Evolutionary computation-based self-supervised learning for image processing: a big data-driven approach to feature extraction and fusion for multispectral object detection
The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful drivin...
Saved in:
| Published in: | Journal of big data Vol. 11; no. 1; pp. 130 - 20 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 2196-1115, 2196-1115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods. |
|---|---|
| AbstractList | Abstract The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods. The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods. |
| ArticleNumber | 130 |
| Author | Shen, Xiaoyang Viriyasitavat, Wattana Chamola, Vinay Shankar, Achyut Li, Haibin |
| Author_xml | – sequence: 1 givenname: Xiaoyang surname: Shen fullname: Shen, Xiaoyang organization: College of Electrical Engineering, Yanshan University, Key Laboratory of Industrial Computer Control Engineering of Hebei Province – sequence: 2 givenname: Haibin surname: Li fullname: Li, Haibin email: hbli_ysu@163.com organization: College of Electrical Engineering, Yanshan University, Key Laboratory of Industrial Computer Control Engineering of Hebei Province – sequence: 3 givenname: Achyut surname: Shankar fullname: Shankar, Achyut organization: WMG, University of Warwick, Department of Cyber Systems Engineering, WMG, University Centre for Research & Development, Chandigarh University, School of Computer Science Engineering, Lovely Professional University, Department of Computer Science and Engineering, Graphic Era Deemed to be University, Center of Research Impact and Outcome, Chitkara University – sequence: 4 givenname: Wattana surname: Viriyasitavat fullname: Viriyasitavat, Wattana organization: Chulalongkorn Business School, Faculty of Commerce and Accountancy, Chulalongkorn University – sequence: 5 givenname: Vinay surname: Chamola fullname: Chamola, Vinay organization: BITS-Pilani |
| BookMark | eNp9UU1v1TAQjFCRKKV_gJMlzgY7_ojDDVWlVKrUC5ytjb0JecqLg-080f_Ej8R5QZQTJ8-uZ2bXntfVxRxmrKq3nL3n3OgPSTIlGspqSRlrjaHqRXVZ81ZTzrm6-Ae_qq5TOjDGuCgaLS-rX7enMK15DDPEJ-LCcVkzbCXtIKEnCaeepnXBeBq3ekKI8zgPpA-RjEcYkCwxOEypND8SIN04EA8ZqI_jCWcCS7kH953kQHqEvEYk-DNHcNsUArMn_Zo2uDke1ymPaUFXCBMJ3aEg4jHjmf2metnDlPD6z3lVfft8-_XmC314vLu_-fRAnTQ8U-4a6Ty2UiDXDXAmtDZO9ryVrkajBehOetkia1AzqbmqndB1A6pzzoteXFX3u68PcLBLLO-MTzbAaM-NEAcLMY9uQit6hcqzrpHQSWW0aZU3oFHVUqoaePF6t3uVb_ixYsr2ENY4l_Wt2DZrOZessOqd5WJIKWL_dypndgvZ7iHbErI9h2xVEYldlAp5HjA-W_9H9RsYmK9R |
| Cites_doi | 10.1109/TSP.2006.879267 10.1109/TPAMI.2012.120 10.1007/s11263-013-0636-x 10.1109/LSP.2017.2789325 10.1109/JSEN.2019.2936916 10.1023/B:VISI.0000022288.19776.77 10.1109/TPAMI.2009.96 10.1016/j.ress.2007.02.009 10.3390/rs13132538 10.1162/neco_a_00990 10.1007/s44196-023-00302-w 10.1145/3072959.3073659 10.1109/MSP.2013.2278992 10.1007/978-3-642-35289-8_30 10.1109/TPAMI.2023.3261282 10.22146/ijccs.54050 10.1007/s11263-006-7934-5 10.1109/CVPR.2008.4587597 10.1109/WACV.2018.00092 10.1109/CVPR.2016.278 10.1109/CVPR.2019.01243 10.1109/CVPR42600.2020.00674 10.1109/CVPR52729.2023.01341 10.1109/CVPR.2018.00973 10.1109/SSCI.2017.8285338 10.1109/CVPR.2019.01061 10.52098/airdj.20217 10.1007/978-3-319-24574-4_28 10.1088/1742-6596/1004/1/012029 10.1016/j.ress.2007.03.027 10.1109/CVPR.2017.19 10.1109/CVPR.2009.5206848 10.1109/ICCV.2019.00156 10.1145/3123266.3123289 10.1609/aaai.v33i01.33018569 10.1109/ICCV.2019.00822 10.1109/CVPR.2019.00834 10.1109/CVPR.2015.7298965 10.1109/ICCV.2017.628 10.1109/CVPR.2019.00265 10.1109/CVPR.2005.177 10.1109/CISES58720.2023.10183503 10.1109/CVPR.2008.4587471 10.1007/978-3-030-01240-3_45 10.1007/978-3-030-01264-9_9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-024-00988-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Health Research Premium Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_3f5e5d0b74ab4586895d8a6e524452a1 10_1186_s40537_024_00988_5 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM 7XB 8AL 8FK JQ2 L.- PHGZT PKEHL POGQB PQEST PQGLB PQUKI PRINS PRQQA Q9U |
| ID | FETCH-LOGICAL-c481t-1c74cde943e167a103668c4f194c2e863a6b4d49e07e6046152c3627a5bccd3f3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310859500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:45:55 EDT 2025 Fri Nov 14 01:23:12 EST 2025 Sat Nov 29 06:20:06 EST 2025 Fri Feb 21 02:38:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Big data Image processing Evolutionary computation Self-supervised learning Object detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-1c74cde943e167a103668c4f194c2e863a6b4d49e07e6046152c3627a5bccd3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3103691140?pq-origsite=%requestingapplication% |
| PQID | 3103691140 |
| PQPubID | 2046140 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3f5e5d0b74ab4586895d8a6e524452a1 proquest_journals_3103691140 crossref_primary_10_1186_s40537_024_00988_5 springer_journals_10_1186_s40537_024_00988_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Li, Liang, Shen (CR28) 2017; 20 Tavakkoli-Moghaddam, Safari, Sassani (CR46) 2008; 93 Zhang, Demiris (CR10) 2023; 45 Boykov, Funka-Lea (CR31) 2006; 70 Yang, Yang, Su (CR29) 2018; 44 Xiang, Lv, Yu (CR43) 2019; 19 CR39 CR38 CR37 CR36 CR35 CR32 Levinshtein, Stere, Kutulakos (CR33) 2009; 31 Bekkerman, Tabrikian (CR1) 2006; 54 CR2 Putra, A I A, Utaminingrum, Mahmudy (CR25) 2020; 14 CR4 CR3 Sirisha, Praveen, Srinivasu (CR52) 2023; 16 CR5 Li, Wong, Lo (CR27) 2018; 25 CR7 CR9 CR49 CR48 CR47 CR45 Felzenszwalb, Huttenlocher (CR30) 2004; 59 CR44 CR42 CR41 Sánchez, Perronnin, Mensink (CR15) 2013; 105 Rawat, Wang (CR8) 2017; 29 Achanta, Shaji, Smith (CR34) 2012; 34 Xiao, Wang, Miao (CR40) 2021; 13 CR19 CR18 CR17 CR14 CR13 CR11 CR53 CR51 CR50 Coates, Ng (CR16) 2012 Nasrabadi (CR6) 2013; 31 CR26 CR24 CR23 CR22 CR21 CR20 Iizuka, Simo-Serra, Ishikawa (CR12) 2017; 36 Y Boykov (988_CR31) 2006; 70 988_CR26 S Iizuka (988_CR12) 2017; 36 988_CR20 988_CR22 988_CR21 988_CR24 988_CR23 X Zhang (988_CR10) 2023; 45 A Levinshtein (988_CR33) 2009; 31 J Sánchez (988_CR15) 2013; 105 X Xiang (988_CR43) 2019; 19 988_CR14 988_CR17 988_CR19 988_CR18 F Putra (988_CR25) 2020; 14 988_CR51 988_CR50 988_CR53 988_CR11 988_CR13 W Rawat (988_CR8) 2017; 29 988_CR4 988_CR3 R Tavakkoli-Moghaddam (988_CR46) 2008; 93 988_CR2 988_CR48 988_CR47 988_CR49 988_CR42 988_CR41 GC Yang (988_CR29) 2018; 44 988_CR44 988_CR45 R Achanta (988_CR34) 2012; 34 U Sirisha (988_CR52) 2023; 16 J Li (988_CR28) 2017; 20 I Bekkerman (988_CR1) 2006; 54 NM Nasrabadi (988_CR6) 2013; 31 988_CR37 988_CR7 988_CR36 988_CR39 988_CR5 A Coates (988_CR16) 2012 988_CR38 988_CR9 X Xiao (988_CR40) 2021; 13 PF Felzenszwalb (988_CR30) 2004; 59 988_CR32 988_CR35 J Li (988_CR27) 2018; 25 |
| References_xml | – volume: 54 start-page: 3873 issue: 10 year: 2006 end-page: 83 ident: CR1 article-title: Target detection and localization using MIMO radars and sonars[J] publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.879267 – ident: CR45 – ident: CR22 – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 82 ident: CR34 article-title: SLIC superpixels compared to state-of-the-art superpixel methods[J] publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.120 – volume: 105 start-page: 222 issue: 3 year: 2013 end-page: 45 ident: CR15 article-title: Image classification with the fisher vector: theory and practice[J] publication-title: Int J Comput Vision doi: 10.1007/s11263-013-0636-x – ident: CR49 – ident: CR4 – ident: CR39 – ident: CR51 – volume: 25 start-page: 288 issue: 2 year: 2018 end-page: 92 ident: CR27 article-title: Multiple object detection by a deformable part-based model and an R-CNN[J] publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2789325 – volume: 19 start-page: 11706 issue: 23 year: 2019 end-page: 13 ident: CR43 article-title: Cross-modality person re-identification based on dual-path multi-branch network[J] publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2936916 – ident: CR35 – ident: CR42 – ident: CR21 – ident: CR19 – volume: 59 start-page: 167 year: 2004 end-page: 81 ident: CR30 article-title: Efficient graph-based image segmentation[J] publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000022288.19776.77 – ident: CR50 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR5 – volume: 31 start-page: 2290 issue: 12 year: 2009 end-page: 7 ident: CR33 article-title: Turbopixels: fast superpixels using geometric flows[J] publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.96 – ident: CR26 – ident: CR18 – volume: 93 start-page: 550 issue: 4 year: 2008 end-page: 6 ident: CR46 article-title: Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm[J] publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.02.009 – ident: CR47 – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 13 start-page: 2538 issue: 13 year: 2021 ident: CR40 article-title: Infrared and visible image object detection via focused feature enhancement and cascaded semantic extension[J] publication-title: Remote Sens doi: 10.3390/rs13132538 – volume: 29 start-page: 2352 issue: 9 year: 2017 end-page: 449 ident: CR8 article-title: Deep convolutional neural networks for image classification: a comprehensive review[J] publication-title: Neural Comput doi: 10.1162/neco_a_00990 – volume: 16 start-page: 126 issue: 1 year: 2023 ident: CR52 article-title: Statistical analysis of design aspects of various YOLO-based deep learning models for object detection[J] publication-title: Int J Comput Intell Syst doi: 10.1007/s44196-023-00302-w – ident: CR23 – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 14 ident: CR12 article-title: Globally and locally consistent image completion[J] publication-title: ACM Trans Graphics (ToG) doi: 10.1145/3072959.3073659 – ident: CR44 – volume: 44 start-page: 2238 issue: 12 year: 2018 end-page: 49 ident: CR29 article-title: Improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots[J] publication-title: Acta Automatica Sinica – ident: CR48 – ident: CR3 – ident: CR38 – volume: 31 start-page: 34 issue: 1 year: 2013 end-page: 44 ident: CR6 article-title: Hyperspectral target detection: an overview of current and future challenges[J] publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2013.2278992 – ident: CR17 – ident: CR13 – start-page: 561 year: 2012 end-page: 80 ident: CR16 publication-title: Learning feature representations with k-means[M]//Neural networks: tricks of the trade doi: 10.1007/978-3-642-35289-8_30 – volume: 20 start-page: 985 issue: 4 year: 2017 end-page: 96 ident: CR28 article-title: Scale-aware fast R-CNN for pedestrian detection[J] publication-title: IEEE Trans Multimedia – ident: CR7 – ident: CR41 – volume: 45 start-page: 10535 issue: 8 year: 2023 end-page: 54 ident: CR10 article-title: Visible and infrared image fusion using deep learning[J] publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3261282 – volume: 14 start-page: 231 issue: 3 year: 2020 end-page: 42 ident: CR25 article-title: HOG feature extraction and KNN classification for detecting vehicle in the highway[J] publication-title: IJCCS (Indonesian J Comput Cybernetics Systems) doi: 10.22146/ijccs.54050 – ident: CR24 – ident: CR20 – volume: 70 start-page: 109 issue: 2 year: 2006 end-page: 31 ident: CR31 article-title: Graph cuts and efficient ND image segmentation[J] publication-title: Int J Comput Vision doi: 10.1007/s11263-006-7934-5 – ident: 988_CR42 doi: 10.1109/CVPR.2008.4587597 – ident: 988_CR21 doi: 10.1109/WACV.2018.00092 – volume: 93 start-page: 550 issue: 4 year: 2008 ident: 988_CR46 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.02.009 – volume: 70 start-page: 109 issue: 2 year: 2006 ident: 988_CR31 publication-title: Int J Comput Vision doi: 10.1007/s11263-006-7934-5 – volume: 13 start-page: 2538 issue: 13 year: 2021 ident: 988_CR40 publication-title: Remote Sens doi: 10.3390/rs13132538 – ident: 988_CR11 doi: 10.1109/CVPR.2016.278 – ident: 988_CR18 – ident: 988_CR39 doi: 10.1109/CVPR.2019.01243 – volume: 105 start-page: 222 issue: 3 year: 2013 ident: 988_CR15 publication-title: Int J Comput Vision doi: 10.1007/s11263-013-0636-x – ident: 988_CR7 doi: 10.1109/CVPR42600.2020.00674 – ident: 988_CR9 doi: 10.1109/CVPR52729.2023.01341 – ident: 988_CR50 – ident: 988_CR22 doi: 10.1109/CVPR.2018.00973 – volume: 14 start-page: 231 issue: 3 year: 2020 ident: 988_CR25 publication-title: IJCCS (Indonesian J Comput Cybernetics Systems) doi: 10.22146/ijccs.54050 – ident: 988_CR44 doi: 10.1109/SSCI.2017.8285338 – ident: 988_CR23 doi: 10.1109/CVPR.2019.01061 – ident: 988_CR26 doi: 10.52098/airdj.20217 – ident: 988_CR36 doi: 10.1007/978-3-319-24574-4_28 – volume: 20 start-page: 985 issue: 4 year: 2017 ident: 988_CR28 publication-title: IEEE Trans Multimedia – volume: 19 start-page: 11706 issue: 23 year: 2019 ident: 988_CR43 publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2936916 – ident: 988_CR48 doi: 10.1088/1742-6596/1004/1/012029 – ident: 988_CR45 doi: 10.1016/j.ress.2007.03.027 – ident: 988_CR13 doi: 10.1109/CVPR.2017.19 – volume: 16 start-page: 126 issue: 1 year: 2023 ident: 988_CR52 publication-title: Int J Comput Intell Syst doi: 10.1007/s44196-023-00302-w – volume: 54 start-page: 3873 issue: 10 year: 2006 ident: 988_CR1 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.879267 – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 988_CR8 publication-title: Neural Comput doi: 10.1162/neco_a_00990 – ident: 988_CR4 doi: 10.1109/CVPR.2009.5206848 – volume: 59 start-page: 167 year: 2004 ident: 988_CR30 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000022288.19776.77 – ident: 988_CR51 – ident: 988_CR38 doi: 10.1109/ICCV.2019.00156 – volume: 31 start-page: 2290 issue: 12 year: 2009 ident: 988_CR33 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.96 – ident: 988_CR41 – volume: 44 start-page: 2238 issue: 12 year: 2018 ident: 988_CR29 publication-title: Acta Automatica Sinica – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 988_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.120 – ident: 988_CR5 – ident: 988_CR47 doi: 10.1145/3123266.3123289 – ident: 988_CR49 doi: 10.1609/aaai.v33i01.33018569 – ident: 988_CR37 doi: 10.1109/ICCV.2019.00822 – volume: 45 start-page: 10535 issue: 8 year: 2023 ident: 988_CR10 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3261282 – ident: 988_CR3 doi: 10.1109/CVPR.2019.00834 – ident: 988_CR35 doi: 10.1109/CVPR.2015.7298965 – start-page: 561 volume-title: Learning feature representations with k-means[M]//Neural networks: tricks of the trade year: 2012 ident: 988_CR16 doi: 10.1007/978-3-642-35289-8_30 – ident: 988_CR20 doi: 10.1109/ICCV.2017.628 – ident: 988_CR24 doi: 10.1109/CVPR.2019.00265 – volume: 25 start-page: 288 issue: 2 year: 2018 ident: 988_CR27 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2789325 – ident: 988_CR14 doi: 10.1109/CVPR.2005.177 – ident: 988_CR53 doi: 10.1109/CISES58720.2023.10183503 – ident: 988_CR32 doi: 10.1109/CVPR.2008.4587471 – volume: 31 start-page: 34 issue: 1 year: 2013 ident: 988_CR6 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2013.2278992 – ident: 988_CR2 doi: 10.1007/978-3-030-01240-3_45 – ident: 988_CR19 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 988_CR12 publication-title: ACM Trans Graphics (ToG) doi: 10.1145/3072959.3073659 – ident: 988_CR17 doi: 10.1007/978-3-030-01264-9_9 |
| SSID | ssj0001340564 |
| Score | 2.349569 |
| Snippet | The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big... Abstract The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant,... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 130 |
| SubjectTerms | Artificial intelligence Big Data Communications Engineering Computation Computational Science and Engineering Computer Science Data integration Data Mining and Knowledge Discovery Data processing Database Management Deep learning Evolutionary algorithms Evolutionary computation Extraction Feature extraction Feature recognition Image enhancement Image processing Imagery Information Storage and Retrieval Infrared imagery Learning Machine learning Mathematical Applications in Computer Science Networks Object detection Object recognition Optimization Parameter identification Self-supervised learning Target detection |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXaHmIpQXNgRtYTTZ-coOqFaeKA0i9WX6Mq0qQXWV3K_Gf-JGMnQRaJNQLxzgPWZ7xfDPOzDeMvWkCYa5NiWsfAxdGBh4sBt5gwq5JkV5LtdmEvrgwl5f2861WXyUnbKQHHhfupMsSZWqCFj4IaZSxMhmvUBIuyaWvgU-j7a1gqp6udOSIKDFXyRh1shGFuYQTJPHCoWm4vINElbD_jpf514_RijfnB-zR5CjCh3GCh-wB9k_Y47kJA0x78in7eXYzaY8ffkCs9-tq8wJQCTb4LfPNbl1sQrme2kRcAXmrcP2dzAmsx2IBGnwPHsL1FZS8UZ6GYglhZh2H7QoyVh5QIIs-jBUR4PsEeVfO3OoXa4JiLd8caParUI55IOG2Znz1z9jX87Mvp5_41IKBR2HaLW-jFjGhFR22SvuW8E6ZKHJrRVyiUZ1XQSRhsdGoCne7XEaCRO1liDF1uXvO9vpVjy8YSBNVltqjtCjaYAzmLrfRklCRwuR2wd7O4nDrkWnD1QjFKDcKz5HwXBWekwv2sUjs95OFJbsOkO64SXfcfbqzYMezvN20dTeuNF5TBAGiWbB3sw78uf3vKb38H1M6Yg-XRUdrwswx29sOO3zF9uMNyW54XZX8F_78AzM priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBCeYptC5oDN7BINrZj91aqVpwqDiD1ZvkxWVWC7CrZrcR_4kd27DhFRXCAY_yILc3jG9vzYOxt5QlzTYy8dcFzoaXn3qDnFUZsqhhoWszFJtqLC315aT6XoLBx9nafnySzps5irdWHUaTUI5wwhackmJrL--yBpJ7kyHdaYhzyzUpDI5WYI2T-OPUOCuVk_XcszN8eRTPWnO__3y6fsMfFtoSTiRmesnvYP2P7c90GKGL8nP08uy4M54YfEHJ_JhBPmBZhxG8dH3ebpEbSd6kssQIycOHqO2kg2EzxBdR4DA781QqSqymPQ1KeMCcqh-0aOsypQ4FAYJiCKMD1EbpduqbLf8w-jTnic6Ddr326GYKI2-wk1r9gX8_Pvpx-4qVqAw9C11teh1aEiEY0WKvW1QSRSgfR1UaEJWrVOOVFFAarFlVK9y6XgVC0ddKHEJuuecn2-nWPrxhIHVQnW4fSoKi91tg1XR2MkBrpZF0v2LuZinYzJeew-VCjlZ0IYYkQNhPCygX7mAh9OzIl1s4N62Fli5zappMoY-Vb4Twto7SRUTuFkswguXS05NHMJrZI-2hTrTZFqCGqBXs_s8Wv7r9v6eDfhh-yR8vEWdmb5ojtbYcdvmYPwzVRaXiTpeAGEeAHcA priority: 102 providerName: Springer Nature |
| Title | Evolutionary computation-based self-supervised learning for image processing: a big data-driven approach to feature extraction and fusion for multispectral object detection |
| URI | https://link.springer.com/article/10.1186/s40537-024-00988-5 https://www.proquest.com/docview/3103691140 https://doaj.org/article/3f5e5d0b74ab4586895d8a6e524452a1 |
| Volume | 11 |
| WOSCitedRecordID | wos001310859500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtQw1KItBy6UVUwpIx-4gdUs3sIF0dFUIDSjCIFouUTeMqoEyTSZqcSFL-IjeXYcRkWCCxdLtuNFeaufn99D6HmiQeYW1hKhjCZUMk104TRJnHV5Yg0MsyHZhFgu5fl5UUaDWx_dKkeeGBi1bY23kZ_4fFgcKJMmr9dXxGeN8rerMYXGHjpIsywQ5ntBdjaWHNQRTse3MpKf9NTHLyEgmIiPpCkJuyGPQtj-G7rmH9ejQeqcHf7vfu-hu1HfxG8GBLmPbrnmATocczngSNoP0c_5dURC1X3HJvQHoBEv5yzu3dea9Nu1Zy2-HrNNrDAovfjyG3AlvB7eHEDjK6ywvlxh735KbOcZKh6Dl-NNi2sXwoliEAzd8LACq8bieutNd2HG4OcYXoF2sPtWe2sRtm4THMeaR-jT2fzj7C2JmRyIoTLdkNQIaqwraO5SLpT_NVwaWqcFNZmTPFdcU0sLlwjHfQh4lhmQrEIxbYzN6_wx2m_axj1BmEnDayaUY4WjqZbS1XmdmoIy6eC0nU7QixGe1XoI2FGFg47k1QD9CqBfBehXbIJOPch_f-mDbYeGtltVkXarvGaO2UQLqjQsw2XBrFTcMVCNWKZgyeMRBarIAfpqB_8Jejki0a7771s6-vdsT9GdzKNv8Kg5RvubbuueodvmGqDSTdGe-HwxRQen82X5AWqzjE6DmWEaKAPKRTLzZeZ7Fz_mUJbsC4wo3y3Ki1_TExt8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL5VWxUMAHOIHVPGzHQUKIR6tWLaseilRxMX5MVpUgWZLdov4nxG9k7CSsigS3Hjjm5UT2Nw9PZuYj5Gli0eaW3rPCOMu4EpbZEixLwEOeeIeP-Ug2UUyn6uSkPFojP8damJBWOerEqKh940KMfDvwYUmUTJ68nn9jgTUq_F0dKTR6WBzA-XfcsnWv9t_j-j7Lst2d43d7bGAVYI6rdMFSV3DnoeQ5pLIwYVipHK9wN-8yUDI30nLPS0gKkKEducgcavnCCOucz6scx71CrkbqLpSfI_FpFdPJ0f2RfKzNUXK746FfCkNDyELnTsXEBfsXaQIu-LZ__I6NVm5343-bn1vk5uBP0ze9ANwma1DfIRsjVwUdVNdd8mPnbBAy055TF69HULJgxz3t4EvFuuU8qM5wPLBpzCg69fT0K2pdOu9rKvDkS2qoPZ3RkF7LfBsMBh2bs9NFQyuI7VIpGr62Lxyhpva0WobQZBwx5nHGKtcWv76xIRpGPSxiYlx9j3y8lDnbJOt1U8N9QoVyshKFAVECT61SUOVV6kouFOQqTyfk-YgfPe8bkui4kVNS92jTiDYd0abFhLwNEPt9Z2gmHk807UwPuknnlQDhE1twY_E1UpXCKyNBoOsnMoOv3BohpwcN1-kV3ibkxQja1eW_f9KDf4_2hFzfO_5wqA_3pwcPyY0siE7MHtoi64t2CY_INXeGK9Q-jrJHyefLBvMvwoFtUA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSF8hQLBebADawmG9txuEHpCgRa9QBSb5Yf41Wlkl1ls5X4T_xIxk4CFMEBcYwfsaWZ8efHzDeMPS8cYW4TAq-td1xo6bhr0PECA1ZF8NQt5GQT9XKpT0-bk1-i-LO3-_QkOcQ0JJamtj_chDiYuFaHW5FoSDjhC0-EmJrLq-waHU1k0vGjMd4h37JU1FKJKVrmj10vIVIm7r-02_ztgTTjzmL__2d8m90a95zwelCSO-wKtnfZ_pTPAUbzvse-HV-Mimi7r-BzfRYcT1gXYIvnkW93m7S8pO8x48QKaOMLZ19oZYLNEHdAha_AgjtbQXJB5aFLiypMBObQryFiphQFAoduCK4A2waIu3R9l_-YfR1zJGhHs1-7dGMEAfvsPNbeZ58Xx5-O3vExmwP3Qpc9L30tfMBGVFiq2pYEnUp7EctG-DlqVVnlRBANFjWqRAMv557QtbbSeR-qWD1ge-26xYcMpPYqytqibFCUTmuMVSx9I6RGOnGXM_ZikqjZDKQdJh92tDKDIAwJwmRBGDljb5LQf7RMhNu5YN2tzGi_pooSZShcLayjYZRuZNBWoaTtkZxbGvJgUhkzrgJbk3K4KUITUczYy0lFflb_fUqP_q35M3bj5O3CfHy__PCY3ZwnJcsONwdsr-92-IRd9xcksO5pNo7vwPgTOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+computation-based+self-supervised+learning+for+image+processing%3A+a+big+data-driven+approach+to+feature+extraction+and+fusion+for+multispectral+object+detection&rft.jtitle=Journal+of+big+data&rft.au=Shen%2C+Xiaoyang&rft.au=Li%2C+Haibin&rft.au=Shankar%2C+Achyut&rft.au=Viriyasitavat%2C+Wattana&rft.date=2024-12-01&rft.issn=2196-1115&rft.eissn=2196-1115&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-024-00988-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40537_024_00988_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |