Deep Learning Algorithms for Traffic Forecasting: A Comprehensive Review and Comparison with Classical Ones

Accurate and timely forecasting of critical components is pivotal in intelligent transportation systems and traffic management, crucially mitigating congestion and enhancing safety. This paper aims to comprehensively review deep learning algorithms and classical models employed in traffic forecastin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced transportation Vol. 2024; no. 1
Main Authors: Afandizadeh, Shahriar, Abdolahi, Saeid, Mirzahossein, Hamid
Format: Journal Article
Language:English
Published: London John Wiley & Sons, Inc 11.09.2024
Wiley
Subjects:
ISSN:0197-6729, 2042-3195
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and timely forecasting of critical components is pivotal in intelligent transportation systems and traffic management, crucially mitigating congestion and enhancing safety. This paper aims to comprehensively review deep learning algorithms and classical models employed in traffic forecasting. Spanning diverse traffic datasets, the study encompasses various scenarios, offering a nuanced understanding of traffic forecasting methods. Reviewing 111 seminal research works since the 1980s, encompassing both deep learning and classical models, the paper begins by detailing the data sources utilized in transportation systems. Subsequently, it delves into the theoretical underpinnings of prevalent deep learning algorithms and classical models prevalent in traffic forecasting. Furthermore, it investigates the application of these algorithms and models in forecasting key traffic characteristics, informed by their utility in transport and traffic analyses. Finally, the study elucidates the merits and drawbacks of proposed models through applied research in traffic forecasting. Findings indicate that while deep learning algorithms and classic models serve as valuable tools, their suitability varies across contexts, necessitating careful consideration in future studies. The study underscores research opportunities in road traffic forecasting, providing a comprehensive guide for future endeavors in this domain.
AbstractList Accurate and timely forecasting of critical components is pivotal in intelligent transportation systems and traffic management, crucially mitigating congestion and enhancing safety. This paper aims to comprehensively review deep learning algorithms and classical models employed in traffic forecasting. Spanning diverse traffic datasets, the study encompasses various scenarios, offering a nuanced understanding of traffic forecasting methods. Reviewing 111 seminal research works since the 1980s, encompassing both deep learning and classical models, the paper begins by detailing the data sources utilized in transportation systems. Subsequently, it delves into the theoretical underpinnings of prevalent deep learning algorithms and classical models prevalent in traffic forecasting. Furthermore, it investigates the application of these algorithms and models in forecasting key traffic characteristics, informed by their utility in transport and traffic analyses. Finally, the study elucidates the merits and drawbacks of proposed models through applied research in traffic forecasting. Findings indicate that while deep learning algorithms and classic models serve as valuable tools, their suitability varies across contexts, necessitating careful consideration in future studies. The study underscores research opportunities in road traffic forecasting, providing a comprehensive guide for future endeavors in this domain.
Audience Academic
Author Abdolahi, Saeid
Afandizadeh, Shahriar
Mirzahossein, Hamid
Author_xml – sequence: 1
  givenname: Shahriar
  orcidid: 0000-0001-5137-3673
  surname: Afandizadeh
  fullname: Afandizadeh, Shahriar
– sequence: 2
  givenname: Saeid
  surname: Abdolahi
  fullname: Abdolahi, Saeid
– sequence: 3
  givenname: Hamid
  orcidid: 0000-0003-1615-9553
  surname: Mirzahossein
  fullname: Mirzahossein, Hamid
BookMark eNptkttqGzEQhkVJoY7buz6AoLfdRIeVV-qdcZs2YAiU9FrMamfXcteSK60T-vaV4_QERiAxo-__R4zmklyEGJCQt5xdca7UtWCivjZG84VqXpCZYLWoJDfqgswYN021aIR5RS5z3jImjTL1jHz_iLina4QUfBjochxi8tNml2kfE71P0Pfe0ZuY0EGeCvKBLukq7vYJNxiyf0D6FR88PlII3dMFJJ9joI_Fha5GyNk7GOldwPyavOxhzPjm-ZyTbzef7ldfqvXd59vVcl25WvOpqmtoO9cz4bpG1UKjUFoAtEqglE7wruNaO1SipBg2su5Z47qWS7YoUavlnNyefLsIW7tPfgfpp43g7VMipsFCmrwb0fbctK3TquUt1mqhoJMKmVtI4xa1LtGcvDt57VP8ccA82W08pFCebyVnTWME16pQ1YkaoJj60McpgRswYIKx_FHvS3qpmVFSC3Hkr87wZXW48-6s4P0_gvaQfeln2bIfNlMe4JDz_7g44S7FnBP21vkJJh9DqeNHy5k9Dow9Dox9Hpi_Nf6IfrfuLP4LdwLBmw
CitedBy_id crossref_primary_10_1155_acis_5572638
crossref_primary_10_3390_su17031032
crossref_primary_10_3390_app15148075
crossref_primary_10_3390_app15126863
crossref_primary_10_3390_s25175560
crossref_primary_10_3389_fbuil_2025_1622873
Cites_doi 10.1561/9781601982957
10.1016/j.procs.2018.08.153
10.1609/aaai.v30i1.10011
10.1109/tit.1977.1055750
10.1109/tits.2018.2815678
10.1007/978-981-13-3804-5_12
10.1007/978-3-319-52081-0_9
10.1111/1467-8551.00375
10.1002/ett.4169
10.1155/2021/8878011
10.1016/j.future.2015.11.013
10.1145/3219819.3219922
10.1177/1550147719847440
10.1109/TKDE.2020.3025580
10.1109/tits.2018.2836141
10.1007/s40996-024-01393-x
10.1002/dac.4814
10.1080/13658816.2019.1697879
10.1016/j.knosys.2020.106592
10.1016/s0968-090x(02)00009-8
10.1049/iet-its.2017.0313
10.1561/2000000039
10.7551/mitpress/7496.003.0016
10.1007/978-3-319-27122-4_2
10.1007/978-3-642-27329-2_40
10.1016/j.trc.2014.01.005
10.1109/tits.2018.2835308
10.1201/9781420036206
10.1109/ICEngTechnol.2017.8308186
10.1109/tvcg.2019.2922597
10.3102/00346543059001043
10.1016/j.neucom.2015.09.116
10.1109/tits.2013.2262376
10.1109/ITSC.2017.8317872
10.1007/978-3-642-23223-7_76
10.1109/mvt.2016.2645318
10.1109/I2MTC.2013.6555712
10.1177/1847979018808673
10.1049/iet-net.2016.0001
10.18287/2412-6179-2019-43-4-647-652
10.1109/GLOCOM.2018.8647128
10.1145/1390156.1390294
10.1109/WCSP.2017.8171119
10.1080/10630732.2014.942094
10.1137/1.9781611974973.87
10.1109/SmartCity.2015.63
10.1109/IJCNN.2018.8489600
10.1177/030631277800800305
10.1109/tits.2015.2480157
10.1061/(asce)0733-947x(2006)132:2(114)
10.3141/1968-11
10.1007/978-3-319-97598-6_13
10.1007/978-981-10-2398-9_27
10.3390/fi11040094
10.1007/s42421-020-00020-1
10.1109/access.2020.2991462
10.1016/j.cie.2019.03.020
10.1109/ICRITO48877.2020.9197856
10.1016/j.trc.2018.12.004
10.1609/aaai.v31i1.10735
10.1080/23249935.2019.1637966
10.1109/IWCMC.2019.8766698
10.1186/1476-069x-9-65
10.1109/IRSEC.2016.7983867
10.1109/ICDM.2016.0061
10.1145/3292500.3330884
10.1016/j.neucom.2018.12.016
10.1049/iet-ipr.2019.0549
10.1609/aaai.v37i12.26669
10.1109/IJCNN.2017.7966128
10.1016/j.neucom.2018.08.067
10.1007/s11042-019-7332-y
10.1109/I-SMAC.2017.8058265
10.1016/j.neunet.2014.09.003
10.3390/s19132946
10.1016/j.energy.2018.01.177
10.1109/ICASSP.2013.6638947
10.3141/1751-02
10.1109/access.2021.3050836
10.1007/s11704-011-1192-6
10.1016/j.eswa.2023.119887
10.1080/0144164042000195072
10.1016/j.solener.2016.03.064
10.1007/s11063-018-9804-x
10.1016/j.ijtst.2021.10.002
10.1109/access.2018.2873569
10.1038/323533a0
10.1007/b97391
10.1016/j.asoc.2010.10.015
10.1109/tits.2019.2909904
10.1080/23249935.2014.932469
10.14311/nnw.2019.29.008
10.1109/tase.2018.2795241
10.1145/3532611
10.1115/1.3662552
10.1016/j.physa.2019.122601
10.1109/ICDM.2012.52
10.1109/tits.2004.837813
10.1109/DCOSS.2019.00039
10.1016/j.trc.2020.01.010
10.3390/e21070709
10.1016/j.sysarc.2019.101689
10.1609/aaai.v32i1.11836
10.1109/tits.2020.3041950
10.1109/YAC.2016.7804912
10.4018/978-1-7998-3479-3.ch002
10.1109/FADS.2017.8253194
10.32890/jict2018.17.3.5
10.3390/s22093348
10.1007/s42486-020-00039-x
10.1007/978-3-319-46490-9_47
10.1109/ICMLA.2015.33
10.1016/j.neucom.2017.03.049
10.3390/s17040818
10.1109/mnet.2018.1700411
10.1016/j.trc.2021.103432
10.3390/app10051657
10.1016/j.cogsys.2017.12.002
10.1109/VTC2020-Spring48590.2020.9129440
10.3390/ijgi11020085
10.1109/ITSC.2017.8317886
10.1109/tits.2021.3083957
10.1063/1.5090755
10.1109/tits.2020.2995546
ContentType Journal Article
Copyright COPYRIGHT 2024 John Wiley & Sons, Inc.
Copyright © 2024 Shahriar Afandizadeh et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 John Wiley & Sons, Inc.
– notice: Copyright © 2024 Shahriar Afandizadeh et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
N95
3V.
7ST
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
SOI
DOA
DOI 10.1155/2024/9981657
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest ABI/INFORM Global
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2042-3195
Editor Ruimin Li
Editor_xml – fullname: Ruimin Li
ExternalDocumentID oai_doaj_org_article_f19bbc85b1be4565ad35e0c639c648ad
A809538225
10_1155_2024_9981657
GeographicLocations Trinidad and Tobago
GeographicLocations_xml – name: Trinidad and Tobago
GroupedDBID -~X
..I
05W
0R~
1OC
24P
29J
31~
3SF
4.4
52U
5GY
7WY
8-1
8FL
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYXX
AAZKR
ABDBF
ABDPE
ABJCF
ABUWG
ACBWZ
ACCMX
ACIWK
ACNCT
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADNMO
AEFGJ
AEIMD
AENEX
AEUYN
AFBPY
AFFHD
AFKRA
AFPKN
AFRAH
AGXDD
AI.
AIDQK
AIDYY
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAAKF
BAIFH
BBTPI
BCNDV
BDRZF
BENPR
BEZIV
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
CITATION
DU5
DWQXO
EBS
EJD
ESX
FEDTE
FRNLG
G-S
GODZA
GROUPED_DOAJ
H13
HCIFZ
HVGLF
HZ~
I-F
IAO
IOF
ITC
LITHE
LPU
M0C
M7S
MY~
N95
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PTHSS
PV9
RIWAO
RJQFR
RZL
SUPJJ
TN5
TUS
VH1
WBKPD
WH7
3V.
7ST
7XB
8FD
8FE
8FG
8FK
AAJEY
AZQEC
C1K
FR3
K60
K6~
KR7
L.-
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c481t-44abdcf02cd75428e2582aab52e33c21dd188ce52ab50e734f07cdb1306e73b83
IEDL.DBID 7WY
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317182900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0197-6729
IngestDate Tue Oct 14 18:40:14 EDT 2025
Fri Jul 25 12:22:05 EDT 2025
Sat Nov 29 11:55:11 EST 2025
Tue Nov 04 18:11:17 EST 2025
Sat Nov 29 09:16:32 EST 2025
Tue Nov 18 21:02:55 EST 2025
Sat Nov 29 01:38:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-44abdcf02cd75428e2582aab52e33c21dd188ce52ab50e734f07cdb1306e73b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5137-3673
0000-0003-1615-9553
OpenAccessLink https://www.proquest.com/docview/3107792185?pq-origsite=%requestingapplication%
PQID 3107792185
PQPubID 1006382
ParticipantIDs doaj_primary_oai_doaj_org_article_f19bbc85b1be4565ad35e0c639c648ad
proquest_journals_3107792185
gale_infotracgeneralonefile_A809538225
gale_infotracacademiconefile_A809538225
gale_businessinsightsgauss_A809538225
crossref_citationtrail_10_1155_2024_9981657
crossref_primary_10_1155_2024_9981657
PublicationCentury 2000
PublicationDate 2024-09-11
PublicationDateYYYYMMDD 2024-09-11
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of advanced transportation
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_10_21_2
e_1_2_10_109_2
e_1_2_10_40_2
e_1_2_10_131_2
e_1_2_10_154_2
Cui Z. (e_1_2_10_142_2) 2018
e_1_2_10_70_2
e_1_2_10_116_2
e_1_2_10_139_2
e_1_2_10_93_2
e_1_2_10_2_2
Vargas R. (e_1_2_10_44_2) 2017; 2
e_1_2_10_74_2
e_1_2_10_112_2
e_1_2_10_135_2
e_1_2_10_150_2
e_1_2_10_37_2
e_1_2_10_97_2
e_1_2_10_55_2
e_1_2_10_78_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_79_2
e_1_2_10_32_2
e_1_2_10_51_2
Abadi A. (e_1_2_10_105_2) 2014; 16
e_1_2_10_143_2
e_1_2_10_147_2
Dertat A. (e_1_2_10_71_2) 2017; 3
e_1_2_10_128_2
e_1_2_10_82_2
e_1_2_10_29_2
e_1_2_10_63_2
e_1_2_10_101_2
e_1_2_10_124_2
e_1_2_10_48_2
e_1_2_10_86_2
e_1_2_10_25_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
e_1_2_10_41_2
e_1_2_10_129_2
e_1_2_10_155_2
e_1_2_10_90_2
e_1_2_10_19_2
e_1_2_10_94_2
e_1_2_10_117_2
e_1_2_10_3_2
e_1_2_10_52_2
e_1_2_10_136_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_75_2
e_1_2_10_98_2
e_1_2_10_113_2
e_1_2_10_151_2
e_1_2_10_56_2
e_1_2_10_132_2
e_1_2_10_57_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_118_2
Lv Y. (e_1_2_10_120_2) 2014; 16
e_1_2_10_144_2
e_1_2_10_148_2
e_1_2_10_60_2
e_1_2_10_83_2
e_1_2_10_106_2
Box G. E. (e_1_2_10_80_2) 2015
e_1_2_10_125_2
e_1_2_10_26_2
e_1_2_10_49_2
Goodfellow I. (e_1_2_10_61_2) 2016
e_1_2_10_87_2
e_1_2_10_102_2
e_1_2_10_140_2
e_1_2_10_121_2
e_1_2_10_23_2
e_1_2_10_42_2
e_1_2_10_107_2
Shi X. (e_1_2_10_50_2) 2015; 28
e_1_2_10_156_2
e_1_2_10_91_2
e_1_2_10_72_2
e_1_2_10_114_2
e_1_2_10_137_2
e_1_2_10_39_2
e_1_2_10_95_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_76_2
e_1_2_10_110_2
e_1_2_10_133_2
e_1_2_10_152_2
e_1_2_10_35_2
e_1_2_10_99_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_58_2
e_1_2_10_30_2
e_1_2_10_119_2
e_1_2_10_145_2
Mu R. (e_1_2_10_69_2) 2019; 13
Ketkar N. (e_1_2_10_64_2) 2017; 1
e_1_2_10_149_2
e_1_2_10_103_2
e_1_2_10_126_2
e_1_2_10_84_2
e_1_2_10_27_2
e_1_2_10_65_2
e_1_2_10_122_2
e_1_2_10_141_2
e_1_2_10_46_2
e_1_2_10_88_2
e_1_2_10_20_2
e_1_2_10_43_2
Pozanco A. (e_1_2_10_18_2) 2016
e_1_2_10_108_2
e_1_2_10_130_2
e_1_2_10_92_2
e_1_2_10_1_2
e_1_2_10_138_2
e_1_2_10_17_2
e_1_2_10_73_2
e_1_2_10_96_2
e_1_2_10_115_2
e_1_2_10_5_2
e_1_2_10_134_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_77_2
e_1_2_10_153_2
e_1_2_10_9_2
e_1_2_10_59_2
e_1_2_10_31_2
Mao J. (e_1_2_10_54_2) 2014
Farhath Z. A. (e_1_2_10_85_2) 2016; 5
Litman T. (e_1_2_10_12_2) 2009
Hasnat A. (e_1_2_10_111_2) 2019; 19
Mikolov T. (e_1_2_10_53_2) 2010
e_1_2_10_146_2
e_1_2_10_81_2
Liu Z. (e_1_2_10_7_2) 2007; 7
e_1_2_10_127_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_104_2
e_1_2_10_123_2
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_66_2
e_1_2_10_89_2
e_1_2_10_100_2
References_xml – volume: 16
  start-page: 653
  year: 2014
  ident: e_1_2_10_105_2
  article-title: Traffic flow prediction for road transportation networks with limited traffic data
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: e_1_2_10_65_2
– ident: e_1_2_10_42_2
  doi: 10.1561/9781601982957
– ident: e_1_2_10_49_2
  doi: 10.1016/j.procs.2018.08.153
– ident: e_1_2_10_148_2
  doi: 10.1609/aaai.v30i1.10011
– ident: e_1_2_10_91_2
  doi: 10.1109/tit.1977.1055750
– volume: 1
  year: 2017
  ident: e_1_2_10_64_2
  article-title: Deep learning with Python
  publication-title: Springer
– year: 2010
  ident: e_1_2_10_53_2
  article-title: Recurrent neural network based language model
  publication-title: Paper presented at the Interspeech
– ident: e_1_2_10_31_2
  doi: 10.1109/tits.2018.2815678
– ident: e_1_2_10_17_2
– ident: e_1_2_10_2_2
  doi: 10.1007/978-981-13-3804-5_12
– ident: e_1_2_10_32_2
  doi: 10.1007/978-3-319-52081-0_9
– ident: e_1_2_10_15_2
  doi: 10.1111/1467-8551.00375
– volume: 16
  start-page: 865
  year: 2014
  ident: e_1_2_10_120_2
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: e_1_2_10_10_2
  doi: 10.1002/ett.4169
– ident: e_1_2_10_19_2
  doi: 10.1155/2021/8878011
– ident: e_1_2_10_23_2
  doi: 10.1016/j.future.2015.11.013
– ident: e_1_2_10_150_2
  doi: 10.1145/3219819.3219922
– ident: e_1_2_10_154_2
  doi: 10.1177/1550147719847440
– ident: e_1_2_10_14_2
  doi: 10.1109/TKDE.2020.3025580
– ident: e_1_2_10_113_2
  doi: 10.1109/tits.2018.2836141
– ident: e_1_2_10_130_2
  doi: 10.1007/s40996-024-01393-x
– ident: e_1_2_10_1_2
  doi: 10.1002/dac.4814
– ident: e_1_2_10_128_2
  doi: 10.1080/13658816.2019.1697879
– ident: e_1_2_10_143_2
  doi: 10.1016/j.knosys.2020.106592
– ident: e_1_2_10_95_2
  doi: 10.1016/s0968-090x(02)00009-8
– ident: e_1_2_10_102_2
  doi: 10.1049/iet-its.2017.0313
– volume: 2
  start-page: 11
  year: 2017
  ident: e_1_2_10_44_2
  article-title: Deep learning: previous and present applications
  publication-title: Journal of awareness
– ident: e_1_2_10_46_2
  doi: 10.1561/2000000039
– ident: e_1_2_10_84_2
  doi: 10.7551/mitpress/7496.003.0016
– ident: e_1_2_10_24_2
  doi: 10.1007/978-3-319-27122-4_2
– year: 2014
  ident: e_1_2_10_54_2
  article-title: Deep captioning with multimodal recurrent neural networks (m-rnn)
  publication-title: arXiv preprint arXiv:1412.6632
– ident: e_1_2_10_93_2
  doi: 10.1007/978-3-642-27329-2_40
– ident: e_1_2_10_132_2
  doi: 10.1016/j.trc.2014.01.005
– ident: e_1_2_10_77_2
– ident: e_1_2_10_152_2
  doi: 10.1109/tits.2018.2835308
– volume-title: Transportation Cost and Benefit Analysis
  year: 2009
  ident: e_1_2_10_12_2
– ident: e_1_2_10_82_2
  doi: 10.1201/9781420036206
– volume: 19
  start-page: 12
  year: 2019
  ident: e_1_2_10_111_2
  article-title: Traffic flow prediction performance comparison between ARIMA and Monte Carlo simulation
  publication-title: Transport and Logistics the International Journal
– ident: e_1_2_10_60_2
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: e_1_2_10_153_2
  doi: 10.1109/tvcg.2019.2922597
– ident: e_1_2_10_21_2
  doi: 10.3102/00346543059001043
– volume: 13
  start-page: 1738
  year: 2019
  ident: e_1_2_10_69_2
  article-title: A review of deep learning research
  publication-title: KSII Transactions on Internet and Information Systems (TIIS)
– ident: e_1_2_10_73_2
  doi: 10.1016/j.neucom.2015.09.116
– ident: e_1_2_10_109_2
  doi: 10.1109/tits.2013.2262376
– ident: e_1_2_10_100_2
  doi: 10.1109/ITSC.2017.8317872
– ident: e_1_2_10_76_2
– ident: e_1_2_10_6_2
  doi: 10.1007/978-3-642-23223-7_76
– ident: e_1_2_10_36_2
  doi: 10.1109/mvt.2016.2645318
– ident: e_1_2_10_89_2
  doi: 10.1109/I2MTC.2013.6555712
– ident: e_1_2_10_83_2
  doi: 10.1177/1847979018808673
– ident: e_1_2_10_37_2
  doi: 10.1049/iet-net.2016.0001
– ident: e_1_2_10_78_2
  doi: 10.18287/2412-6179-2019-43-4-647-652
– volume: 5
  start-page: 104
  year: 2016
  ident: e_1_2_10_85_2
  article-title: A survey on ARIMA forecasting using time series model
  publication-title: International Journal of Computer Science and Mobile Computing
– ident: e_1_2_10_45_2
– ident: e_1_2_10_63_2
  doi: 10.1109/GLOCOM.2018.8647128
– ident: e_1_2_10_72_2
  doi: 10.1145/1390156.1390294
– ident: e_1_2_10_99_2
  doi: 10.1109/WCSP.2017.8171119
– ident: e_1_2_10_155_2
– ident: e_1_2_10_40_2
  doi: 10.1080/10630732.2014.942094
– ident: e_1_2_10_122_2
  doi: 10.1137/1.9781611974973.87
– ident: e_1_2_10_97_2
  doi: 10.1109/SmartCity.2015.63
– ident: e_1_2_10_123_2
  doi: 10.1109/IJCNN.2018.8489600
– volume: 7
  start-page: 105
  year: 2007
  ident: e_1_2_10_7_2
  article-title: A survey of intelligence methods in urban traffic signal control
  publication-title: IJCSNS International Journal of Computer Science and Network Security
– ident: e_1_2_10_16_2
  doi: 10.1177/030631277800800305
– ident: e_1_2_10_136_2
– ident: e_1_2_10_107_2
– ident: e_1_2_10_39_2
  doi: 10.1109/tits.2015.2480157
– ident: e_1_2_10_139_2
– ident: e_1_2_10_147_2
  doi: 10.1061/(asce)0733-947x(2006)132:2(114)
– ident: e_1_2_10_8_2
  doi: 10.3141/1968-11
– ident: e_1_2_10_26_2
  doi: 10.1007/978-3-319-97598-6_13
– ident: e_1_2_10_33_2
  doi: 10.1007/978-981-10-2398-9_27
– ident: e_1_2_10_4_2
  doi: 10.3390/fi11040094
– ident: e_1_2_10_13_2
  doi: 10.1007/s42421-020-00020-1
– ident: e_1_2_10_126_2
  doi: 10.1109/access.2020.2991462
– ident: e_1_2_10_51_2
– ident: e_1_2_10_27_2
  doi: 10.1016/j.cie.2019.03.020
– ident: e_1_2_10_5_2
  doi: 10.1109/ICRITO48877.2020.9197856
– ident: e_1_2_10_96_2
  doi: 10.1016/j.trc.2018.12.004
– ident: e_1_2_10_121_2
  doi: 10.1609/aaai.v31i1.10735
– ident: e_1_2_10_25_2
  doi: 10.1080/23249935.2019.1637966
– ident: e_1_2_10_110_2
  doi: 10.1109/IWCMC.2019.8766698
– ident: e_1_2_10_11_2
  doi: 10.1186/1476-069x-9-65
– volume: 28
  year: 2015
  ident: e_1_2_10_50_2
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_86_2
  doi: 10.1109/IRSEC.2016.7983867
– volume-title: Time Series Analysis: Forecasting and Control
  year: 2015
  ident: e_1_2_10_80_2
– ident: e_1_2_10_137_2
  doi: 10.1109/ICDM.2016.0061
– ident: e_1_2_10_125_2
  doi: 10.1145/3292500.3330884
– ident: e_1_2_10_55_2
  doi: 10.1016/j.neucom.2018.12.016
– ident: e_1_2_10_75_2
  doi: 10.1049/iet-ipr.2019.0549
– ident: e_1_2_10_156_2
  doi: 10.1609/aaai.v37i12.26669
– ident: e_1_2_10_146_2
  doi: 10.1109/IJCNN.2017.7966128
– ident: e_1_2_10_101_2
  doi: 10.1016/j.neucom.2018.08.067
– ident: e_1_2_10_79_2
  doi: 10.1007/s11042-019-7332-y
– ident: e_1_2_10_34_2
  doi: 10.1109/I-SMAC.2017.8058265
– ident: e_1_2_10_66_2
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_10_57_2
  doi: 10.3390/s19132946
– year: 2018
  ident: e_1_2_10_142_2
  article-title: Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction
  publication-title: arXiv preprint arXiv:1801.02143
– ident: e_1_2_10_48_2
  doi: 10.1016/j.energy.2018.01.177
– ident: e_1_2_10_52_2
  doi: 10.1109/ICASSP.2013.6638947
– ident: e_1_2_10_134_2
  doi: 10.3141/1751-02
– ident: e_1_2_10_103_2
  doi: 10.1109/access.2021.3050836
– ident: e_1_2_10_108_2
  doi: 10.1007/s11704-011-1192-6
– ident: e_1_2_10_145_2
  doi: 10.1016/j.eswa.2023.119887
– ident: e_1_2_10_131_2
  doi: 10.1080/0144164042000195072
– ident: e_1_2_10_88_2
  doi: 10.1016/j.solener.2016.03.064
– ident: e_1_2_10_115_2
  doi: 10.1007/s11063-018-9804-x
– ident: e_1_2_10_149_2
– ident: e_1_2_10_104_2
  doi: 10.1016/j.ijtst.2021.10.002
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_10_61_2
– ident: e_1_2_10_30_2
  doi: 10.1109/access.2018.2873569
– ident: e_1_2_10_74_2
– ident: e_1_2_10_70_2
  doi: 10.1038/323533a0
– ident: e_1_2_10_81_2
  doi: 10.1007/b97391
– ident: e_1_2_10_90_2
  doi: 10.1016/j.asoc.2010.10.015
– ident: e_1_2_10_114_2
  doi: 10.1109/tits.2019.2909904
– ident: e_1_2_10_135_2
– year: 2016
  ident: e_1_2_10_18_2
  article-title: Urban traffic control assisted by AI planning and relational learning
  publication-title: Paper presented at the ATT@ IJCAI
– volume: 3
  year: 2017
  ident: e_1_2_10_71_2
  article-title: Applied deep learning-part 3: autoencoders
  publication-title: Data Science
– ident: e_1_2_10_94_2
  doi: 10.1080/23249935.2014.932469
– ident: e_1_2_10_3_2
  doi: 10.14311/nnw.2019.29.008
– ident: e_1_2_10_38_2
  doi: 10.1109/tase.2018.2795241
– ident: e_1_2_10_62_2
– ident: e_1_2_10_129_2
  doi: 10.1145/3532611
– ident: e_1_2_10_92_2
  doi: 10.1115/1.3662552
– ident: e_1_2_10_112_2
  doi: 10.1016/j.physa.2019.122601
– ident: e_1_2_10_119_2
  doi: 10.1109/ICDM.2012.52
– ident: e_1_2_10_133_2
  doi: 10.1109/tits.2004.837813
– ident: e_1_2_10_117_2
  doi: 10.1109/DCOSS.2019.00039
– ident: e_1_2_10_127_2
  doi: 10.1016/j.trc.2020.01.010
– ident: e_1_2_10_28_2
  doi: 10.3390/e21070709
– ident: e_1_2_10_67_2
  doi: 10.1016/j.sysarc.2019.101689
– ident: e_1_2_10_124_2
  doi: 10.1609/aaai.v32i1.11836
– ident: e_1_2_10_35_2
  doi: 10.1109/tits.2020.3041950
– ident: e_1_2_10_56_2
  doi: 10.1109/YAC.2016.7804912
– ident: e_1_2_10_59_2
  doi: 10.4018/978-1-7998-3479-3.ch002
– ident: e_1_2_10_106_2
  doi: 10.1109/FADS.2017.8253194
– ident: e_1_2_10_29_2
  doi: 10.32890/jict2018.17.3.5
– ident: e_1_2_10_144_2
  doi: 10.3390/s22093348
– ident: e_1_2_10_118_2
  doi: 10.1007/s42486-020-00039-x
– ident: e_1_2_10_41_2
  doi: 10.1007/978-3-319-46490-9_47
– ident: e_1_2_10_87_2
  doi: 10.1109/ICMLA.2015.33
– ident: e_1_2_10_116_2
  doi: 10.1016/j.neucom.2017.03.049
– ident: e_1_2_10_138_2
  doi: 10.3390/s17040818
– ident: e_1_2_10_140_2
  doi: 10.1109/mnet.2018.1700411
– ident: e_1_2_10_20_2
  doi: 10.1016/j.trc.2021.103432
– ident: e_1_2_10_68_2
  doi: 10.3390/app10051657
– ident: e_1_2_10_151_2
  doi: 10.1016/j.cogsys.2017.12.002
– ident: e_1_2_10_141_2
  doi: 10.1109/VTC2020-Spring48590.2020.9129440
– ident: e_1_2_10_9_2
  doi: 10.3390/ijgi11020085
– ident: e_1_2_10_98_2
  doi: 10.1109/ITSC.2017.8317886
– ident: e_1_2_10_43_2
– ident: e_1_2_10_47_2
  doi: 10.1109/tits.2021.3083957
– ident: e_1_2_10_22_2
  doi: 10.1063/1.5090755
– ident: e_1_2_10_58_2
  doi: 10.1109/tits.2020.2995546
SSID ssj0039594
Score 2.4099507
SecondaryResourceType review_article
Snippet Accurate and timely forecasting of critical components is pivotal in intelligent transportation systems and traffic management, crucially mitigating congestion...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Analysis
Artificial intelligence
Computational linguistics
Critical components
Data mining
Deep learning
Forecasting
Forecasts and trends
Information sources
Intelligent transportation systems
Language processing
Learning algorithms
Literature reviews
Machine learning
Natural language interfaces
Safety management
Social networks
Traffic analysis
Traffic congestion
Traffic management
Transportation models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxIEeKh6turzkA9BDFbGJ7cTmtjxWHNCWQ1txs_zKgrpd0Gbh9zNje9EigXrpJVKckZLMe5zJN4QcCKvQjupC1K0vuPVgc9KoAkK_Y1Iq38b9jt9XzWgkb27U9dKoL-wJS_DAiXHHbamsdVLY0gbMPoxnIvQdBFZXc2k8et9-oxbFVPLBTAnFF23uQmCFz4-hsChrDENLASji9L_njWOIGa6TTzk3pIP0TBvkQ5huko9LiIFb5M95CA80g6KO6WAyvofq_vZvRyH5pBB4EBGC4rxNZzrsaD6hA4o2Pwu3qVWdpq8B1Ex9vJCGEFLcj6VxQiZKjf4AD_iZ_Bpe_Dy7LPK8hMJxWc4Lzo31ru1XzuNcWxkqIStjrKgCY64qvS-ldEFUsNQPDeMgB-ctRLEazqxkX8jK9H4avhLa2oaLwKxhHGui2ratY4jjDebbKln3yPcFE7XLYOI402KiY1EhhEaW68zyHjl8oX5IIBrv0J2iPF5oEPo6LoBC6KwQ-l8KATdDaeo8xBMOHW5zdGPz2HV6IBFgD7Ii0SPfIh0aMjy6M_l_BGAAQmK9ojx6RTlOgOBvEe4uNEhnV9BpyJ-bRkEmJbb_x-vtkDVkGbaslOUuWZnPHsMeWXVP87tuth-t4BkAdQx6
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Algorithms for Traffic Forecasting: A Comprehensive Review and Comparison with Classical Ones
URI https://www.proquest.com/docview/3107792185
https://doaj.org/article/f19bbc85b1be4565ad35e0c639c648ad
Volume 2024
WOSCitedRecordID wos001317182900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: 7WY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: M0C
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: M7S
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: P5Z
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039594
  issn: 0197-6729
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPvFGXlpUPPA4o6iaOE7sXtC2tQKJLxLPlYvmVtGrZXTZbfj8zjlNaiXLhYinxKIky45nxZPJ9hDzjRuI6KhJe1C7JjYM1J7RMIPRbJoR0dah3fH1fTibi8FBWseDWxrbK3icGR-1mFmvkW5CGlKWEgMRfz38myBqFX1cjhcZNsgqBmiODQfntqPfETHLZYXvLMikgi-wb3znHPX--BVuNtMDAdCkkBeT-6_xzCDr7d__3ce-ROzHdpOPOPu6TG376gKxdAiF8SE7feD-nEWe1oeOzBq6zPP7RUshnKcQyBJmgSOFpdYtN0tt0TNGNLPxx1_1Ouw8MVE9dmOh4DSmWeGkg3URDoB_AqT4iX_b3Pu--TSIFQ2JzkS6TPNfG2XqUWYdUucJnXGRaG555xmyWOpcKYT3P4NTIlywH1VpnIDAWcGQEe0xWprOpXye0NmXOPTOa5bjNKkxdW4bQ4OARaimKAXnVa0HZiE-ONBlnKuxTOFeoMxV1NiDPL6TnHS7HNXI7qNALGUTTDidmi0bFxanqVBpjBTep8Zjhase4H1lI3myRC-3gZmgOKvKCwtBi5aRt9HnbqrFAzD5ItPiAvAxy6Bvg0a2OvzjAC0CUrSuSL65INh3G-N8EN3v7UtG7tOqPcT359_QGuY0vA_tb0nSTrCwX5_4puWV_LU_axTAsliFZ3dmbVB-HoRoB48FoF8fyE4wV_w7z1buD6ug3Hx4i3A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VFAk48I0IFNgDhQOyGnt37V0khAKlatQ05FBQe1r2yymiJCFOQfwpfiMz9rq0EuXWA5dIsUfJev12ZnY8fo-Qp8IqXEd5IvLSJ9x6WHPSqARCv2NSKl_W9Y6Pw2I0kvv7arxCfrXvwmBbZesTa0ftZw5r5BuQhhSFgoAkXs-_JagahU9XWwmNBhY74ecP2LJVrwabcH_Xs2zr3d7b7SSqCiSOy3SZcG6sd2Uvcx7VX2XIhMyMsSILjLks9T6V0gWRwaFeKBiH0Tpvwdfn8M1KBr97iaxyAHuvQ1bHg93xQev7mRKqYRNXRZJD3tq22guBVQa-AZubNMdQeCoI1loB50WEOsxt3fjfJugmuR4TatpvVsAtshKmt8m1UzSLd8iXzRDmNDLJTmj_aALjXh5-rShk7BSiNdJoUBQpdabCNvCXtE_RUS7CYdPfT5tHKNRMfX2iUW6kWMSmtawoQp2-h7Bxl3y4kKu9RzrT2TTcJ7S0BReBWcM4biRzW5aOIfk5-LxSybxLXrR3XbvIwI5CIEe63okJoREjOmKkS9ZPrOcN88g5dm8QQCc2yBdeH5gtJjq6H12mylonhU1twBzeeCZCz0F66nIujYc_Q_jpqHwKHxXWhqqJOa4q3ZfISgippOiS57Udej8YujPxJQ6YAOQRO2P57IzlpGFR_5vhWotnHf1npf-A-cG_Tz8hV7b3dod6OBjtPCRXcWKwmydN10hnuTgOj8hl9335uVo8jkuVkk8XDf7f8zV6fg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECuyBwgFZib1ee42EUEoaUbUKEQLU23ZfThElCXEK4q_x65ix16WVKLceuESyPXI2m3l7_H0AT4UpyI6ySGSli1Lj0OakLiIM_ZZLWbiy7nd82svHY7m_X0zW4Ff7LgyNVbY-sXbUbm6pR97DNCTPCwxIoleGsYjJcPR68S0iBil60trSaTQqsut__sDyrXq1M8T_ejNJRtsf3ryNAsNAZFMZr6I01cbZsp9YR0yw0idCJlobkXjObRI7F0tpvUjwVN_nPMWVW2fQ72d4ZCTH-16C9Zxj0dOB9a3t8eR9Gwd4IYoGWbzIowxz2HbsXgjqOKQ9LHTijMLiqYBY8wacFx3qkDe68T9v1k24HhJtNmgs4xas-dltuHYKfvEOfBl6v2ABYXbKBkdTXPfq8GvFMJNnGMUJXoMReanVFY2Hv2QDRg506Q-buX_WPFpheubqCw2jI6PmNqvpRskE2DsMJ3fh44X82nvQmc1n_j6w0uSp8NxonlKBmZmytJxA0dEXloXMuvCi1QBlAzI7EYQcqbpCE0KRvqigL13YPJFeNIgk58htkTKdyBCOeH1ivpyq4JZUGRfGWClMbDzl9tpx4fsW01abpVI7_DJSRRUYUfGjop5RNdXHVaUGktAKMcUUXXhey5FXxKVbHV7uwA0gfLEzks_OSE4bdPW_CW60uq2CX63UH8V-8O_LT-AKarza2xnvPoSrtC805BPHG9BZLY_9I7hsv68-V8vHwWoZHFy07v8G0PqDGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithms+for+Traffic+Forecasting%3A+A+Comprehensive+Review+and+Comparison+with+Classical+Ones&rft.jtitle=Journal+of+advanced+transportation&rft.au=Afandizadeh%2C+Shahriar&rft.au=Abdolahi%2C+Saeid&rft.au=Mirzahossein%2C+Hamid&rft.date=2024-09-11&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1155%2F2024%2F9981657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2024_9981657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon