A Deep Q-Learning Network for Ship Stowage Planning Problem

Ship stowage plan is the management connection of quae crane scheduling and yard crane scheduling. The quality of ship stowage plan affects the productivity greatly. Previous studies mainly focuses on solving stowage planning problem with online searching algorithm, efficiency of which is significan...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Polish maritime research Ročník 24; číslo 1; s. 102 - 109
Hlavní autori: Shen, Yifan, Zhao, Ning, Xia, Mengjue, Du, Xueqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Gdansk Sciendo 27.11.2017
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Predmet:
ISSN:2083-7429, 1233-2585, 2083-7429
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Ship stowage plan is the management connection of quae crane scheduling and yard crane scheduling. The quality of ship stowage plan affects the productivity greatly. Previous studies mainly focuses on solving stowage planning problem with online searching algorithm, efficiency of which is significantly affected by case size. In this study, a Deep Q-Learning Network (DQN) is proposed to solve ship stowage planning problem. With DQN, massive calculation and training is done in pre-training stage, while in application stage stowage plan can be made in seconds. To formulate network input, decision factors are analyzed to compose feature vector of stowage plan. States subject to constraints, available action and reward function of Q-value are designed. With these information and design, an 8-layer DQN is formulated with an evaluation function of mean square error is composed to learn stowage planning. At the end of this study, several production cases are solved with proposed DQN to validate the effectiveness and generalization ability. Result shows a good availability of DQN to solve ship stowage planning problem.
AbstractList Ship stowage plan is the management connection of quae crane scheduling and yard crane scheduling. The quality of ship stowage plan affects the productivity greatly. Previous studies mainly focuses on solving stowage planning problem with online searching algorithm, efficiency of which is significantly affected by case size. In this study, a Deep Q-Learning Network (DQN) is proposed to solve ship stowage planning problem. With DQN, massive calculation and training is done in pre-training stage, while in application stage stowage plan can be made in seconds. To formulate network input, decision factors are analyzed to compose feature vector of stowage plan. States subject to constraints, available action and reward function of Q-value are designed. With these information and design, an 8-layer DQN is formulated with an evaluation function of mean square error is composed to learn stowage planning. At the end of this study, several production cases are solved with proposed DQN to validate the effectiveness and generalization ability. Result shows a good availability of DQN to solve ship stowage planning problem.
Author Shen, Yifan
Du, Xueqiang
Zhao, Ning
Xia, Mengjue
Author_xml – sequence: 1
  givenname: Yifan
  surname: Shen
  fullname: Shen, Yifan
  organization: Scientific Research Academy, Shanghai Maritime University, Shanghai, China
– sequence: 2
  givenname: Ning
  surname: Zhao
  fullname: Zhao, Ning
  organization: Logistics Engineering College, Shanghai Maritime University, Shanghai, China
– sequence: 3
  givenname: Mengjue
  surname: Xia
  fullname: Xia, Mengjue
  organization: Scientific Research Academy, Shanghai Maritime University, Shanghai, China
– sequence: 4
  givenname: Xueqiang
  surname: Du
  fullname: Du, Xueqiang
  organization: Logistics Engineering College, Shanghai Maritime University, Shanghai, China
BookMark eNqlkEtr3DAUhUVIII92m7Whayd62hIli5C-AkObkHQtruSrqacey5U1DPn3sTMtKaVZZaWLON_h8B2T_T72SMgpo2dMMXU-xHUqOWV1SRlje-SIUy3KWnKz_9d9SI7HcUWpqrVUR-T9ZfEBcShuywVC6tt-WXzFvI3pZxFiKu5-tENxl-MWlljcdNA_JW5SdB2u35CDAN2Ib3-_J-T7p4_3V1_KxbfP11eXi9JLzXIphEbtfOVNoIFrCRI8Q1krh9LzwCsFgMF4o0G4IKRTruKoGDLNAg9UnJDrXW8TYWWH1K4hPdgIrX36iGlpIeXWd2gdFbXzvvEGmWzAaSllxQ3X3qM3ppm63u26hhR_bXDMdhU3qZ_m20mR1spUQkwpuUv5FMcxYbC-zZDb2OcEbWcZtbNyOyu3s3I7K5-ws3-wP2NfBC52wBa6jKnBZdo8TMfzqP-DXI6CUf4ans38I-3jrZA
CitedBy_id crossref_primary_10_2112_SI97_025_1
crossref_primary_10_3390_electronics13091710
crossref_primary_10_2478_pomr_2024_0014
crossref_primary_10_2112_SI97_029_1
crossref_primary_10_3233_JIFS_169758
crossref_primary_10_1016_j_cie_2024_110155
crossref_primary_10_1016_j_tre_2022_102722
crossref_primary_10_1016_j_ejor_2023_12_018
crossref_primary_10_1186_s41072_023_00155_8
crossref_primary_10_1007_s10732_024_09545_y
crossref_primary_10_5004_dwt_2019_23852
crossref_primary_10_1016_j_jksus_2019_10_014
crossref_primary_10_1007_s00500_020_04820_z
crossref_primary_10_2112_SI97_032_1
crossref_primary_10_1186_s41072_022_00120_x
crossref_primary_10_2112_SI82_037_1
crossref_primary_10_1016_j_agwat_2021_106838
crossref_primary_10_3233_JIFS_169748
crossref_primary_10_2112_SI97_019_1
crossref_primary_10_2112_SI97_038_1
crossref_primary_10_3390_logistics5010001
crossref_primary_10_1016_j_jksus_2019_12_012
crossref_primary_10_1088_1742_6596_2816_1_012019
crossref_primary_10_1016_j_jksus_2020_01_006
crossref_primary_10_5004_dwt_2019_23849
crossref_primary_10_1016_j_jksus_2020_02_001
crossref_primary_10_1093_jcde_qwae002
crossref_primary_10_2112_SI97_022_1
crossref_primary_10_3233_JIFS_169742
crossref_primary_10_2112_SI97_001_1
crossref_primary_10_3390_logistics5010010
crossref_primary_10_1109_TITS_2023_3292592
crossref_primary_10_2112_SI97_003_1
crossref_primary_10_2112_SI97_028_1
crossref_primary_10_3233_JIFS_169739
crossref_primary_10_1515_phys_2019_0090
crossref_primary_10_1177_00202940221097981
crossref_primary_10_1016_j_eswa_2024_124408
crossref_primary_10_1016_j_marpolbul_2025_118477
crossref_primary_10_2478_pomr_2019_0015
crossref_primary_10_3233_JIFS_179827
crossref_primary_10_1007_s11182_021_02403_5
crossref_primary_10_1088_1742_6596_1213_3_032002
crossref_primary_10_3233_JIFS_169731
crossref_primary_10_1016_j_jmsy_2022_11_006
crossref_primary_10_1515_phys_2018_0118
crossref_primary_10_1007_s43069_025_00449_6
crossref_primary_10_2112_SI97_016_1
crossref_primary_10_1016_j_eswa_2022_117265
crossref_primary_10_1007_s13437_024_00334_9
crossref_primary_10_1016_j_knosys_2024_112074
crossref_primary_10_3390_jmse12101832
crossref_primary_10_1016_j_jksus_2020_01_025
crossref_primary_10_1186_s41072_023_00152_x
crossref_primary_10_1109_ACCESS_2020_3026373
crossref_primary_10_2112_SI97_021_1
Cites_doi 10.1007/s00291-003-0148-0
10.1515/pomr-2016-0061
10.1007/s10852-012-9207-3
10.5957/mt1.1984.21.4.370
10.9749/jin.80.117
10.1016/S0377-2217(99)00116-2
10.15446/esrj.v20n2.55348
10.1016/0360-8352(93)90273-Z
10.1007/11539117_167
10.1515/pomr-2016-0060
10.1155/2014/386764
10.1515/pomr-2016-0059
ContentType Journal Article
Copyright Copyright De Gruyter Open Sp. z o.o. 2017
Copyright_xml – notice: Copyright De Gruyter Open Sp. z o.o. 2017
DBID AAYXX
CITATION
7TB
7TN
8FD
F1W
FR3
KR7
DOA
DOI 10.1515/pomr-2017-0111
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Civil Engineering Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Oceanic Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Civil Engineering Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 2083-7429
EndPage 109
ExternalDocumentID oai_doaj_org_article_b037bccdc9e14dab844462928ccec99d
10_1515_pomr_2017_0111
10_1515_pomr_2017_011124s3102
10_1515_pomr_2017_011124s1102
GroupedDBID 0R~
123
29O
2WC
4.4
5VS
9WM
AATOW
ABFKT
ACGFS
ACIWK
ADBBV
ADBLJ
ADDVE
ADMLS
AENEX
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
CS3
DU5
E0C
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
HZ~
IPNFZ
KQ8
O9-
OK1
OVT
QD8
RIG
RNS
SA.
SLJYH
TR2
Y2W
AAYXX
CITATION
7TB
7TN
8FD
F1W
FR3
KR7
ID FETCH-LOGICAL-c481t-338e8bc6c9f0f284a4ac1e475be4c2f265aaef9c98a3bf34b5b62e51e181f2f03
IEDL.DBID DOA
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416036000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2083-7429
1233-2585
IngestDate Fri Oct 03 12:52:36 EDT 2025
Sun Oct 19 01:26:00 EDT 2025
Tue Nov 18 20:50:41 EST 2025
Sat Nov 29 06:13:51 EST 2025
Sat Nov 29 01:31:35 EST 2025
Sat Nov 29 01:31:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-338e8bc6c9f0f284a4ac1e475be4c2f265aaef9c98a3bf34b5b62e51e181f2f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/b037bccdc9e14dab844462928ccec99d
PQID 2088859633
PQPubID 2045207
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_b037bccdc9e14dab844462928ccec99d
proquest_journals_2088859633
crossref_citationtrail_10_1515_pomr_2017_0111
crossref_primary_10_1515_pomr_2017_0111
walterdegruyter_journals_10_1515_pomr_2017_011124s3102
walterdegruyter_journals_10_1515_pomr_2017_011124s1102
PublicationCentury 2000
PublicationDate 2017-11-27
PublicationDateYYYYMMDD 2017-11-27
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-27
  day: 27
PublicationDecade 2010
PublicationPlace Gdansk
PublicationPlace_xml – name: Gdansk
PublicationTitle Polish maritime research
PublicationYear 2017
Publisher Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: Sciendo
– name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
References 2021040610023851018_j_pomr-2017-0111_ref_007_w2aab3b7c15b1b6b1ab1ab7Aa
2021040610023851018_j_pomr-2017-0111_ref_003_w2aab3b7c15b1b6b1ab1ab3Aa
2021040610023851018_j_pomr-2017-0111_ref_018_w2aab3b7c15b1b6b1ab1ac18Aa
2021040610023851018_j_pomr-2017-0111_ref_023_w2aab3b7c15b1b6b1ab1ac23Aa
2021040610023851018_j_pomr-2017-0111_ref_014_w2aab3b7c15b1b6b1ab1ac14Aa
2021040610023851018_j_pomr-2017-0111_ref_006_w2aab3b7c15b1b6b1ab1ab6Aa
2021040610023851018_j_pomr-2017-0111_ref_004_w2aab3b7c15b1b6b1ab1ab4Aa
2021040610023851018_j_pomr-2017-0111_ref_021_w2aab3b7c15b1b6b1ab1ac21Aa
2021040610023851018_j_pomr-2017-0111_ref_017_w2aab3b7c15b1b6b1ab1ac17Aa
2021040610023851018_j_pomr-2017-0111_ref_013_w2aab3b7c15b1b6b1ab1ac13Aa
2021040610023851018_j_pomr-2017-0111_ref_022_w2aab3b7c15b1b6b1ab1ac22Aa
2021040610023851018_j_pomr-2017-0111_ref_005_w2aab3b7c15b1b6b1ab1ab5Aa
2021040610023851018_j_pomr-2017-0111_ref_011_w2aab3b7c15b1b6b1ab1ac11Aa
2021040610023851018_j_pomr-2017-0111_ref_020_w2aab3b7c15b1b6b1ab1ac20Aa
2021040610023851018_j_pomr-2017-0111_ref_009_w2aab3b7c15b1b6b1ab1ab9Aa
2021040610023851018_j_pomr-2017-0111_ref_016_w2aab3b7c15b1b6b1ab1ac16Aa
2021040610023851018_j_pomr-2017-0111_ref_001_w2aab3b7c15b1b6b1ab1ab1Aa
2021040610023851018_j_pomr-2017-0111_ref_012_w2aab3b7c15b1b6b1ab1ac12Aa
2021040610023851018_j_pomr-2017-0111_ref_025_w2aab3b7c15b1b6b1ab1ac25Aa
2021040610023851018_j_pomr-2017-0111_ref_010_w2aab3b7c15b1b6b1ab1ac10Aa
2021040610023851018_j_pomr-2017-0111_ref_002_w2aab3b7c15b1b6b1ab1ab2Aa
2021040610023851018_j_pomr-2017-0111_ref_008_w2aab3b7c15b1b6b1ab1ab8Aa
2021040610023851018_j_pomr-2017-0111_ref_019_w2aab3b7c15b1b6b1ab1ac19Aa
2021040610023851018_j_pomr-2017-0111_ref_015_w2aab3b7c15b1b6b1ab1ac15Aa
2021040610023851018_j_pomr-2017-0111_ref_024_w2aab3b7c15b1b6b1ab1ac24Aa
References_xml – ident: 2021040610023851018_j_pomr-2017-0111_ref_024_w2aab3b7c15b1b6b1ab1ac24Aa
  doi: 10.1007/s00291-003-0148-0
– ident: 2021040610023851018_j_pomr-2017-0111_ref_009_w2aab3b7c15b1b6b1ab1ab9Aa
  doi: 10.1515/pomr-2016-0061
– ident: 2021040610023851018_j_pomr-2017-0111_ref_002_w2aab3b7c15b1b6b1ab1ab2Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_005_w2aab3b7c15b1b6b1ab1ab5Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_007_w2aab3b7c15b1b6b1ab1ab7Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_013_w2aab3b7c15b1b6b1ab1ac13Aa
  doi: 10.1007/s10852-012-9207-3
– ident: 2021040610023851018_j_pomr-2017-0111_ref_015_w2aab3b7c15b1b6b1ab1ac15Aa
  doi: 10.5957/mt1.1984.21.4.370
– ident: 2021040610023851018_j_pomr-2017-0111_ref_016_w2aab3b7c15b1b6b1ab1ac16Aa
  doi: 10.9749/jin.80.117
– ident: 2021040610023851018_j_pomr-2017-0111_ref_019_w2aab3b7c15b1b6b1ab1ac19Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_018_w2aab3b7c15b1b6b1ab1ac18Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_023_w2aab3b7c15b1b6b1ab1ac23Aa
  doi: 10.1016/S0377-2217(99)00116-2
– ident: 2021040610023851018_j_pomr-2017-0111_ref_012_w2aab3b7c15b1b6b1ab1ac12Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_011_w2aab3b7c15b1b6b1ab1ac11Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_017_w2aab3b7c15b1b6b1ab1ac17Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_022_w2aab3b7c15b1b6b1ab1ac22Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_003_w2aab3b7c15b1b6b1ab1ab3Aa
  doi: 10.15446/esrj.v20n2.55348
– ident: 2021040610023851018_j_pomr-2017-0111_ref_001_w2aab3b7c15b1b6b1ab1ab1Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_021_w2aab3b7c15b1b6b1ab1ac21Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_006_w2aab3b7c15b1b6b1ab1ab6Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_014_w2aab3b7c15b1b6b1ab1ac14Aa
  doi: 10.1016/0360-8352(93)90273-Z
– ident: 2021040610023851018_j_pomr-2017-0111_ref_020_w2aab3b7c15b1b6b1ab1ac20Aa
– ident: 2021040610023851018_j_pomr-2017-0111_ref_025_w2aab3b7c15b1b6b1ab1ac25Aa
  doi: 10.1007/11539117_167
– ident: 2021040610023851018_j_pomr-2017-0111_ref_008_w2aab3b7c15b1b6b1ab1ab8Aa
  doi: 10.1515/pomr-2016-0060
– ident: 2021040610023851018_j_pomr-2017-0111_ref_010_w2aab3b7c15b1b6b1ab1ac10Aa
  doi: 10.1155/2014/386764
– ident: 2021040610023851018_j_pomr-2017-0111_ref_004_w2aab3b7c15b1b6b1ab1ab4Aa
  doi: 10.1515/pomr-2016-0059
SSID ssj0057845
Score 2.347711
Snippet Ship stowage plan is the management connection of quae crane scheduling and yard crane scheduling. The quality of ship stowage plan affects the productivity...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Container terminal
Decision analysis
Deep Q-Leaning Network (DQN)
Evaluation
Generalization
Markov decision process
Planning
Scheduling
Ship stowage plan
Ships
Stowage (onboard equipment)
Training
Value function approximation
World class companies
Title A Deep Q-Learning Network for Ship Stowage Planning Problem
URI https://reference-global.com/article/10.1515/pomr-2017-0111
https://www.proquest.com/docview/2088859633
https://doaj.org/article/b037bccdc9e14dab844462928ccec99d
Volume 24
WOSCitedRecordID wos000416036000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2083-7429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057845
  issn: 2083-7429
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6oELKpSKLRT5UJWTRezYcSxOCy3iwooKkLhF_hgDEt1dZRfQ_vuO8wEFFSFVXKOJ4rwZz5tRnDeEfAPMi0aBZA75gUnkHGa1LhioKEL61YeHdtiEHo3Ky0tz-teor3QmrJUHboHbc1munffBG-AyWFdKbGCEEaX34I0JKftm2vTNVJuDMQyl6iQakbD3ppPfNcYDT6csOX9GQY1S_7PycvWh-VAd4Kq-W8z7D6MN3xx9JKtdoUiH7QLXyBKM18nmSSOqXS_odzqyGCS025ufyP6Q_gCY0l-sk0y9oqP2iDfFupSeXd9MaZqJhvmD9pOK6Gk7TmaDXBz9PD88Zt1kBOYRzjnDvhJK5wtvYhaRYKy0noPUyoH0IopCWQvReFPa3MVcOuUKAYoD8nkUMcs_k-XxZAybhFqJJVLIyhi1lTpTVvloAcDFIhOhCAPCerAq38mGp-kVt1VqHxDcKoFbJXCrBO6A7D7aT1vBjFctDxL2j1ZJ6Lq5gO6vOvdXb7l_QLZ7z1Xd7pvhI7CvV5ha8gEpXnjzyerfqxJyhhWR-K8bsVQWX97jrbbIShOtnDOht8nyvL6Dr-SDv5_fzOqdJtT_AJxzA_E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Q-Learning+Network+for+Ship+Stowage+Planning+Problem&rft.jtitle=Polish+maritime+research&rft.au=Shen%2C+Yifan&rft.au=Zhao%2C+Ning&rft.au=Xia%2C+Mengjue&rft.au=Du%2C+Xueqiang&rft.date=2017-11-27&rft.pub=De+Gruyter+Brill+Sp.+z+o.o.%2C+Paradigm+Publishing+Services&rft.issn=1233-2585&rft.eissn=2083-7429&rft.volume=24&rft.issue=s3&rft.spage=102&rft_id=info:doi/10.1515%2Fpomr-2017-0111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-7429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-7429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-7429&client=summon