389_fonc_2020_00670
crossref_primary_10_1007_s00412_014_0471_z
crossref_primary_10_1038_ncomms13087
crossref_primary_10_1083_jcb_201702006
crossref_primary_10_1016_j_gene_2015_05_065
crossref_primary_10_1016_j_radonc_2013_06_013
crossref_primary_10_1073_pnas_1417518111
crossref_primary_10_3390_ijms18061138
crossref_primary_10_1016_j_humgen_2023_201228
crossref_primary_10_1038_s41467_017_01164_5
crossref_primary_10_1016_j_tibs_2014_07_003
crossref_primary_10_1080_15384101_2018_1456296
crossref_primary_10_1038_s41467_019_11246_1
crossref_primary_10_3390_genes6020267
crossref_primary_10_1038_ncomms7746
crossref_primary_10_15252_embr_201948920
crossref_primary_10_1016_j_mrrev_2015_05_001
crossref_primary_10_1146_annurev_biochem_060815_014908
crossref_primary_10_1371_journal_pgen_1009875
crossref_primary_10_1016_j_jbc_2023_102957
crossref_primary_10_1016_j_molcel_2018_05_026
crossref_primary_10_1016_j_dnarep_2016_05_008
crossref_primary_10_1038_ncomms10660
crossref_primary_10_1007_s00018_017_2474_4
crossref_primary_10_1016_j_devcel_2016_11_017
crossref_primary_10_3390_genes8020074
crossref_primary_10_1016_j_dnarep_2015_04_026
crossref_primary_10_1002_bies_201300140
crossref_primary_10_1016_j_bcp_2019_03_028
crossref_primary_10_1080_15384101_2019_1638192
crossref_primary_10_1038_emboj_2013_148
crossref_primary_10_1172_JCI87724
crossref_primary_10_1016_j_dnarep_2020_102943
crossref_primary_10_1093_nar_gky275
crossref_primary_10_1038_srep44464
crossref_primary_10_1038_s41467_019_12297_0
crossref_primary_10_1186_s13062_021_00313_7
crossref_primary_10_7554_eLife_51963
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1083/jcb.201212058
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1540-8140
ExternalDocumentID 23479741
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0VX
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
NPM
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
7X8
ID FETCH-LOGICAL-c481t-ae03aafc3cf43800130169b2bf88f6580cee867d4891984bb0c1a01d709472bc2
IEDL.DBID 7X8
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316255400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-8140
IngestDate Thu Sep 04 16:35:06 EDT 2025
Thu Apr 03 06:59:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-ae03aafc3cf43800130169b2bf88f6580cee867d4891984bb0c1a01d709472bc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://jcb.rupress.org/content/jcb/200/6/699.full.pdf
PMID 23479741
PQID 1318094845
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1318094845
pubmed_primary_23479741
PublicationCentury 2000
PublicationDate 2013-03-18
PublicationDateYYYYMMDD 2013-03-18
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2013
References 21529715 - Cell. 2011 Apr 29;145(3):435-46
17136093 - Nature. 2006 Nov 30;444(7119):633-7
17036055 - EMBO J. 2006 Oct 18;25(20):4921-32
21962513 - Cell. 2011 Sep 30;147(1):158-72
17136094 - Nature. 2006 Nov 30;444(7119):638-42
19620979 - Nat Genet. 2009 Aug;41(8):891-8
22464441 - Mol Cell. 2012 Mar 30;45(6):710-8
21552262 - Nat Struct Mol Biol. 2011 Jun;18(6):721-7
10827953 - Science. 2000 May 26;288(5470):1425-9
20660628 - J Cell Biol. 2010 Jul 26;190(2):197-207
17597761 - Nature. 2007 Jul 26;448(7152):445-51
15829956 - Nature. 2005 Apr 14;434(7035):864-70
21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9
17934473 - Nat Struct Mol Biol. 2007 Nov;14(11):1096-104
12142537 - Science. 2002 Jul 26;297(5581):599-602
21784245 - Cell. 2011 Jul 22;146(2):233-46
15829965 - Nature. 2005 Apr 14;434(7035):907-13
20371347 - Cell. 2010 Apr 2;141(1):81-93
21859861 - J Cell Biol. 2011 Aug 22;194(4):567-79
9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95
22945645 - Oncogene. 2013 Aug 8;32(32):3744-53
15282313 - Mol Cell Biol. 2004 Aug;24(16):7140-50
1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25
24162989 - Methods Mol Biol. 2014;1094:177-208
11256629 - EMBO Rep. 2000 Jul;1(1):71-9
6574461 - Proc Natl Acad Sci U S A. 1983 May;80(10):2926-30
21369956 - Chromosoma. 2011 Apr;120(2):109-27
20194642 - J Cell Biol. 2010 Mar 8;188(5):629-38
11056156 - J Biol Chem. 2001 Jan 26;276(4):2790-6
22410776 - Oncogene. 2013 Jan 31;32(5):610-20
20098673 - PLoS One. 2010;5(1):e8821
21858151 - PLoS One. 2011;6(8):e23517
18066090 - Oncogene. 2007 Dec 10;26(56):7773-9
16818887 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10660-5
18310322 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3757-62
22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23
22258507 - Nature. 2012 Feb 2;482(7383):53-8
16030261 - Mol Biol Cell. 2005 Oct;16(10):5013-25
21317883 - Nat Cell Biol. 2011 Mar;13(3):243-53
20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5
References_xml – reference: 16818887 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10660-5
– reference: 15829965 - Nature. 2005 Apr 14;434(7035):907-13
– reference: 15829956 - Nature. 2005 Apr 14;434(7035):864-70
– reference: 20351298 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5
– reference: 21369956 - Chromosoma. 2011 Apr;120(2):109-27
– reference: 21859861 - J Cell Biol. 2011 Aug 22;194(4):567-79
– reference: 17136094 - Nature. 2006 Nov 30;444(7119):638-42
– reference: 18310322 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3757-62
– reference: 21962513 - Cell. 2011 Sep 30;147(1):158-72
– reference: 20194642 - J Cell Biol. 2010 Mar 8;188(5):629-38
– reference: 21552262 - Nat Struct Mol Biol. 2011 Jun;18(6):721-7
– reference: 18066090 - Oncogene. 2007 Dec 10;26(56):7773-9
– reference: 6574461 - Proc Natl Acad Sci U S A. 1983 May;80(10):2926-30
– reference: 21896770 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9
– reference: 17136093 - Nature. 2006 Nov 30;444(7119):633-7
– reference: 22464441 - Mol Cell. 2012 Mar 30;45(6):710-8
– reference: 15282313 - Mol Cell Biol. 2004 Aug;24(16):7140-50
– reference: 20371347 - Cell. 2010 Apr 2;141(1):81-93
– reference: 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95
– reference: 22410776 - Oncogene. 2013 Jan 31;32(5):610-20
– reference: 20660628 - J Cell Biol. 2010 Jul 26;190(2):197-207
– reference: 16030261 - Mol Biol Cell. 2005 Oct;16(10):5013-25
– reference: 20098673 - PLoS One. 2010;5(1):e8821
– reference: 17934473 - Nat Struct Mol Biol. 2007 Nov;14(11):1096-104
– reference: 21858151 - PLoS One. 2011;6(8):e23517
– reference: 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23
– reference: 22945645 - Oncogene. 2013 Aug 8;32(32):3744-53
– reference: 10827953 - Science. 2000 May 26;288(5470):1425-9
– reference: 12142537 - Science. 2002 Jul 26;297(5581):599-602
– reference: 21317883 - Nat Cell Biol. 2011 Mar;13(3):243-53
– reference: 19620979 - Nat Genet. 2009 Aug;41(8):891-8
– reference: 17597761 - Nature. 2007 Jul 26;448(7152):445-51
– reference: 17036055 - EMBO J. 2006 Oct 18;25(20):4921-32
– reference: 21529715 - Cell. 2011 Apr 29;145(3):435-46
– reference: 22258507 - Nature. 2012 Feb 2;482(7383):53-8
– reference: 24162989 - Methods Mol Biol. 2014;1094:177-208
– reference: 21784245 - Cell. 2011 Jul 22;146(2):233-46
– reference: 11056156 - J Biol Chem. 2001 Jan 26;276(4):2790-6
– reference: 11256629 - EMBO Rep. 2000 Jul;1(1):71-9
– reference: 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25
SSID ssj0004743
Score 2.4866993
Snippet Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 699
SubjectTerms CDC2 Protein Kinase - genetics
CDC2 Protein Kinase - metabolism
cdc25 Phosphatases - genetics
cdc25 Phosphatases - metabolism
Cell Line, Tumor
Chromosome Breakage
Cyclin E - genetics
Cyclin E - metabolism
DNA Replication
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endonucleases - genetics
Endonucleases - metabolism
G2 Phase
Humans
Mitosis
Oncogenes
Title Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates
URI https://www.ncbi.nlm.nih.gov/pubmed/23479741
https://www.proquest.com/docview/1318094845
Volume 200
WOSCitedRecordID wos000316255400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPAaNm2yTXoSERcPuu5BZQ9CSdJEVrBdt1tx_72TtqteBMFLbynpZB5fMzPfIHTGA5sCkheEKmcItyIimtuUOLAO1Y2ZptW0hscb0e_L4TAeNBduRVNWOfeJlaNOc-PvyDsB80xTXPLu-fiN-KlRPrvajNBYRC0GUMZrtRj-YAtvCux98t8zOzUcm4A6Oi9G-7oucNy0K39Hl1WU6a3_d38baK3Bl_iiVohNtGCzLbRST5ycbaOnu8zkz96_YfgZh2PFnqR1mn-MDK7bRrCe4Vcwc1iPx3UXAUQ3nDtcZmVRwrsn9ivnjT3bxKTqPgHIuoMeelf3l9ekGbBADJfBlChLmYIzYsZ54nmfxAyiWIfaSekAmlCIoDISKZdxEEuuNTWBokEq4ENFqE24i5ayPLP7CIfSCqGtM75UMZJUm1gpkxomHIuNjtrodC62BBTYZyVUZvOySL4F10Z7teyTcc20kYS-zxUwz8EfVh-i1bAaVcFIII9Qy4H52mO0bN6no2JyUmkGPPuD20_FUsU_
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oncogenes+induce+genotoxic+stress+by+mitotic+processing+of+unusual+replication+intermediates&rft.jtitle=The+Journal+of+cell+biology&rft.au=Neelsen%2C+Kai+J&rft.au=Zanini%2C+Isabella+M+Y&rft.au=Herrador%2C+Raquel&rft.au=Lopes%2C+Massimo&rft.date=2013-03-18&rft.eissn=1540-8140&rft.volume=200&rft.issue=6&rft.spage=699&rft_id=info:doi/10.1083%2Fjcb.201212058&rft_id=info%3Apmid%2F23479741&rft_id=info%3Apmid%2F23479741&rft.externalDocID=23479741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon