Image retrieval from the web using multiple features

Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Online information review Ročník 33; číslo 6; s. 1169 - 1188
Hlavní autoři: Vadivel, A., Sural, Shamik, Majumdar, A.K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bradford Emerald Group Publishing Limited 01.01.2009
Emerald
Témata:
ISSN:1468-4527, 1468-4535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths.Design methodology approach - Image semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords.Findings - The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques.Research limitations implications - The features of images used for capturing the semantics may not always describe the content.Practical implications - The indexing mechanism for dynamically growing features is challenging while practically implementing the system.Originality value - A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind.
AbstractList Purpose The main obstacle in realising semanticbased image retrieval from the web is that it is difficult to capture semantic description of an image in lowlevel features. Textbased keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various lowlevel features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and lowlevel features to take advantage of their complementary strengths. Designmethodologyapproach Image semantics are described using both lowlevel features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various lowlevel features such as colour histograms, texture and composite colourtexture features are extracted for supplementing keywords. Findings The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the textbased and the contentbased techniques. Research limitationsimplications The features of images used for capturing the semantics may not always describe the content. Practical implications The indexing mechanism for dynamically growing features is challenging while practically implementing the system. Originalityvalue A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both lowlevel features and keywords as queries for retrieving images from WWW so this is the first of its kind.
Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths.Design methodology approach - Image semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords.Findings - The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques.Research limitations implications - The features of images used for capturing the semantics may not always describe the content.Practical implications - The indexing mechanism for dynamically growing features is challenging while practically implementing the system.Originality value - A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind.
PurposeThe main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths. Design/methodology/approachImage semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords. FindingsThe retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques. Research limitations/implicationsThe features of images used for capturing the semantics may not always describe the content. Practical implicationsThe indexing mechanism for dynamically growing features is challenging while practically implementing the system. Originality/valueA survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind. Adapted from the source document.
Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in low-level features. Text-based keywords can be generated from web documents to capture semantic information for narrowing down the search space. The combination of keywords and various low-level features effectively increases the retrieval precision. The purpose of this paper is to propose a dynamic approach for integrating keywords and low-level features to take advantage of their complementary strengths. Design/methodology/approach - Image semantics are described using both low-level features and keywords. The keywords are constructed from the text located in the vicinity of images embedded in HTML documents. Various low-level features such as colour histograms, texture and composite colour-texture features are extracted for supplementing keywords. Findings - The retrieval performance is better than that of various recently proposed techniques. The experimental results show that the integrated approach has better retrieval performance than both the text-based and the content-based techniques. Research limitations/implications - The features of images used for capturing the semantics may not always describe the content. Practical implications - The indexing mechanism for dynamically growing features is challenging while practically implementing the system. Originality/value - A survey of image retrieval systems for searching images available on the internet found that no internet search engine can handle both low-level features and keywords as queries for retrieving images from WWW so this is the first of its kind. [PUBLICATION ABSTRACT]
Author Sural, Shamik
Majumdar, A.K.
Vadivel, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Vadivel
  fullname: Vadivel, A.
  organization: Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India
– sequence: 2
  givenname: Shamik
  surname: Sural
  fullname: Sural, Shamik
  organization: School of Information Technology, Indian Institute of Technology, Kharagpur, India
– sequence: 3
  givenname: A.K.
  surname: Majumdar
  fullname: Majumdar, A.K.
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22296650$$DView record in Pascal Francis
BookMark eNqN0c9rFDEUB_AgFWxX_wBvQ0G9OPqSSTIzx7J0a6HoQaXH8Gb2pU2bmdkmmar_vSlb9rDFIgTyg8_3JeEdsYNxGomxtxw-cQ7NZy51I5WANu_y0PwFO3w4K6Wq1MFuLepX7CjGGwAuZKUOmTwf8IqKQCk4ukdf2DANRbqm4hd1xRzdeFUMs09u46mwhGkOFF-zlxZ9pDeP84L9XJ3-WH4pL76dnS9PLspeNjyVSnUd1Gte9VpDR1JZbEVb8wZ4Y5UUHbYtoCSwayGws6hAdL1oOqlQkaVqwT5s627CdDdTTGZwsSfvcaRpjqaWlWg0gMjy_bNS1dmClhke78GbaQ5j_oXhrVRQKakzeveIMPbobcCxd9Fsghsw_DFCiFbrbBeMb10fphgD2R3hYB7aYp60JWfqvUzvEiY3jSmg888my23SxUS_d1dhuDW6rmpl5KUwy8vVWSNX383X7GHraaCAfv1fj_v4j8g-NZu1rf4C08u6EA
CitedBy_id crossref_primary_10_4018_IJWP_2019010104
crossref_primary_10_1016_j_protcy_2012_10_061
crossref_primary_10_1007_s00371_013_0818_0
Cites_doi 10.1109/TIP.2005.849770
10.1016/j.patrec.2007.01.004
10.1109/ICIP.1999.822959
10.1117/12.171786
10.1109/93.998050
10.1504/IJSISE.2008.026796
10.1109/TIP.2004.841205
10.1109/TPAMI.2007.1133
10.1109/TMM.2002.1017733
10.1016/j.patrec.2007.03.016
10.1117/12.403774
10.1016/j.patcog.2003.09.010
10.1109/TPAMI.2004.1261083
10.1007/s11042-005-6543-6
10.1109/TIP.2005.847289
10.1016/j.eswa.2006.09.016
ContentType Journal Article
Copyright Emerald Group Publishing Limited
2015 INIST-CNRS
Copyright Emerald Group Publishing Limited 2009
Copyright_xml – notice: Emerald Group Publishing Limited
– notice: 2015 INIST-CNRS
– notice: Copyright Emerald Group Publishing Limited 2009
DBID BSCLL
AAYXX
CITATION
IQODW
0-V
7RV
7SC
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
8FI
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CJNVE
CNYFK
DWQXO
E3H
F2A
FYUFA
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M0P
M1O
M2O
MBDVC
NAPCQ
P5Z
P62
PHGZM
PHGZT
PKEHL
PPXIY
PQBIZ
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
7TA
JG9
DOI 10.1108/14684520911011061
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Social Sciences Premium Collection【Remote access available】
Nursing & Allied Health Database
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Education Collection
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Education Database
Library Science Database
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Social Sciences
ProQuest Central Basic
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
ProQuest One Education
Research Library Prep
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
ProQuest Business Collection
Nursing & Allied Health Premium
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Research Database
Materials Business File
DatabaseTitleList

Library and Information Science Abstracts (LISA)
ProQuest One Education
Materials Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1468-4535
EndPage 1188
ExternalDocumentID 1920045421
22296650
10_1108_14684520911011061
ark_67375_4W2_CWFG84FS_N
10.1108/14684520911011061
Genre Feature
GroupedDBID -ET
.DC
.X0
0-V
0R~
123
1JL
1WG
1XV
29N
2RR
3FY
3V.
4.4
5VS
70U
77K
7RV
7WY
8AO
8FE
8FG
8FI
8FW
8NV
8R4
8R5
9E0
9F-
AAGBP
AAMCF
AAOWE
AAPSD
AAUDR
AAWTL
AAYOK
ABEAN
ABHCV
ABIJV
ABSDC
ABUWG
ACGFS
ACHQT
ADBBV
ADOMW
AEBZA
AEDOK
AEMMR
AENEX
AETHF
AFKRA
AFNZV
AGZLY
AIAFM
AJEBP
AJFKA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AODMV
APPLU
ARALO
ARAPS
ASPBG
ATGMP
AUCOK
AVWKF
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BKEYQ
BLEHN
BPHCQ
BTXLY
BVLZF
BVXVI
CAG
CCPQU
CJNVE
CNYFK
COF
CS3
DU5
DWQXO
EBS
EJD
EX3
FNNZZ
FYUFA
GEA
GEC
GEI
GMM
GMN
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HZ~
IPNFZ
J1Y
JI-
JL0
K6V
K6~
K7-
KLENG
M0C
M0N
M0P
M1O
M2O
M42
NAPCQ
O9-
OHT
OXR
P2P
P62
PCD
PQBIZ
PQEDU
PQQKQ
PRG
PROAC
Q2X
RIG
ROL
SCAQC
SDURG
SLOBJ
SQT
TDX
TEM
TET
TGG
TMD
TMF
TMI
TMK
TMT
TMX
UKHRP
WOW
XSW
Z11
Z12
Z21
Z22
ZCA
BSCLL
77I
AAYXX
ABJNI
ABXQL
ABYQI
ACXJU
AFFHD
AFVFF
AGQPQ
AHAFT
AHMHQ
ALJBP
ASJQZ
CITATION
PHGZM
PHGZT
PPXIY
PQGLB
PRQQA
AABYC
ABKIT
ACZUD
ADIOT
ADQUB
ADYJY
AEACZ
AFQLH
AGSTH
AGUEF
AJNYF
AJZCB
AKXVL
BUONS
H~9
IQODW
7SC
7XB
8FD
E3H
F2A
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
7TA
JG9
ID FETCH-LOGICAL-c481t-55bb07d13c660be45fa929718018f542ba990a4e0fd22abfa502bc28b45a5efe3
IEDL.DBID TMT
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273759300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1468-4527
IngestDate Wed Oct 01 14:54:48 EDT 2025
Thu Oct 02 12:49:33 EDT 2025
Tue Nov 18 05:41:45 EST 2025
Wed Apr 02 07:21:07 EDT 2025
Tue Nov 18 22:42:23 EST 2025
Sat Nov 29 07:38:54 EST 2025
Wed Oct 30 09:31:32 EDT 2024
Tue Nov 26 02:56:51 EST 2024
Wed Jul 31 14:17:48 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Search engines
Worldwide web
Internet
Image retrieval
Search engine
World wide web
Use study
Language English
License https://www.emerald.com/insight/site-policies
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-55bb07d13c660be45fa929718018f542ba990a4e0fd22abfa502bc28b45a5efe3
Notes original-pdf:2640330609.pdf
istex:090208B78C10FF40ECC9ADF28F591A881978DD78
ark:/67375/4W2-CWFG84FS-N
filenameID:2640330609
href:14684520911011061.pdf
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 194503546
PQPubID 27163
PageCount 20
ParticipantIDs crossref_primary_10_1108_14684520911011061
proquest_journals_194503546
proquest_miscellaneous_743286002
emerald_primary_10_1108_14684520911011061
istex_primary_ark_67375_4W2_CWFG84FS_N
proquest_miscellaneous_57743064
pascalfrancis_primary_22296650
crossref_citationtrail_10_1108_14684520911011061
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Online information review
PublicationYear 2009
Publisher Emerald Group Publishing Limited
Emerald
Publisher_xml – name: Emerald Group Publishing Limited
– name: Emerald
References key2022031120430433100_b16
key2022031120430433100_b17
key2022031120430433100_b18
key2022031120430433100_b19
key2022031120430433100_b10
key2022031120430433100_b11
key2022031120430433100_b12
key2022031120430433100_b13
key2022031120430433100_b2
key2022031120430433100_b14
key2022031120430433100_b1
key2022031120430433100_b15
key2022031120430433100_b4
key2022031120430433100_b3
key2022031120430433100_b6
key2022031120430433100_b5
key2022031120430433100_b8
key2022031120430433100_b7
key2022031120430433100_b9
References_xml – ident: key2022031120430433100_b3
  doi: 10.1109/TIP.2005.849770
– ident: key2022031120430433100_b13
  doi: 10.1016/j.patrec.2007.01.004
– ident: key2022031120430433100_b19
  doi: 10.1109/ICIP.1999.822959
– ident: key2022031120430433100_b11
  doi: 10.1117/12.171786
– ident: key2022031120430433100_b18
  doi: 10.1109/93.998050
– ident: key2022031120430433100_b14
  doi: 10.1504/IJSISE.2008.026796
– ident: key2022031120430433100_b2
– ident: key2022031120430433100_b5
  doi: 10.1109/TIP.2004.841205
– ident: key2022031120430433100_b6
  doi: 10.1109/TPAMI.2007.1133
– ident: key2022031120430433100_b17
  doi: 10.1109/TMM.2002.1017733
– ident: key2022031120430433100_b1
– ident: key2022031120430433100_b15
  doi: 10.1016/j.patrec.2007.03.016
– ident: key2022031120430433100_b9
  doi: 10.1117/12.403774
– ident: key2022031120430433100_b10
  doi: 10.1016/j.patcog.2003.09.010
– ident: key2022031120430433100_b4
  doi: 10.1109/TPAMI.2004.1261083
– ident: key2022031120430433100_b12
  doi: 10.1007/s11042-005-6543-6
– ident: key2022031120430433100_b8
– ident: key2022031120430433100_b7
  doi: 10.1109/TIP.2005.847289
– ident: key2022031120430433100_b16
  doi: 10.1016/j.eswa.2006.09.016
SSID ssj0012435
Score 1.808323
Snippet Purpose - The main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in...
Purpose The main obstacle in realising semanticbased image retrieval from the web is that it is difficult to capture semantic description of an image in...
PurposeThe main obstacle in realising semantic-based image retrieval from the web is that it is difficult to capture semantic description of an image in...
SourceID proquest
pascalfrancis
crossref
istex
emerald
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1169
SubjectTerms Active Learning
Algorithms
Exact sciences and technology
Feature selection
Histograms
Image retrieval
Imagery
Indexing
Information and communication sciences
Information Retrieval
Information science. Documentation
Integrative approach
Internet
Keywords
Learning Strategies
Library and information science. General aspects
Online information retrieval
Pornography
Queries
Retrieval
Sciences and techniques of general use
Scientific Concepts
Search engines
Semantics
Semiotics
Statistical analysis
Use and user studies. Information needs
Visual Perception
World Wide Web
Worldwide web
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-09UEf_KiKa23NgxYUlmazyX48iRRPRTkEP9q3kGQTKdW78_Yq_fM7k8ut1sMi-LibCctmJvORmckP4IktjGm7qs1l6XkulXK5KRQyxHXGl7UNLmbPv7yvx-Pm6Kj9kGpz-lRWudKJUVF3U0dn5PsYbCteKlm9mP3ICTSKkqsJQeMqbBZCFCTm7-p8SCIIGfE1Y3ORVKJOSU0CvqF3kipA8KmgqOiCWfrVm7tJa31GBZOmxzULS7CLNb0djdHo1n_-xm24mbxQ9nIpNnfgip9swY3f7ibcgp3U0cD2WGpZIhaypAvugnz7HVURm0dELhRXRo0qDN1JhoqZUTn9V7aqVmTBx_tD-3vwefTq08GbPEEw5E42xSJXylped0XpqopbL1Uw6E-hPeNFE5QU1qA1M9Lz0AlhbDCKC-tEY6Uyygdf3oeNyXTiHwCreeGqzqjW2A6jSN9iIBp4EE1l664MZQZ8xQHt0v3kBJPxTcc4hTd6jWkZPB-mzJaXc1xG_Cyx9V9on67R_kmjZ13IYC8KyEBl5idUKVcrLQ-FPjgcvW7k6KMeZ7B7QYKGCQSnXqGXnMH2Sl500iK9HoQlg8fDKG5_yumYiZ-e9lqh-05BZAbsLxQ4jmuMhu_hpZ_YhuvLRBmdLj2CjcX81O_ANfdzcdzPd-PGOge-9iJR
  priority: 102
  providerName: ProQuest
Title Image retrieval from the web using multiple features
URI https://www.emerald.com/insight/content/doi/10.1108/14684520911011061/full/html
https://api.istex.fr/ark:/67375/4W2-CWFG84FS-N/fulltext.pdf
https://www.proquest.com/docview/194503546
https://www.proquest.com/docview/57743064
https://www.proquest.com/docview/743286002
Volume 33
WOSCitedRecordID wos000273759300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald Management 120
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: TMT
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: 7WY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: M0C
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Education Database
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: M0P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/education
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: M1O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: 7RV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1468-4535
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0012435
  issn: 1468-4527
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwEB6VlgMceBQQoXTxASqBFK2T2HmcEKy6gKDLqizdwiWyExsq2nTZbBE_nxknGyjL68RlpMgTS7EnMx7P4wO4rwOlsjLOfBEZ7gspC18FEjekKJWJEm0LFz0_eJWMRunhYTZeA72shXFplc11jNPTR1VNTmqfErdRC3cNBwi9hqqGBKVx4FNArk2frqz7Hxcnx49nn31ClqIIbAuz4dQ0J5CDyd6kCzSEwmFwugIknCtpA5-_nP6c6fpev7tB-_GVkipVjetqG0CMFd3uDNbw6v_41GtwpT3OsieN_F2HNVNtwuUfmhxuwnZbGsF2WFv7RLLAWqVyA8SLE9RpbO6gvVDuGVW8MDyXMtTwjPLyP7Bl2iOzxjUirW_C2-HuZPDcb7Ec_EKkwcKXUmuelEFUxDHXRkir8GCGhpEHqZUi1ArNohKG2zIMlbZK8lAXYaqFVNJYE92C9eq0MreBJTwo4lLJTOkS3VGToUdruQ3TWCdlZCMP-HKb8qJtdE54G8e5c3h4mq-spgePuldmTZePPzE_bLftX3gfrPD-zJPPSuvBjpOijkvNP1HKXSJzMQ3zwXT4LBXDN_nIg945MeteIFz2GI_bHmwt5S5v1VGdB5mQPJIi9uBeN4p6hIJDqjKnZ3Uu0Q8gb9QD9hsOHMc1Rgt65-8sW3CpCbvRXdVdWF_Mz8w2XCy-LI7qeQ8uJPsHRKfverDxdHc03senl4mPdI8PHB0TDV4TDYmO5fue-3W_AVIJQ64
linkProvider Emerald
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgk48CggQmnrA60EUoTj2HkcEEKFpasuKwSl7c21HRshYHfZbHn8KP4jY28SKCsqLj1wTDJJlMz4G49nxh_AfZ0oVVZZGfPU0pgLYWKVCFSIqZRNc-1MyJ4fDPLhsDg6Kl8twY-2F8aXVbaYGIC6Ghu_Rv4Ig21BU8GzJ5PPsSeN8snVlkFjbhV79vtXjNjqx_1nqN4txnrP93d244ZUIDa8SGaxEFrTvEpSk2VUWy6cwhkCIjRNCic40wrxWXFLXcWY0k4JyrRhheZCCetsis-9ACsI44mvIMtfH3RJC8YDn2doZuKC5U0S1RPt-HPcV5zgUeKjsFNu8Fcv8IrX7TdfoKlq1JGbk2ss-Ing_HrX_rPfdh2uNrNs8nQ-LG7Akh2twpXf9l5chfWmY4Nsk6Yly5soabDuJvD-J4RaMg2MYzgciW_EIThdJuh4iG8XeEfaakzibNgftb4Fb8_ls27D8mg8sneA5DQxWaVEqXSFUbItMdB21LEi03mVujQC2mpcmmb_dU8D8lGGOIwWcsFIInjY3TKZbz5ylvCDxoz-RXZrQfZPGTmpXATbwSA7KTX94CsBcyH5IZM7h70XBe-9kcMINk5ZbHeDp4vPMAqIYK21T9mgZC0744xgs7uK8OZzVmpkxye1FBie-CA5AvIXCbyO_xgd-90zX7EJl3b3Xw7koD_cW4PL86SgX0m7B8uz6Yldh4vmy-x9Pd0Ig5rA8XkPh5_9CIA6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48CggQmnrA60EUlTHsfM4IIRaAqutVpV4tDfXTmxUFXaXzZbHT-PfMXYeUFZUXHrguMkkq2Re_jIz_gAe60ipvErykMeGhlyIMlSRQIWUlTJxqm3pq-fv99PRKDs6yg-W4Ec3C-PaKruY6AN1NSndN_IdBNuCxoInO7btijjYK55PP4eOQMoVWjs2jcZChub7V0Rv9bPBHqp6i7Hi5dvd12FLMBCWPIvmoRBa07SK4jJJqDZcWIWrBYzWNMqs4EwrjNWKG2orxpS2SlCmS5ZpLpQw1sR43yuwgklYOBcbpmFfwGDcc3v6wSYuWNoWVB3pjjvGXfcJ_oocIjuXEn_NBa84PX9zzZqqRn3ZhmhjIWf4RFjc-o9f4W242a6-yYvGXe7Akhmvwo3f9mRchfV2koNsk3ZUy5kuaWPgXeCDTxiCycwzkaGbEjegQ3AZTTAhETdG8IF0XZrEGr9van0P3l3KY92H5fFkbB4ASWlUJpUSudIVomeTIwC31LIs0WkV2zgA2mlflu2-7I4e5KP0-IxmcsFgAnjaXzJtNiW5SPhJa1L_Iru1IPunjJxWNoBtb5y9lJqdug7BVEh-yOTuYfEq48UbOQpg45z19hc4GvkE0UEAa52tyjZ61rI31AA2-7MY9lwtS43N5KyWAmGLA88BkL9I4Hl8x5jwH174F5twDb1A7g9GwzW43tQK3Qe2R7A8n52Zdbhafpmf1LMN798Eji_bG34ClhmIlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+retrieval+from+the+web+using+multiple+features&rft.jtitle=Online+information+review&rft.au=Vadivel%2C+A&rft.au=Sural%2C+Shamik&rft.au=Majumdar%2C+A+K&rft.date=2009-01-01&rft.issn=1468-4527&rft.volume=33&rft.issue=6&rft.spage=1169&rft.epage=1188&rft_id=info:doi/10.1108%2F14684520911011061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-4527&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-4527&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-4527&client=summon