DNA2 drives processing and restart of reversed replication forks in human cells

Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology Vol. 208; no. 5; p. 545
Main Authors: Thangavel, Saravanabhavan, Berti, Matteo, Levikova, Maryna, Pinto, Cosimo, Gomathinayagam, Shivasankari, Vujanovic, Marko, Zellweger, Ralph, Moore, Hayley, Lee, Eu Han, Hendrickson, Eric A, Cejka, Petr, Stewart, Sheila, Lopes, Massimo, Vindigni, Alessandro
Format: Journal Article
Language:English
Published: United States 02.03.2015
Subjects:
ISSN:1540-8140, 1540-8140
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.
AbstractList Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.
Author Pinto, Cosimo
Moore, Hayley
Cejka, Petr
Zellweger, Ralph
Thangavel, Saravanabhavan
Levikova, Maryna
Hendrickson, Eric A
Vujanovic, Marko
Berti, Matteo
Vindigni, Alessandro
Lopes, Massimo
Gomathinayagam, Shivasankari
Lee, Eu Han
Stewart, Sheila
Author_xml – sequence: 1
  givenname: Saravanabhavan
  surname: Thangavel
  fullname: Thangavel, Saravanabhavan
  organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
– sequence: 2
  givenname: Matteo
  surname: Berti
  fullname: Berti, Matteo
  organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
– sequence: 3
  givenname: Maryna
  surname: Levikova
  fullname: Levikova, Maryna
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 4
  givenname: Cosimo
  surname: Pinto
  fullname: Pinto, Cosimo
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 5
  givenname: Shivasankari
  surname: Gomathinayagam
  fullname: Gomathinayagam, Shivasankari
  organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
– sequence: 6
  givenname: Marko
  surname: Vujanovic
  fullname: Vujanovic, Marko
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 7
  givenname: Ralph
  surname: Zellweger
  fullname: Zellweger, Ralph
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 8
  givenname: Hayley
  surname: Moore
  fullname: Moore, Hayley
  organization: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 9
  givenname: Eu Han
  surname: Lee
  fullname: Lee, Eu Han
  organization: Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
– sequence: 10
  givenname: Eric A
  surname: Hendrickson
  fullname: Hendrickson, Eric A
  organization: Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
– sequence: 11
  givenname: Petr
  surname: Cejka
  fullname: Cejka, Petr
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 12
  givenname: Sheila
  surname: Stewart
  fullname: Stewart, Sheila
  organization: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
– sequence: 13
  givenname: Massimo
  surname: Lopes
  fullname: Lopes, Massimo
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
– sequence: 14
  givenname: Alessandro
  surname: Vindigni
  fullname: Vindigni, Alessandro
  email: avindign@slu.edu
  organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 avindign@slu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25733713$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB9w5Ip85JKyfiY5VuUpVfQC58hxNpCSOMVOKvHvMaJInHZ2NBp9mjmZuN4hIZcMlgwycbOz5ZIDk6AZwAmZMSUhyeI_-aenZB7CDgBkKsUZmXKVCpEyMSPb2-cVp5VvDhjo3vcWQ2jcGzWuoh7DYPxA-zrKA_qAP96-bawZmt7RuvcfgTaOvo-dcdRi24ZzclqbNuDF8S7I6_3dy_ox2WwfntarTWJlxobElCmWVme54ghSaVFBzmyulChTKDFDKSMictB5LiTyOgWRm0hvra4BKr4g17-9kflzjKBF14QfAuOwH0PBtAatpMxEjF4do2PZYVXsfdMZ_1X8jcC_AdslXsg
CitedBy_id crossref_primary_10_1016_j_molcel_2019_04_003
crossref_primary_10_1093_nar_gkaa524
crossref_primary_10_1016_j_pharmthera_2016_02_007
crossref_primary_10_26508_lsa_202000668
crossref_primary_10_1016_j_ebiom_2016_02_043
crossref_primary_10_1016_j_molcel_2021_09_008
crossref_primary_10_1038_s41586_025_09470_5
crossref_primary_10_1007_s00294_020_01106_7
crossref_primary_10_1101_gad_299172_117
crossref_primary_10_1038_s41467_025_63292_7
crossref_primary_10_1073_pnas_1619832114
crossref_primary_10_1083_jcb_2085if
crossref_primary_10_1038_nrm3935
crossref_primary_10_26508_lsa_202000795
crossref_primary_10_1158_2159_8290_CD_17_1461
crossref_primary_10_1016_j_dnarep_2025_103877
crossref_primary_10_15252_embj_2019103654
crossref_primary_10_1083_jcb_201809012
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1371_journal_pgen_1007942
crossref_primary_10_1016_j_bpc_2016_11_005
crossref_primary_10_1016_j_molcel_2020_08_018
crossref_primary_10_7554_eLife_14709
crossref_primary_10_7554_eLife_54128
crossref_primary_10_1016_j_dnarep_2018_08_017
crossref_primary_10_1074_jbc_M116_745646
crossref_primary_10_1016_j_jbiotec_2023_12_001
crossref_primary_10_1515_hsz_2020_0324
crossref_primary_10_3390_genes11030255
crossref_primary_10_1016_j_dnarep_2025_103865
crossref_primary_10_1038_s41467_020_16096_w
crossref_primary_10_1038_nsmb_3163
crossref_primary_10_3390_genes13020312
crossref_primary_10_3109_10409238_2016_1172552
crossref_primary_10_1146_annurev_genet_021920_092410
crossref_primary_10_1016_j_molcel_2019_05_026
crossref_primary_10_1093_nar_gkz431
crossref_primary_10_3390_biom5031652
crossref_primary_10_3390_ijms22083984
crossref_primary_10_1002_1873_3468_14406
crossref_primary_10_1016_j_molcel_2015_07_009
crossref_primary_10_1038_s41467_019_13667_4
crossref_primary_10_1038_s41589_024_01611_7
crossref_primary_10_1111_boc_202100061
crossref_primary_10_1093_nar_gkw858
crossref_primary_10_1016_j_dnarep_2024_103710
crossref_primary_10_1083_jcb_201803003
crossref_primary_10_3389_fgene_2021_773426
crossref_primary_10_1093_nar_gkv880
crossref_primary_10_1093_nar_gkad470
crossref_primary_10_1038_s41580_025_00841_4
crossref_primary_10_1371_journal_pgen_1005742
crossref_primary_10_1371_journal_pgen_1011181
crossref_primary_10_1093_nar_gkae563
crossref_primary_10_1038_nrm_2017_67
crossref_primary_10_1016_j_dnarep_2020_102994
crossref_primary_10_1002_bies_202200057
crossref_primary_10_1016_j_mrfmmm_2017_09_006
crossref_primary_10_1093_nar_gkaa1232
crossref_primary_10_1038_s12276_020_00519_1
crossref_primary_10_1016_j_semcdb_2020_10_001
crossref_primary_10_1016_j_semcancer_2016_01_001
crossref_primary_10_15252_embj_201796729
crossref_primary_10_1038_s41589_024_01833_9
crossref_primary_10_1016_j_dnarep_2022_103332
crossref_primary_10_3389_fcell_2020_574466
crossref_primary_10_3390_genes7070032
crossref_primary_10_1101_gad_295196_116
crossref_primary_10_1016_j_dnarep_2015_04_009
crossref_primary_10_1093_nar_gkae811
crossref_primary_10_1101_gad_336446_120
crossref_primary_10_1007_s00412_017_0658_1
crossref_primary_10_1016_j_dnarep_2019_02_003
crossref_primary_10_1038_s41568_022_00518_6
crossref_primary_10_1016_j_tig_2020_09_008
crossref_primary_10_1016_j_canlet_2025_217665
crossref_primary_10_1080_10409238_2017_1304355
crossref_primary_10_3390_cells14060442
crossref_primary_10_3389_fcell_2021_699771
crossref_primary_10_1016_j_molcel_2015_12_026
crossref_primary_10_1016_j_semcdb_2020_07_004
crossref_primary_10_1016_j_celrep_2024_115066
crossref_primary_10_1038_s41467_024_48988_6
crossref_primary_10_1007_s00018_019_03206_1
crossref_primary_10_1146_annurev_genet_071719_020312
crossref_primary_10_1016_j_semcdb_2020_08_010
crossref_primary_10_1073_pnas_2201738119
crossref_primary_10_1038_s41467_022_34310_9
crossref_primary_10_3389_fmolb_2021_712971
crossref_primary_10_1016_j_ddmod_2018_12_002
crossref_primary_10_1016_j_molcel_2022_08_014
crossref_primary_10_1038_s41467_019_11246_1
crossref_primary_10_1074_jbc_RA119_008420
crossref_primary_10_3389_fmicb_2016_00627
crossref_primary_10_3389_fmolb_2018_00059
crossref_primary_10_1371_journal_pgen_1005675
crossref_primary_10_1007_s42764_020_00026_7
crossref_primary_10_1038_cdd_2016_124
crossref_primary_10_1093_nar_gkad940
crossref_primary_10_1016_j_bpc_2016_11_014
crossref_primary_10_1038_s41417_023_00685_0
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_1038_s41467_022_32583_8
crossref_primary_10_1007_s00018_017_2474_4
crossref_primary_10_1038_s41467_024_52250_4
crossref_primary_10_1016_j_dnarep_2015_04_026
crossref_primary_10_1016_j_molcel_2019_10_008
crossref_primary_10_1016_j_molcel_2016_04_032
crossref_primary_10_3389_fmolb_2022_887758
crossref_primary_10_1007_s42764_024_00129_5
crossref_primary_10_1007_s00412_023_00807_5
crossref_primary_10_1093_abbs_gmw043
crossref_primary_10_1371_journal_pgen_1008933
crossref_primary_10_1038_s41467_019_12297_0
crossref_primary_10_1016_j_molcel_2020_11_007
crossref_primary_10_1186_s13058_017_0912_8
crossref_primary_10_3390_ijms25020952
crossref_primary_10_1007_s00412_020_00739_4
crossref_primary_10_7554_eLife_58223
crossref_primary_10_1146_annurev_biochem_062917_011921
crossref_primary_10_1038_s41467_020_17324_z
crossref_primary_10_1038_nsmb_3335
crossref_primary_10_1016_j_molcel_2022_09_009
crossref_primary_10_3390_ijms242316903
crossref_primary_10_1038_s41580_020_0257_5
crossref_primary_10_1093_nar_gkab344
crossref_primary_10_1093_nar_gkab101
crossref_primary_10_1016_j_arr_2016_03_002
crossref_primary_10_1016_j_ceb_2015_09_002
crossref_primary_10_1038_ncomms13157
crossref_primary_10_1038_s41467_017_00634_0
crossref_primary_10_1038_s41467_025_55958_z
crossref_primary_10_1038_ncb3626
crossref_primary_10_1016_j_dnarep_2016_11_002
crossref_primary_10_1038_s42003_024_06263_w
crossref_primary_10_3390_genes10030232
crossref_primary_10_1083_jcb_202002175
crossref_primary_10_1007_s12038_016_9642_9
crossref_primary_10_1016_j_mrrev_2022_108443
crossref_primary_10_3390_genes7080048
crossref_primary_10_3389_fgene_2021_753535
crossref_primary_10_1038_celldisc_2016_16
crossref_primary_10_1021_jacs_7b10284
crossref_primary_10_1016_j_molcel_2017_11_022
crossref_primary_10_1042_BST20170044
crossref_primary_10_15252_embj_2019101516
crossref_primary_10_1038_s41467_025_61828_5
crossref_primary_10_3233_JHD_200448
crossref_primary_10_1016_j_molcel_2022_05_004
crossref_primary_10_1016_j_tig_2024_04_013
crossref_primary_10_1093_nar_gkae828
crossref_primary_10_3390_genes12040552
crossref_primary_10_1016_j_dnarep_2021_103104
crossref_primary_10_1093_nar_gkad856
crossref_primary_10_3390_ijms241310488
crossref_primary_10_1093_nar_gkz1101
crossref_primary_10_1146_annurev_cancerbio_030617_050502
crossref_primary_10_1016_j_dnarep_2024_103786
crossref_primary_10_15252_embr_201744910
crossref_primary_10_1002_cmdc_201600101
crossref_primary_10_1534_genetics_119_302238
crossref_primary_10_1042_BST20180308
crossref_primary_10_3390_cancers14112804
crossref_primary_10_1038_s41594_022_00871_y
crossref_primary_10_3390_genes12081229
crossref_primary_10_3389_fonc_2021_646256
crossref_primary_10_15252_embj_201593265
crossref_primary_10_1016_j_jbc_2023_105348
crossref_primary_10_1016_j_molcel_2024_11_034
crossref_primary_10_1042_BSR20222591
crossref_primary_10_1016_j_cell_2017_11_047
crossref_primary_10_1016_j_mrrev_2020_108346
crossref_primary_10_1093_nar_gkad624
crossref_primary_10_1146_annurev_genet_120116_024745
crossref_primary_10_1101_gad_264192_115
crossref_primary_10_1093_nar_gky519
crossref_primary_10_1016_j_mrfmmm_2017_07_008
crossref_primary_10_1038_s41594_018_0075_z
crossref_primary_10_3390_biomedicines10112775
crossref_primary_10_1016_j_jpet_2024_100051
crossref_primary_10_1038_oncsis_2017_15
crossref_primary_10_7554_eLife_18574
crossref_primary_10_1016_j_mrfmmm_2017_09_004
crossref_primary_10_1038_s42003_020_1048_4
crossref_primary_10_15252_embj_201593132
crossref_primary_10_1073_pnas_1508543112
crossref_primary_10_1016_j_molcel_2021_05_027
crossref_primary_10_3389_fgene_2018_00390
crossref_primary_10_1038_s41580_020_0218_z
crossref_primary_10_1038_s41467_021_26624_x
crossref_primary_10_1093_nar_gkz537
crossref_primary_10_3389_fcell_2021_670392
crossref_primary_10_1016_j_dnarep_2017_09_001
crossref_primary_10_1016_j_arr_2023_101887
crossref_primary_10_1093_nar_gkz531
crossref_primary_10_1074_jbc_M115_708594
crossref_primary_10_1007_s00412_023_00813_7
crossref_primary_10_1016_j_semcancer_2018_08_003
crossref_primary_10_1083_jcb_201406099
crossref_primary_10_1016_j_molcel_2021_05_014
crossref_primary_10_3389_fcell_2020_00416
crossref_primary_10_1016_j_molcel_2024_11_029
crossref_primary_10_1016_j_molcel_2018_05_018
crossref_primary_10_1016_j_dnarep_2024_103731
crossref_primary_10_1182_blood_2019003782
crossref_primary_10_1186_s13227_022_00207_3
crossref_primary_10_1534_genetics_118_301439
crossref_primary_10_1016_j_dnarep_2024_103738
crossref_primary_10_1172_JCI147301
crossref_primary_10_1016_j_pharmthera_2021_108009
crossref_primary_10_1126_science_add7328
crossref_primary_10_1074_jbc_M116_758235
crossref_primary_10_1093_nar_gkw274
crossref_primary_10_3389_fonc_2020_00670
crossref_primary_10_1038_s41467_017_01180_5
crossref_primary_10_1371_journal_pgen_1011044
crossref_primary_10_3389_fmolb_2021_791792
crossref_primary_10_3389_fmolb_2022_1048726
crossref_primary_10_3390_cancers12020402
crossref_primary_10_1038_s41467_018_07378_5
crossref_primary_10_1038_s41467_017_01164_5
crossref_primary_10_3390_genes13101802
crossref_primary_10_1093_nar_gkv836
crossref_primary_10_15252_embr_201846263
crossref_primary_10_1038_s41467_021_26811_w
crossref_primary_10_3389_fcell_2022_866601
crossref_primary_10_1146_annurev_biochem_013118_111058
crossref_primary_10_1074_jbc_RA118_005231
crossref_primary_10_1038_s41467_019_09196_9
crossref_primary_10_1038_s42003_019_0428_0
crossref_primary_10_1016_j_tcb_2019_06_005
crossref_primary_10_1016_j_molcel_2018_09_014
crossref_primary_10_1172_JCI173718
crossref_primary_10_3390_genes8020074
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1038_s41467_023_43685_2
crossref_primary_10_1016_j_dnarep_2020_102943
crossref_primary_10_1038_s41586_018_0769_8
crossref_primary_10_1158_0008_5472_CAN_24_1404
crossref_primary_10_1093_nar_gkae082
crossref_primary_10_3390_cancers10080250
crossref_primary_10_1080_14737140_2024_2398494
crossref_primary_10_3390_ijms18071562
ContentType Journal Article
Copyright 2015 Thangavel et al.
Copyright_xml – notice: 2015 Thangavel et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1083/jcb.201406100
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1540-8140
ExternalDocumentID 25733713
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM088351
– fundername: NIGMS NIH HHS
  grantid: GM0088351
– fundername: NIGMS NIH HHS
  grantid: R01GM108648
– fundername: NCI NIH HHS
  grantid: CA15446
– fundername: NCI NIH HHS
  grantid: T32 CA113275
– fundername: NIGMS NIH HHS
  grantid: R01 GM108648
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
NPM
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
7X8
ID FETCH-LOGICAL-c481t-ab7ebc68952e04563d091c9553b70be8e44573e2069934e2f7039a474cc6f00d2
IEDL.DBID 7X8
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350530600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-8140
IngestDate Fri Sep 05 08:36:01 EDT 2025
Thu Apr 03 07:04:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2015 Thangavel et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-ab7ebc68952e04563d091c9553b70be8e44573e2069934e2f7039a474cc6f00d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://rupress.org/jcb/article-pdf/208/5/545/1367041/jcb_201406100.pdf
PMID 25733713
PQID 1660654483
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1660654483
pubmed_primary_25733713
PublicationCentury 2000
PublicationDate 2015-03-02
PublicationDateYYYYMMDD 2015-03-02
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2015
SSID ssj0004743
Score 2.595997
Snippet Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 545
SubjectTerms Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA Replication - physiology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Humans
MRE11 Homologue Protein
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Rad51 Recombinase - genetics
Rad51 Recombinase - metabolism
RecQ Helicases - genetics
RecQ Helicases - metabolism
Werner Syndrome Helicase
Title DNA2 drives processing and restart of reversed replication forks in human cells
URI https://www.ncbi.nlm.nih.gov/pubmed/25733713
https://www.proquest.com/docview/1660654483
Volume 208
WOSCitedRecordID wos000350530600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBaNpukaXqSRV08aN2Dyt5K8yio0K7bVfDfO9N21YsgeOmhUAjTeXyZTL6PkDNlUGHbYetNq0AKwwKt4hwH1zLwACuimnj-8SZKEj0ex6O24Va1Y5XznFgnalda7JH3-krhPUipxfnkNUDVKDxdbSU0FklHAJTBwIzGP9jC2wF7PPxHZqeWYxNQR-_ZGpzrwnLG2O_osq4yw_X_rm-DrLX4kg4ah9gkC77YIiuN4uTHNrm7TAacuimSzdJJc0kAihfNCkdRpQMciZY5RV6naeXx3df5NgV4-1LRp4LWun4UW_7VDnkYXt1fXAetpkJgpe7PgsxE3lil45B7RHPCAWCwcRgKEzHjtZcyjITnTAFwkZ7nkBHiDAxprcoZc3yXLBVl4fcJdUYo27cRRLiWsWCZC_M4dFzBplo4JbrkdG6pFHwWV5UVvnyr0m9bdcleY-500pBrpBwJGmHnfPCHrw_JKvzDsB4J40ekk0PE-mOybN9nT9X0pHYGeCaj20_EsLwR
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA2+drives+processing+and+restart+of+reversed+replication+forks+in+human+cells&rft.jtitle=The+Journal+of+cell+biology&rft.au=Thangavel%2C+Saravanabhavan&rft.au=Berti%2C+Matteo&rft.au=Levikova%2C+Maryna&rft.au=Pinto%2C+Cosimo&rft.date=2015-03-02&rft.eissn=1540-8140&rft.volume=208&rft.issue=5&rft.spage=545&rft_id=info:doi/10.1083%2Fjcb.201406100&rft_id=info%3Apmid%2F25733713&rft_id=info%3Apmid%2F25733713&rft.externalDocID=25733713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon