Image retrieval from the web using multiple features
Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space....
Uloženo v:
| Vydáno v: | Online information review Ročník 33; číslo 6; s. 1169 - 1188 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bradford
Emerald Group Publishing Limited
01.01.2009
Emerald |
| Témata: | |
| ISSN: | 1468-4527, 1468-4535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths.Design methodology approach - Image semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords.Findings - The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques.Research limitations implications - The features of images used for capturing the semantics may not always describe the content.Practical implications - The indexing mechanism for dynamically growing features is challenging while practically implementing the system.Originality value - A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind. |
|---|---|
| AbstractList | Purpose The main obstacle in realising semanticbased image retrieval from the web is that it is difficult to capture semantic description of an image in lowlevel features. Textbased keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various lowlevel features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and lowlevel features to take advantage of their complementary strengths. Designmethodologyapproach Image semantics are described using both lowlevel features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various lowlevel features such as colour histograms, texture and composite colourtexture features are extracted for supplementing keywords. Findings The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the textbased and the contentbased techniques. Research limitationsimplications The features of images used for capturing the semantics may not always describe the content. Practical implications The indexing mechanism for dynamically growing features is challenging while practically implementing the system. Originalityvalue A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both lowlevel features and keywords as queries for retrieving images from WWW so this is the first of its kind. Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths.Design methodology approach - Image semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords.Findings - The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques.Research limitations implications - The features of images used for capturing the semantics may not always describe the content.Practical implications - The indexing mechanism for dynamically growing features is challenging while practically implementing the system.Originality value - A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind. PurposeThe main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths. Design/methodology/approachImage semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords. FindingsThe retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques. Research limitations/implicationsThe features of images used for capturing the semantics may not always describe the content. Practical implicationsThe indexing mechanism for dynamically growing features is challenging while practically implementing the system. Originality/valueA survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind. Adapted from the source document. Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths. Design/methodology/approach - Image semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords. Findings - The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques. Research limitations/implications - The features of images used for capturing the semantics may not always describe the content. Practical implications - The indexing mechanism for dynamically growing features is challenging while practically implementing the system. Originality/value - A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind. [PUBLICATION ABSTRACT] |
| Author | Sural, Shamik Majumdar, A.K. Vadivel, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Vadivel fullname: Vadivel, A. organization: Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India – sequence: 2 givenname: Shamik surname: Sural fullname: Sural, Shamik organization: School of Information Technology, Indian Institute of Technology, Kharagpur, India – sequence: 3 givenname: A.K. surname: Majumdar fullname: Majumdar, A.K. organization: Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22296650$$DView record in Pascal Francis |
| BookMark | eNqN0c9rFDEUB_AgFWxX_wBvQ0G9OPqSSTIzx7J0a6HoQaXH8Gb2pU2bmdkmmar_vSlb9rDFIgTyg8_3JeEdsYNxGomxtxw-cQ7NZy51I5WANu_y0PwFO3w4K6Wq1MFuLepX7CjGGwAuZKUOmTwf8IqKQCk4ukdf2DANRbqm4hd1xRzdeFUMs09u46mwhGkOFF-zlxZ9pDeP84L9XJ3-WH4pL76dnS9PLspeNjyVSnUd1Gte9VpDR1JZbEVb8wZ4Y5UUHbYtoCSwayGws6hAdL1oOqlQkaVqwT5s627CdDdTTGZwsSfvcaRpjqaWlWg0gMjy_bNS1dmClhke78GbaQ5j_oXhrVRQKakzeveIMPbobcCxd9Fsghsw_DFCiFbrbBeMb10fphgD2R3hYB7aYp60JWfqvUzvEiY3jSmg888my23SxUS_d1dhuDW6rmpl5KUwy8vVWSNX383X7GHraaCAfv1fj_v4j8g-NZu1rf4C08u6EA |
| CitedBy_id | crossref_primary_10_4018_IJWP_2019010104 crossref_primary_10_1016_j_protcy_2012_10_061 crossref_primary_10_1007_s00371_013_0818_0 |
| Cites_doi | 10.1109/TIP.2005.849770 10.1016/j.patrec.2007.01.004 10.1109/ICIP.1999.822959 10.1117/12.171786 10.1109/93.998050 10.1504/IJSISE.2008.026796 10.1109/TIP.2004.841205 10.1109/TPAMI.2007.1133 10.1109/TMM.2002.1017733 10.1016/j.patrec.2007.03.016 10.1117/12.403774 10.1016/j.patcog.2003.09.010 10.1109/TPAMI.2004.1261083 10.1007/s11042-005-6543-6 10.1109/TIP.2005.847289 10.1016/j.eswa.2006.09.016 |
| ContentType | Journal Article |
| Copyright | Emerald Group Publishing Limited 2015 INIST-CNRS Copyright Emerald Group Publishing Limited 2009 |
| Copyright_xml | – notice: Emerald Group Publishing Limited – notice: 2015 INIST-CNRS – notice: Copyright Emerald Group Publishing Limited 2009 |
| DBID | BSCLL AAYXX CITATION IQODW 0-V 7RV 7SC 7WY 7WZ 7XB 8AO 8FD 8FE 8FG 8FI ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CJNVE CNYFK DWQXO E3H F2A FYUFA F~G GNUQQ GUQSH HCIFZ JQ2 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N M0P M1O M2O MBDVC NAPCQ P5Z P62 PHGZM PHGZT PKEHL PPXIY PQBIZ PQEDU PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U 7TA JG9 |
| DOI | 10.1108/14684520911011061 |
| DatabaseName | Istex CrossRef Pascal-Francis ProQuest Social Sciences Premium Collection【Remote access available】 Nursing & Allied Health Database Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Education Collection Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Education Database Library Science Database Research Library Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences ProQuest Central Basic Materials Business File Materials Research Database |
| DatabaseTitle | CrossRef ProQuest One Education Research Library Prep Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global Education Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection ProQuest Business Collection Nursing & Allied Health Premium ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ProQuest Computing ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Research Database Materials Business File |
| DatabaseTitleList | Library and Information Science Abstracts (LISA) ProQuest One Education Materials Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1468-4535 |
| EndPage | 1188 |
| ExternalDocumentID | 1920045421 22296650 10_1108_14684520911011061 ark_67375_4W2_CWFG84FS_N 10.1108/14684520911011061 |
| Genre | Feature |
| GroupedDBID | -ET .DC .X0 0-V 0R~ 123 1JL 1WG 1XV 29N 2RR 3FY 3V. 4.4 5VS 70U 77K 7RV 7WY 8AO 8FE 8FG 8FI 8FW 8NV 8R4 8R5 9E0 9F- AAGBP AAMCF AAOWE AAPSD AAUDR AAWTL AAYOK ABEAN ABHCV ABIJV ABSDC ABUWG ACGFS ACHQT ADBBV ADOMW AEBZA AEDOK AEMMR AENEX AETHF AFKRA AFNZV AGZLY AIAFM AJEBP AJFKA ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AODMV APPLU ARALO ARAPS ASPBG ATGMP AUCOK AVWKF AZFZN AZQEC BENPR BEZIV BGLVJ BKEYQ BLEHN BPHCQ BTXLY BVLZF BVXVI CAG CCPQU CJNVE CNYFK COF CS3 DU5 DWQXO EBS EJD EX3 FNNZZ FYUFA GEA GEC GEI GMM GMN GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ HZ~ IPNFZ J1Y JI- JL0 K6V K6~ K7- KLENG M0C M0N M0P M1O M2O M42 NAPCQ O9- OHT OXR P2P P62 PCD PQBIZ PQEDU PQQKQ PRG PROAC Q2X RIG ROL SCAQC SDURG SLOBJ SQT TDX TEM TET TGG TMD TMF TMI TMK TMT TMX UKHRP WOW XSW Z11 Z12 Z21 Z22 ZCA BSCLL 77I AAYXX ABJNI ABXQL ABYQI ACXJU AFFHD AFVFF AGQPQ AHAFT AHMHQ ALJBP ASJQZ CITATION PHGZM PHGZT PPXIY PQGLB PRQQA AABYC ABKIT ACZUD ADIOT ADQUB ADYJY AEACZ AFQLH AGSTH AGUEF AJNYF AJZCB AKXVL BUONS H~9 IQODW 7SC 7XB 8FD E3H F2A JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO 7TA JG9 |
| ID | FETCH-LOGICAL-c481t-55bb07d13c660be45fa929718018f542ba990a4e0fd22abfa502bc28b45a5efe3 |
| IEDL.DBID | TMT |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273759300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1468-4527 |
| IngestDate | Wed Oct 01 14:54:48 EDT 2025 Thu Oct 02 12:49:33 EDT 2025 Tue Nov 18 05:41:45 EST 2025 Wed Apr 02 07:21:07 EDT 2025 Tue Nov 18 22:42:23 EST 2025 Sat Nov 29 07:38:54 EST 2025 Wed Oct 30 09:31:32 EDT 2024 Tue Nov 26 02:56:51 EST 2024 Wed Jul 31 14:17:48 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Search engines Worldwide web Internet Image retrieval Search engine World wide web Use study |
| Language | English |
| License | https://www.emerald.com/insight/site-policies CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-55bb07d13c660be45fa929718018f542ba990a4e0fd22abfa502bc28b45a5efe3 |
| Notes | original-pdf:2640330609.pdf istex:090208B78C10FF40ECC9ADF28F591A881978DD78 ark:/67375/4W2-CWFG84FS-N filenameID:2640330609 href:14684520911011061.pdf SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PQID | 194503546 |
| PQPubID | 27163 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1108_14684520911011061 proquest_journals_194503546 proquest_miscellaneous_743286002 emerald_primary_10_1108_14684520911011061 istex_primary_ark_67375_4W2_CWFG84FS_N proquest_miscellaneous_57743064 pascalfrancis_primary_22296650 crossref_citationtrail_10_1108_14684520911011061 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-01-01 |
| PublicationDateYYYYMMDD | 2009-01-01 |
| PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Bradford |
| PublicationPlace_xml | – name: Bradford |
| PublicationTitle | Online information review |
| PublicationYear | 2009 |
| Publisher | Emerald Group Publishing Limited Emerald |
| Publisher_xml | – name: Emerald Group Publishing Limited – name: Emerald |
| References | key2022031120430433100_b16 key2022031120430433100_b17 key2022031120430433100_b18 key2022031120430433100_b19 key2022031120430433100_b10 key2022031120430433100_b11 key2022031120430433100_b12 key2022031120430433100_b13 key2022031120430433100_b2 key2022031120430433100_b14 key2022031120430433100_b1 key2022031120430433100_b15 key2022031120430433100_b4 key2022031120430433100_b3 key2022031120430433100_b6 key2022031120430433100_b5 key2022031120430433100_b8 key2022031120430433100_b7 key2022031120430433100_b9 |
| References_xml | – ident: key2022031120430433100_b3 doi: 10.1109/TIP.2005.849770 – ident: key2022031120430433100_b13 doi: 10.1016/j.patrec.2007.01.004 – ident: key2022031120430433100_b19 doi: 10.1109/ICIP.1999.822959 – ident: key2022031120430433100_b11 doi: 10.1117/12.171786 – ident: key2022031120430433100_b18 doi: 10.1109/93.998050 – ident: key2022031120430433100_b14 doi: 10.1504/IJSISE.2008.026796 – ident: key2022031120430433100_b2 – ident: key2022031120430433100_b5 doi: 10.1109/TIP.2004.841205 – ident: key2022031120430433100_b6 doi: 10.1109/TPAMI.2007.1133 – ident: key2022031120430433100_b17 doi: 10.1109/TMM.2002.1017733 – ident: key2022031120430433100_b1 – ident: key2022031120430433100_b15 doi: 10.1016/j.patrec.2007.03.016 – ident: key2022031120430433100_b9 doi: 10.1117/12.403774 – ident: key2022031120430433100_b10 doi: 10.1016/j.patcog.2003.09.010 – ident: key2022031120430433100_b4 doi: 10.1109/TPAMI.2004.1261083 – ident: key2022031120430433100_b12 doi: 10.1007/s11042-005-6543-6 – ident: key2022031120430433100_b8 – ident: key2022031120430433100_b7 doi: 10.1109/TIP.2005.847289 – ident: key2022031120430433100_b16 doi: 10.1016/j.eswa.2006.09.016 |
| SSID | ssj0012435 |
| Score | 1.808323 |
| Snippet | Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in... Purpose The main obstacle in realising semanticbased image retrieval from the web is that it is difficult to capture semantic description of an image in... PurposeThe main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in... |
| SourceID | proquest pascalfrancis crossref istex emerald |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1169 |
| SubjectTerms | Active Learning Algorithms Exact sciences and technology Feature selection Histograms Image retrieval Imagery Indexing Information and communication sciences Information Retrieval Information science. Documentation Integrative approach Internet Keywords Learning Strategies Library and information science. General aspects Online information retrieval Pornography Queries Retrieval Sciences and techniques of general use Scientific Concepts Search engines Semantics Semiotics Statistical analysis Use and user studies. Information needs Visual Perception World Wide Web Worldwide web |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-09UEf_KiKa23NgxYUlmazyX48iRRPRTkEP9q3kGQTKdW78_Yq_fM7k8ut1sMi-LibCctmJvORmckP4IktjGm7qs1l6XkulXK5KRQyxHXGl7UNLmbPv7yvx-Pm6Kj9kGpz-lRWudKJUVF3U0dn5PsYbCteKlm9mP3ICTSKkqsJQeMqbBZCFCTm7-p8SCIIGfE1Y3ORVKJOSU0CvqF3kipA8KmgqOiCWfrVm7tJa31GBZOmxzULS7CLNb0djdHo1n_-xm24mbxQ9nIpNnfgip9swY3f7ibcgp3U0cD2WGpZIhaypAvugnz7HVURm0dELhRXRo0qDN1JhoqZUTn9V7aqVmTBx_tD-3vwefTq08GbPEEw5E42xSJXylped0XpqopbL1Uw6E-hPeNFE5QU1qA1M9Lz0AlhbDCKC-tEY6Uyygdf3oeNyXTiHwCreeGqzqjW2A6jSN9iIBp4EE1l664MZQZ8xQHt0v3kBJPxTcc4hTd6jWkZPB-mzJaXc1xG_Cyx9V9on67R_kmjZ13IYC8KyEBl5idUKVcrLQ-FPjgcvW7k6KMeZ7B7QYKGCQSnXqGXnMH2Sl500iK9HoQlg8fDKG5_yumYiZ-e9lqh-05BZAbsLxQ4jmuMhu_hpZ_YhuvLRBmdLj2CjcX81O_ANfdzcdzPd-PGOge-9iJR priority: 102 providerName: ProQuest |
| Title | Image retrieval from the web using multiple features |
| URI | https://www.emerald.com/insight/content/doi/10.1108/14684520911011061/full/html https://api.istex.fr/ark:/67375/4W2-CWFG84FS-N/fulltext.pdf https://www.proquest.com/docview/194503546 https://www.proquest.com/docview/57743064 https://www.proquest.com/docview/743286002 |
| Volume | 33 |
| WOSCitedRecordID | wos000273759300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald Management 120 customDbUrl: eissn: 1468-4535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: TMT dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: 7WY dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: M0C dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: K7- dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Education Database customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: M0P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/education providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: M1O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: 7RV dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1468-4535 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0012435 issn: 1468-4527 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwEB6VlgMceBQQoXTxASqBFK2T2HmcEKy6gKDLqizdwiWyExsq2nTZbBE_nxknGyjL68RlpMgTS7EnMx7P4wO4rwOlsjLOfBEZ7gspC18FEjekKJWJEm0LFz0_eJWMRunhYTZeA72shXFplc11jNPTR1VNTmqfErdRC3cNBwi9hqqGBKVx4FNArk2frqz7Hxcnx49nn31ClqIIbAuz4dQ0J5CDyd6kCzSEwmFwugIknCtpA5-_nP6c6fpev7tB-_GVkipVjetqG0CMFd3uDNbw6v_41GtwpT3OsieN_F2HNVNtwuUfmhxuwnZbGsF2WFv7RLLAWqVyA8SLE9RpbO6gvVDuGVW8MDyXMtTwjPLyP7Bl2iOzxjUirW_C2-HuZPDcb7Ec_EKkwcKXUmuelEFUxDHXRkir8GCGhpEHqZUi1ArNohKG2zIMlbZK8lAXYaqFVNJYE92C9eq0MreBJTwo4lLJTOkS3VGToUdruQ3TWCdlZCMP-HKb8qJtdE54G8e5c3h4mq-spgePuldmTZePPzE_bLftX3gfrPD-zJPPSuvBjpOijkvNP1HKXSJzMQ3zwXT4LBXDN_nIg945MeteIFz2GI_bHmwt5S5v1VGdB5mQPJIi9uBeN4p6hIJDqjKnZ3Uu0Q8gb9QD9hsOHMc1Rgt65-8sW3CpCbvRXdVdWF_Mz8w2XCy-LI7qeQ8uJPsHRKfverDxdHc03senl4mPdI8PHB0TDV4TDYmO5fue-3W_AVIJQ64 |
| linkProvider | Emerald |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgk48CggQmnrA60EUoTj2HkcEEKFpasuKwSl7c21HRshYHfZbHn8KP4jY28SKCsqLj1wTDJJlMz4G49nxh_AfZ0oVVZZGfPU0pgLYWKVCFSIqZRNc-1MyJ4fDPLhsDg6Kl8twY-2F8aXVbaYGIC6Ghu_Rv4Ig21BU8GzJ5PPsSeN8snVlkFjbhV79vtXjNjqx_1nqN4txnrP93d244ZUIDa8SGaxEFrTvEpSk2VUWy6cwhkCIjRNCic40wrxWXFLXcWY0k4JyrRhheZCCetsis-9ACsI44mvIMtfH3RJC8YDn2doZuKC5U0S1RPt-HPcV5zgUeKjsFNu8Fcv8IrX7TdfoKlq1JGbk2ss-Ing_HrX_rPfdh2uNrNs8nQ-LG7Akh2twpXf9l5chfWmY4Nsk6Yly5soabDuJvD-J4RaMg2MYzgciW_EIThdJuh4iG8XeEfaakzibNgftb4Fb8_ls27D8mg8sneA5DQxWaVEqXSFUbItMdB21LEi03mVujQC2mpcmmb_dU8D8lGGOIwWcsFIInjY3TKZbz5ylvCDxoz-RXZrQfZPGTmpXATbwSA7KTX94CsBcyH5IZM7h70XBe-9kcMINk5ZbHeDp4vPMAqIYK21T9mgZC0744xgs7uK8OZzVmpkxye1FBie-CA5AvIXCbyO_xgd-90zX7EJl3b3Xw7koD_cW4PL86SgX0m7B8uz6Yldh4vmy-x9Pd0Ig5rA8XkPh5_9CIA6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48CggQmnrA60EUlTHsfM4IIRaAqutVpV4tDfXTmxUFXaXzZbHT-PfMXYeUFZUXHrguMkkq2Re_jIz_gAe60ipvErykMeGhlyIMlSRQIWUlTJxqm3pq-fv99PRKDs6yg-W4Ec3C-PaKruY6AN1NSndN_IdBNuCxoInO7btijjYK55PP4eOQMoVWjs2jcZChub7V0Rv9bPBHqp6i7Hi5dvd12FLMBCWPIvmoRBa07SK4jJJqDZcWIWrBYzWNMqs4EwrjNWKG2orxpS2SlCmS5ZpLpQw1sR43yuwgklYOBcbpmFfwGDcc3v6wSYuWNoWVB3pjjvGXfcJ_oocIjuXEn_NBa84PX9zzZqqRn3ZhmhjIWf4RFjc-o9f4W242a6-yYvGXe7Akhmvwo3f9mRchfV2koNsk3ZUy5kuaWPgXeCDTxiCycwzkaGbEjegQ3AZTTAhETdG8IF0XZrEGr9van0P3l3KY92H5fFkbB4ASWlUJpUSudIVomeTIwC31LIs0WkV2zgA2mlflu2-7I4e5KP0-IxmcsFgAnjaXzJtNiW5SPhJa1L_Iru1IPunjJxWNoBtb5y9lJqdug7BVEh-yOTuYfEq48UbOQpg45z19hc4GvkE0UEAa52tyjZ61rI31AA2-7MY9lwtS43N5KyWAmGLA88BkL9I4Hl8x5jwH174F5twDb1A7g9GwzW43tQK3Qe2R7A8n52Zdbhafpmf1LMN798Eji_bG34ClhmIlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+retrieval+from+the+web+using+multiple+features&rft.jtitle=Online+information+review&rft.au=Vadivel%2C+A&rft.au=Sural%2C+Shamik&rft.au=Majumdar%2C+A+K&rft.date=2009-01-01&rft.issn=1468-4527&rft.volume=33&rft.issue=6&rft.spage=1169&rft.epage=1188&rft_id=info:doi/10.1108%2F14684520911011061&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-4527&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-4527&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-4527&client=summon |