Evolutionary computation-based self-supervised learning for image processing: a big data-driven approach to feature extraction and fusion for multispectral object detection

The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful drivin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of big data Ročník 11; číslo 1; s. 130 - 20
Hlavní autoři: Shen, Xiaoyang, Li, Haibin, Shankar, Achyut, Viriyasitavat, Wattana, Chamola, Vinay
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2196-1115, 2196-1115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods.
AbstractList Abstract The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods.
The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods.
ArticleNumber 130
Author Shen, Xiaoyang
Viriyasitavat, Wattana
Chamola, Vinay
Shankar, Achyut
Li, Haibin
Author_xml – sequence: 1
  givenname: Xiaoyang
  surname: Shen
  fullname: Shen, Xiaoyang
  organization: College of Electrical Engineering, Yanshan University, Key Laboratory of Industrial Computer Control Engineering of Hebei Province
– sequence: 2
  givenname: Haibin
  surname: Li
  fullname: Li, Haibin
  email: hbli_ysu@163.com
  organization: College of Electrical Engineering, Yanshan University, Key Laboratory of Industrial Computer Control Engineering of Hebei Province
– sequence: 3
  givenname: Achyut
  surname: Shankar
  fullname: Shankar, Achyut
  organization: WMG, University of Warwick, Department of Cyber Systems Engineering, WMG, University Centre for Research & Development, Chandigarh University, School of Computer Science Engineering, Lovely Professional University, Department of Computer Science and Engineering, Graphic Era Deemed to be University, Center of Research Impact and Outcome, Chitkara University
– sequence: 4
  givenname: Wattana
  surname: Viriyasitavat
  fullname: Viriyasitavat, Wattana
  organization: Chulalongkorn Business School, Faculty of Commerce and Accountancy, Chulalongkorn University
– sequence: 5
  givenname: Vinay
  surname: Chamola
  fullname: Chamola, Vinay
  organization: BITS-Pilani
BookMark eNp9UU1v1TAQjFCRKKV_gJMlzgY7_ojDDVWlVKrUC5ytjb0JecqLg-080f_Ej8R5QZQTJ8-uZ2bXntfVxRxmrKq3nL3n3OgPSTIlGspqSRlrjaHqRXVZ81ZTzrm6-Ae_qq5TOjDGuCgaLS-rX7enMK15DDPEJ-LCcVkzbCXtIKEnCaeepnXBeBq3ekKI8zgPpA-RjEcYkCwxOEypND8SIN04EA8ZqI_jCWcCS7kH953kQHqEvEYk-DNHcNsUArMn_Zo2uDke1ymPaUFXCBMJ3aEg4jHjmf2metnDlPD6z3lVfft8-_XmC314vLu_-fRAnTQ8U-4a6Ty2UiDXDXAmtDZO9ryVrkajBehOetkia1AzqbmqndB1A6pzzoteXFX3u68PcLBLLO-MTzbAaM-NEAcLMY9uQit6hcqzrpHQSWW0aZU3oFHVUqoaePF6t3uVb_ixYsr2ENY4l_Wt2DZrOZessOqd5WJIKWL_dypndgvZ7iHbErI9h2xVEYldlAp5HjA-W_9H9RsYmK9R
Cites_doi 10.1109/TSP.2006.879267
10.1109/TPAMI.2012.120
10.1007/s11263-013-0636-x
10.1109/LSP.2017.2789325
10.1109/JSEN.2019.2936916
10.1023/B:VISI.0000022288.19776.77
10.1109/TPAMI.2009.96
10.1016/j.ress.2007.02.009
10.3390/rs13132538
10.1162/neco_a_00990
10.1007/s44196-023-00302-w
10.1145/3072959.3073659
10.1109/MSP.2013.2278992
10.1007/978-3-642-35289-8_30
10.1109/TPAMI.2023.3261282
10.22146/ijccs.54050
10.1007/s11263-006-7934-5
10.1109/CVPR.2008.4587597
10.1109/WACV.2018.00092
10.1109/CVPR.2016.278
10.1109/CVPR.2019.01243
10.1109/CVPR42600.2020.00674
10.1109/CVPR52729.2023.01341
10.1109/CVPR.2018.00973
10.1109/SSCI.2017.8285338
10.1109/CVPR.2019.01061
10.52098/airdj.20217
10.1007/978-3-319-24574-4_28
10.1088/1742-6596/1004/1/012029
10.1016/j.ress.2007.03.027
10.1109/CVPR.2017.19
10.1109/CVPR.2009.5206848
10.1109/ICCV.2019.00156
10.1145/3123266.3123289
10.1609/aaai.v33i01.33018569
10.1109/ICCV.2019.00822
10.1109/CVPR.2019.00834
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.628
10.1109/CVPR.2019.00265
10.1109/CVPR.2005.177
10.1109/CISES58720.2023.10183503
10.1109/CVPR.2008.4587471
10.1007/978-3-030-01240-3_45
10.1007/978-3-030-01264-9_9
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOA
DOI 10.1186/s40537-024-00988-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 20
ExternalDocumentID oai_doaj_org_article_3f5e5d0b74ab4586895d8a6e524452a1
10_1186_s40537_024_00988_5
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
7XB
8AL
8FK
JQ2
L.-
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c481t-1c74cde943e167a103668c4f194c2e863a6b4d49e07e6046152c3627a5bccd3f3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001310859500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Fri Oct 03 12:45:55 EDT 2025
Fri Nov 14 01:23:12 EST 2025
Sat Nov 29 06:20:06 EST 2025
Fri Feb 21 02:38:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Big data
Image processing
Evolutionary computation
Self-supervised learning
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-1c74cde943e167a103668c4f194c2e863a6b4d49e07e6046152c3627a5bccd3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/3f5e5d0b74ab4586895d8a6e524452a1
PQID 3103691140
PQPubID 2046140
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_3f5e5d0b74ab4586895d8a6e524452a1
proquest_journals_3103691140
crossref_primary_10_1186_s40537_024_00988_5
springer_journals_10_1186_s40537_024_00988_5
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Li, Liang, Shen (CR28) 2017; 20
Tavakkoli-Moghaddam, Safari, Sassani (CR46) 2008; 93
Zhang, Demiris (CR10) 2023; 45
Boykov, Funka-Lea (CR31) 2006; 70
Yang, Yang, Su (CR29) 2018; 44
Xiang, Lv, Yu (CR43) 2019; 19
CR39
CR38
CR37
CR36
CR35
CR32
Levinshtein, Stere, Kutulakos (CR33) 2009; 31
Bekkerman, Tabrikian (CR1) 2006; 54
CR2
Putra, A I A, Utaminingrum, Mahmudy (CR25) 2020; 14
CR4
CR3
Sirisha, Praveen, Srinivasu (CR52) 2023; 16
CR5
Li, Wong, Lo (CR27) 2018; 25
CR7
CR9
CR49
CR48
CR47
CR45
Felzenszwalb, Huttenlocher (CR30) 2004; 59
CR44
CR42
CR41
Sánchez, Perronnin, Mensink (CR15) 2013; 105
Rawat, Wang (CR8) 2017; 29
Achanta, Shaji, Smith (CR34) 2012; 34
Xiao, Wang, Miao (CR40) 2021; 13
CR19
CR18
CR17
CR14
CR13
CR11
CR53
CR51
CR50
Coates, Ng (CR16) 2012
Nasrabadi (CR6) 2013; 31
CR26
CR24
CR23
CR22
CR21
CR20
Iizuka, Simo-Serra, Ishikawa (CR12) 2017; 36
Y Boykov (988_CR31) 2006; 70
988_CR26
S Iizuka (988_CR12) 2017; 36
988_CR20
988_CR22
988_CR21
988_CR24
988_CR23
X Zhang (988_CR10) 2023; 45
A Levinshtein (988_CR33) 2009; 31
J Sánchez (988_CR15) 2013; 105
X Xiang (988_CR43) 2019; 19
988_CR14
988_CR17
988_CR19
988_CR18
F Putra (988_CR25) 2020; 14
988_CR51
988_CR50
988_CR53
988_CR11
988_CR13
W Rawat (988_CR8) 2017; 29
988_CR4
988_CR3
R Tavakkoli-Moghaddam (988_CR46) 2008; 93
988_CR2
988_CR48
988_CR47
988_CR49
988_CR42
988_CR41
GC Yang (988_CR29) 2018; 44
988_CR44
988_CR45
R Achanta (988_CR34) 2012; 34
U Sirisha (988_CR52) 2023; 16
J Li (988_CR28) 2017; 20
I Bekkerman (988_CR1) 2006; 54
NM Nasrabadi (988_CR6) 2013; 31
988_CR37
988_CR7
988_CR36
988_CR39
988_CR5
A Coates (988_CR16) 2012
988_CR38
988_CR9
X Xiao (988_CR40) 2021; 13
PF Felzenszwalb (988_CR30) 2004; 59
988_CR32
988_CR35
J Li (988_CR27) 2018; 25
References_xml – volume: 54
  start-page: 3873
  issue: 10
  year: 2006
  end-page: 83
  ident: CR1
  article-title: Target detection and localization using MIMO radars and sonars[J]
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.879267
– ident: CR45
– ident: CR22
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  end-page: 82
  ident: CR34
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods[J]
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– volume: 105
  start-page: 222
  issue: 3
  year: 2013
  end-page: 45
  ident: CR15
  article-title: Image classification with the fisher vector: theory and practice[J]
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-013-0636-x
– ident: CR49
– ident: CR4
– ident: CR39
– ident: CR51
– volume: 25
  start-page: 288
  issue: 2
  year: 2018
  end-page: 92
  ident: CR27
  article-title: Multiple object detection by a deformable part-based model and an R-CNN[J]
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2789325
– volume: 19
  start-page: 11706
  issue: 23
  year: 2019
  end-page: 13
  ident: CR43
  article-title: Cross-modality person re-identification based on dual-path multi-branch network[J]
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2936916
– ident: CR35
– ident: CR42
– ident: CR21
– ident: CR19
– volume: 59
  start-page: 167
  year: 2004
  end-page: 81
  ident: CR30
  article-title: Efficient graph-based image segmentation[J]
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: CR50
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR5
– volume: 31
  start-page: 2290
  issue: 12
  year: 2009
  end-page: 7
  ident: CR33
  article-title: Turbopixels: fast superpixels using geometric flows[J]
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.96
– ident: CR26
– ident: CR18
– volume: 93
  start-page: 550
  issue: 4
  year: 2008
  end-page: 6
  ident: CR46
  article-title: Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm[J]
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.02.009
– ident: CR47
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 13
  start-page: 2538
  issue: 13
  year: 2021
  ident: CR40
  article-title: Infrared and visible image object detection via focused feature enhancement and cascaded semantic extension[J]
  publication-title: Remote Sens
  doi: 10.3390/rs13132538
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  end-page: 449
  ident: CR8
  article-title: Deep convolutional neural networks for image classification: a comprehensive review[J]
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– volume: 16
  start-page: 126
  issue: 1
  year: 2023
  ident: CR52
  article-title: Statistical analysis of design aspects of various YOLO-based deep learning models for object detection[J]
  publication-title: Int J Comput Intell Syst
  doi: 10.1007/s44196-023-00302-w
– ident: CR23
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 14
  ident: CR12
  article-title: Globally and locally consistent image completion[J]
  publication-title: ACM Trans Graphics (ToG)
  doi: 10.1145/3072959.3073659
– ident: CR44
– volume: 44
  start-page: 2238
  issue: 12
  year: 2018
  end-page: 49
  ident: CR29
  article-title: Improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots[J]
  publication-title: Acta Automatica Sinica
– ident: CR48
– ident: CR3
– ident: CR38
– volume: 31
  start-page: 34
  issue: 1
  year: 2013
  end-page: 44
  ident: CR6
  article-title: Hyperspectral target detection: an overview of current and future challenges[J]
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2013.2278992
– ident: CR17
– ident: CR13
– start-page: 561
  year: 2012
  end-page: 80
  ident: CR16
  publication-title: Learning feature representations with k-means[M]//Neural networks: tricks of the trade
  doi: 10.1007/978-3-642-35289-8_30
– volume: 20
  start-page: 985
  issue: 4
  year: 2017
  end-page: 96
  ident: CR28
  article-title: Scale-aware fast R-CNN for pedestrian detection[J]
  publication-title: IEEE Trans Multimedia
– ident: CR7
– ident: CR41
– volume: 45
  start-page: 10535
  issue: 8
  year: 2023
  end-page: 54
  ident: CR10
  article-title: Visible and infrared image fusion using deep learning[J]
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3261282
– volume: 14
  start-page: 231
  issue: 3
  year: 2020
  end-page: 42
  ident: CR25
  article-title: HOG feature extraction and KNN classification for detecting vehicle in the highway[J]
  publication-title: IJCCS (Indonesian J Comput Cybernetics Systems)
  doi: 10.22146/ijccs.54050
– ident: CR24
– ident: CR20
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  end-page: 31
  ident: CR31
  article-title: Graph cuts and efficient ND image segmentation[J]
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-006-7934-5
– ident: 988_CR42
  doi: 10.1109/CVPR.2008.4587597
– ident: 988_CR21
  doi: 10.1109/WACV.2018.00092
– volume: 93
  start-page: 550
  issue: 4
  year: 2008
  ident: 988_CR46
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.02.009
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  ident: 988_CR31
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-006-7934-5
– volume: 13
  start-page: 2538
  issue: 13
  year: 2021
  ident: 988_CR40
  publication-title: Remote Sens
  doi: 10.3390/rs13132538
– ident: 988_CR11
  doi: 10.1109/CVPR.2016.278
– ident: 988_CR18
– ident: 988_CR39
  doi: 10.1109/CVPR.2019.01243
– volume: 105
  start-page: 222
  issue: 3
  year: 2013
  ident: 988_CR15
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-013-0636-x
– ident: 988_CR7
  doi: 10.1109/CVPR42600.2020.00674
– ident: 988_CR9
  doi: 10.1109/CVPR52729.2023.01341
– ident: 988_CR50
– ident: 988_CR22
  doi: 10.1109/CVPR.2018.00973
– volume: 14
  start-page: 231
  issue: 3
  year: 2020
  ident: 988_CR25
  publication-title: IJCCS (Indonesian J Comput Cybernetics Systems)
  doi: 10.22146/ijccs.54050
– ident: 988_CR44
  doi: 10.1109/SSCI.2017.8285338
– ident: 988_CR23
  doi: 10.1109/CVPR.2019.01061
– ident: 988_CR26
  doi: 10.52098/airdj.20217
– ident: 988_CR36
  doi: 10.1007/978-3-319-24574-4_28
– volume: 20
  start-page: 985
  issue: 4
  year: 2017
  ident: 988_CR28
  publication-title: IEEE Trans Multimedia
– volume: 19
  start-page: 11706
  issue: 23
  year: 2019
  ident: 988_CR43
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2936916
– ident: 988_CR48
  doi: 10.1088/1742-6596/1004/1/012029
– ident: 988_CR45
  doi: 10.1016/j.ress.2007.03.027
– ident: 988_CR13
  doi: 10.1109/CVPR.2017.19
– volume: 16
  start-page: 126
  issue: 1
  year: 2023
  ident: 988_CR52
  publication-title: Int J Comput Intell Syst
  doi: 10.1007/s44196-023-00302-w
– volume: 54
  start-page: 3873
  issue: 10
  year: 2006
  ident: 988_CR1
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.879267
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  ident: 988_CR8
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– ident: 988_CR4
  doi: 10.1109/CVPR.2009.5206848
– volume: 59
  start-page: 167
  year: 2004
  ident: 988_CR30
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: 988_CR51
– ident: 988_CR38
  doi: 10.1109/ICCV.2019.00156
– volume: 31
  start-page: 2290
  issue: 12
  year: 2009
  ident: 988_CR33
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.96
– ident: 988_CR41
– volume: 44
  start-page: 2238
  issue: 12
  year: 2018
  ident: 988_CR29
  publication-title: Acta Automatica Sinica
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 988_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– ident: 988_CR5
– ident: 988_CR47
  doi: 10.1145/3123266.3123289
– ident: 988_CR49
  doi: 10.1609/aaai.v33i01.33018569
– ident: 988_CR37
  doi: 10.1109/ICCV.2019.00822
– volume: 45
  start-page: 10535
  issue: 8
  year: 2023
  ident: 988_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3261282
– ident: 988_CR3
  doi: 10.1109/CVPR.2019.00834
– ident: 988_CR35
  doi: 10.1109/CVPR.2015.7298965
– start-page: 561
  volume-title: Learning feature representations with k-means[M]//Neural networks: tricks of the trade
  year: 2012
  ident: 988_CR16
  doi: 10.1007/978-3-642-35289-8_30
– ident: 988_CR20
  doi: 10.1109/ICCV.2017.628
– ident: 988_CR24
  doi: 10.1109/CVPR.2019.00265
– volume: 25
  start-page: 288
  issue: 2
  year: 2018
  ident: 988_CR27
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2789325
– ident: 988_CR14
  doi: 10.1109/CVPR.2005.177
– ident: 988_CR53
  doi: 10.1109/CISES58720.2023.10183503
– ident: 988_CR32
  doi: 10.1109/CVPR.2008.4587471
– volume: 31
  start-page: 34
  issue: 1
  year: 2013
  ident: 988_CR6
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2013.2278992
– ident: 988_CR2
  doi: 10.1007/978-3-030-01240-3_45
– ident: 988_CR19
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 988_CR12
  publication-title: ACM Trans Graphics (ToG)
  doi: 10.1145/3072959.3073659
– ident: 988_CR17
  doi: 10.1007/978-3-030-01264-9_9
SSID ssj0001340564
Score 2.349569
Snippet The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big...
Abstract The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 130
SubjectTerms Artificial intelligence
Big Data
Communications Engineering
Computation
Computational Science and Engineering
Computer Science
Data integration
Data Mining and Knowledge Discovery
Data processing
Database Management
Deep learning
Evolutionary algorithms
Evolutionary computation
Extraction
Feature extraction
Feature recognition
Image enhancement
Image processing
Imagery
Information Storage and Retrieval
Infrared imagery
Learning
Machine learning
Mathematical Applications in Computer Science
Networks
Object detection
Object recognition
Optimization
Parameter identification
Self-supervised learning
Target detection
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCy0sstMgHbmB14_jJBUHVCgmp4gBSb5afq0qQbJPdSvwnfiQex2FVJLj0EilxZFn5xjOT8cw3CL3WOnjnLSfaQ7Sq5Y5o61O-OM5S8FrYZWk2Ic_P1cWF_lIDbmNNq5x1YlHUofcQIz-Gflgi70y2fL--ItA1Ck5XawuNu-heQ2nZmJ8l2cVY2uyOCDbXyihxPDLgLyHZMBFg0lSE37BHhbb_hq_51_FosTpn-7dd7wF6WP1N_GESkEfoTuweo_25lwOuW_sJ-nV6XYXQDj-xL-MFNAJ2LuAxfk9k3K5BtcB97TaxwtnpxZc_slbC66nmID98hy12lysM6ackDKBQ8Uxejjc9TrHQieJsGIapsALbLuC0hdBdmbHkOZYq0CGvvncQLcIhbkriWPcUfTs7_XryidRODiRLQLMhjZfMh6hZGxshLXwaoTxLjWaeRiVaKxwLTMeljAIo4Dn12bJKy533oU3tM7TX9V18jrDQyoVS_51dp5iCpkJSz3jUVDZe0QV6M-Np1hNhhyk_OkqYCX2T0TcFfcMX6CNA_udNINsuD_phZereNW3ikYelk8w6xpVQmgdlReTZNeLUNgt0OIuAqRpgNDv8F-jtLES74X8v6cX_Z3uJHlAQ35JRc4j2NsM2HqH7_jqjMrwq8v8bcCsQSw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKy4ELhRbEtgXNgRu12CS2Y_dWqlacKg6t1Jvlz1UlyK6S3Ur8J35k7YnTqggOcImU2IksvRnPZDzzhpCPSnlnneFUuRytarilyriYLpaz6J0SZo7NJtrLS3lzo76VorBhynafjiRxp0a1luLzwDL1CE02hWYSTEn5M7LD00hO5DsrNQ4YWWnSTMGmCpk_vvrECiFZ_xMP87dDUbQ1F7v_t8pX5GXxLeF0FIbXZCt0e2R36tsARY33ya_zuyJwpv8JDscRIJptmochfI902KzyNpLvS2eJBSQHF25_pB0IVmN9QXp4Agbs7QJyqin1fd48YSIqh_USYkDqUEhGoB-LKMB0HuImh-nwi5jTiBWffVr90ubIEPiwxiSx7g25vji_OvtKS9cGmtCu1rRyLXM-KNaESrSmSiZSSMdipZirgxSNEZZ5psK8DSLTvfPaJSvaGm6d801s3pLtbtmFdwSEktZjrXdyk0L0qhZt7RgPqm4rJ-sZ-TShqFcjOYfGnxop9AiETkBoBELzGfmSgX6YmYm18cGyX-iip7qJPHA_ty0zlnEppOJeGhF4coN4baoZOZrERBdtH3Tu1SaS1WDzGTmexOJx-O9LOvi36YfkRZ0lC7Npjsj2ut-E9-S5u0so9R9QC-4BtKUGVg
  priority: 102
  providerName: Springer Nature
Title Evolutionary computation-based self-supervised learning for image processing: a big data-driven approach to feature extraction and fusion for multispectral object detection
URI https://link.springer.com/article/10.1186/s40537-024-00988-5
https://www.proquest.com/docview/3103691140
https://doaj.org/article/3f5e5d0b74ab4586895d8a6e524452a1
Volume 11
WOSCitedRecordID wos001310859500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCG7GlrHzgBlYTx09udLUVCO0qQiBaLpZfqSpBdpXdrdQLv4gfydhJoEVCXLiMZDuJRp6xZ-zMfIPQC62Dd95yon26raq4I9r6BojjrAleC1vkYhNyuVQnJ7q-UuorxYT18MD9xB1WDY88FE4y6xhXQmkelBWRg13i1OaDTyH1lcNUvl2pwBERbMySUeJwwxJyCQGTRBKGpiL8miXKgP3XvMw_foxme3N8H90dHEX8pmfwAboR24fo3liEAQ9r8hH6Mb8YtMd2l9jn8TzbJBmogDfxa0M2u3XaE1J7KBNxhsFbxeffYDvB6z5ZADpfY4vd-RlOcaMkdGknxCPqON6ucBMzDiiGHb3rMyKwbQNudunOLX8xByjm9M0OuF-5dM2DQ9zmiK_2Mfp0PP84e0uGEgwERFduSekl8yFqVsVSSFuCvRPKs6bUzNOoRGWFY4HpWMgoEnY7px5MorTceR-qpnqC9tpVG58iLLRyISdug88Tm6CpkNQzHjWVpVd0gl6O4jDrHmnD5BOKEqYXngHhmSw8wyfoKEns15MJJTt3gO6YQXfMv3Rngg5GeZth6W5MKrwmwASwYoJejTrwe_jvLO3_D5aeoTs06WgOmDlAe9tuF5-j2_4CZNdN0U35-XSKbh3Nl_UHaM0om2bFB_peEqCLYpYoTaOL73OgNf8Cb9TvFvXpTzB6DAs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyqtioYAPcAKrm8R2bCSEeLRq1bLqoUgVF-NXVpVgsyS7Rf1PiN-Ix0lYFQluPXCJlDiyrPibhycz8wE8Vco76wynymG0quCWKuOqeLGcVd4pYcaJbKKcTOTJiTpag59DLQymVQ46MSlqXzuMkW8jH5aIksnGr-ffKLJG4d_VgUKjg8VBOP8ej2ztq_33cX-f5fnuzvG7PdqzCtC4mmxBM1cy54NiRchEaXBaIR2r4mne5UGKwgjLPFNhXAaB7ch57qKWLw23zvmiKuK8V-Bqou6K8nPEP61iOkV0fwQbanOk2G4Z9kuh0RBS7NwpKb9g_xJNwAXf9o_fscnK7W78b9_nFtzs_WnyphOA27AWZndgY-CqIL3qugs_ds56ITPNOXFpPIGSoh33pA1fKtou56g68b5n05iS6NST069R65J5V1MRH74khtjTKcH0WuobNBhkaM5OFjWpQmqXSqLha7rCEWJmnlRLDE2mGVMeZ6pybeLqa4vRMOLDIiXGze7Bx0v5ZpuwPqtn4T4QoaT1qb49uoah8ioXZe4YDyovMyfzETwf8KPnXUMSnQ5yUugObTqiTSe0aT6Ctwix329iM_H0oG6mutdNuqh44H5sS2Ys41JIxb00IvDo-vHcZCPYGiCnew3X6hXeRvBiAO1q-O9LevDv2Z7A9b3jD4f6cH9y8BBu5Cg6KXtoC9YXzTI8gmvuLO5Q8zjJHoHPlw3mX4KgbDY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKQYgL5Sm2LWUO3MDqJrEdm1spXRWBVj2A1Jvl56pSya6y2Ur8J35k7UkCFMEB9RIpthNZmqfHM98Q8lop76wznCqXo1UVt1QZF9PDcha9U8JMsdlEPZ_L83N19lsVP2a7j1eSfU1DRmlqusOVj72IS3G4ZhmGhCb7QjMgpqT8DrmbjiY88_jxUO-AUZYqrRRsrJb566c3LBIC99_wNv-4IEW7M9u5_Y4fkYeDzwlHPZM8JluheUJ2xn4OMIj3U_Lj5GpgRNN-B4fzSDiabZ2HdbiMdL1ZZfWS34eOEwtIji9cfEuaCVZ93UEafAcG7MUCcgoq9W1WqjACmEO3hBgQUhSScWj74gowjYe4yeE7_CPmOmIlaJt2v7Q5YgQ-dJg81jwjX2cnX45P6dDNgSYuKDpauJo5HxSrQiFqUyTTKaRjsVDMlUGKygjLPFNhWgeRYeB56ZJ1rQ23zvkqVs_JdrNswgsCQknrsQY8uU8helWKunSMB1XWhZPlhLwZKapXPWiHxsOOFLonhE6E0EgIzSfkfSb6z5UZcBsHlu1CD_Krq8gD91NbM2MZl0Iq7qURgSf3iJemmJD9kWX0oAXWOvdwE8masOmEvB1Z5Nf0v7e0-3_LX5H7Zx9m-vPH-ac98qDMTIYJN_tku2s34SW5564SwdoDFI5rS64SHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+computation-based+self-supervised+learning+for+image+processing%3A+a+big+data-driven+approach+to+feature+extraction+and+fusion+for+multispectral+object+detection&rft.jtitle=Journal+of+big+data&rft.au=Xiaoyang+Shen&rft.au=Haibin+Li&rft.au=Achyut+Shankar&rft.au=Wattana+Viriyasitavat&rft.date=2024-12-01&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs40537-024-00988-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3f5e5d0b74ab4586895d8a6e524452a1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon